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Abstract. A comprehensive review of the body of genetic 
studies on schizophrenia seems even more daunting than the 
battle a psychiatrist wages daily in the office with her arch-
enemy of a thousand faces. The following article reunites some 
genetic, epigenetic and environmental factors of schizophrenia 
from revered and vast studies in a chronological and progres-
sive fashion. Twin studies set the basics of heritability and 
a particular study by Davis and Phelps considers the widely 
ignored influence of prenatal environment in the development 
of schizophrenia. Mostly ignited by linkage studies, candidate 
gene studies explore further by fine‑mapping the hypothesized 
variants [mostly in the forms single nucleotide polymor-
phisms (SNPs) and less but with greater impact copy number 
variations (CNVs)] associated with the disease. Genome‑wide 
association studies (GWAS) increase considerably the sample 
sizes and thus the validity of the results, while the next‑genera-
tion sequencing (NGS) attain the highest yet unreplicated level 
of validity results.
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1. Introduction

Schizophrenia is a common yet devastating mental disorder 
characterized by a series of cognitive, behavioral and emotional 
dysfunctions, none of which are pathognomonic for the disease. 
It includes both positive symptoms, mainly represented by 
hallucinations and delusions and negative ones, such as blunted 
affect, avolition and social isolation, along with disturbed atten-
tion, executive function and working memory (1). Structural 
changes in the brain (white matter, grey matter, size) have 
been shown in controlled neuropathology leading to the idea 
that schizophrenia might be a true psychosomatic disorder (2). 
The onset is either abrupt or insidious, anywhere between 
late adolescence and mid of the 4th decade, followed by an 
episodic and deteriorating course, with every new episode 
worsening the prognosis (3,4). Genetic epidemiological studies 
suggest that the life time risk of developing schizophrenia in 
general population is 0.5‑1%, although it increases considerably 
when relatives with the disorder are present (5). Even though 
the established genetic component of schizophrenia is high 
(heritability of ~0.8), much of its genetic architecture remains 
unknown (6). As many other complex psychiatric disorders, 
for example the intrapsychic dissociative phenomenon (also 
genetically conditioned) (7), schizophrenia is a multifactorial 
disorder, which encompasses the interplay of multiple suscepti-
bility genes, epigenetic processes and environmental factors (8). 
Large studies on de novo, common and rare variants pointed to 
many causal aspects from the N‑methyl‑D‑aspartate receptor 
signaling and postsynaptic density (PSD), calcium channels, 
targets of micro‑RNA miR‑137, glutamate pathways, processes 
related to neurogenesis and synaptic integrity and yet there are 
many unknown pathogenic pathways in the etiology of schizo-
phrenia (9‑13) as well as linking neuroendocrine aspects during 
pregnancy and postpartum life of the female patient affecting 
the new born development (14). We explored the contributions 
to the understanding of schizophrenia genetics of the classical 
twin and linkage studies, as well as the newer candidate gene 
and genome‑wide association studies (GWAS), with the implied 
risk loci and single nucleotide polymorphism (SNP) and the 
critical, so‑called copy number variation (CNV).

2. Heritability and twin‑studies

Heritability is a concept that estimates in a population the 
fraction of differences within a trait that is due to genetic 
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variability. It can vary from 0 to 1, where 0 means no influence 
of genetic variation, while 1 shows 100% genetic contribu-
tion to the variation. Twin and adoption studies are the most 
frequently used study designs to portray heritability. The most 
cited study on heritability is the meta‑analysis by Sullivan et al 
which includes 12 studies of European and Northern American 
origins and applies a multi‑group twin model to conclude a 
heritability of up to 81% as well as clear evidence for shared 
environmental influences on schizophrenia (6).

An important discovery of family, twin and adoption 
studies is the proportional increase in risk for disease with 
the degree of genetic relationship to a person suffering from 
schizophrenia. Thus, the risk is approximated at  2% for 
third‑degree relatives, 9% for first‑degree relatives, 27% for 
children of two affected parents and 50% for monozygotic 
twins  (15). As for an adopted child with a schizophrenic 
biological parent, the risk for disease proves to be 6  to 10 
times higher than the general population (16). The nature of 
heredity in schizophrenia goes beyond the Mandelian rules 
and percentages of risk, in a complex landscape of different 
genetic polymorphisms with low penetrance and sometimes 
rare genetic variants of high risk (17).

The evidence that monozygotic  (MZ) twins have high 
concordance of schizophrenia is taken as evidence for 
genetic influences in the majority of studies in this area (18). 
Moreover, a study by Waller et al (19) on monozygotic twins 
reared apart (MZA) concludes that sharing no environmental 
elements makes the MZA correlation a direct estimate of 
heritability. Still, a very important aspect is left out of all of 
the studies, that is, the prenatal environment in which the 
twins develop and the placentation variants, when consid-
ering placenta as the direct physical and psychological link 
between the mother and child, through which nutrients, drugs, 
toxins are shared and can affect the neurodevelopment of the 
embryos. In this case, a maternal infection with MZ twins will 
most likely affect both of them, while an infection of a DC 
twin mother is far more likely to pass to one but not the other.

A study by Davis and Phelps (18) tries to investigate this 
unaccounted for prenatal environment in twins, hypothesizing 
that monochorionic monozygotic (MC‑MZ) twins are more 
concordant for schizophrenia than dichorionic monozy-
gotic (DC‑MZ) twins. Their hypothesis is in accord with the 
latest studies that show an increased risk of schizophrenia for 
children exposed to infectious disease especially in the second 
trimester (20‑22). Because there are no studies investigating 
placentation in twins and the risk for schizophrenia, the 
authors used mirrored handedness as a retrospective marker 
for placentation. If placentation occurs within 4  days of 
fertilization, the twins will be DC‑MZ, developing separate 
placentas and chorions and almost always separate circula-
tions with the mother (23). However, if twining occurs after 
day 4, the twins will be MC‑MZ and will share fetal circu-
lation in 90% of cases. Twinning after day 4 will result in 
mirror imaging limited to the ectodermal layer and observed 
phenotypically as mirror hair swirls, dermal ridge patterns 
on hands and feet or hand preferences (24,25). Only mirror 
hand preference was used as placentation marker in the study 
of 71  pairs of twins. The retrospective marker of mirror 
handedness for placentation has a few shortcomings that 
decrease its statistical power: handedness is a characteristic 

that could be caused by other factors than late twinning such 
as learning, brain pathology or perinatal stressors and MC 
twins with same‑handedness could be considered DC twins 
with same handedness or vice versa confounding the study 
groups. Nevertheless, within the 71 case‑study there were far 
more opposite‑hand twin pairs that developed schizophrenia 
or psychosis (9 out of 15 pairs, 60%) compared with the same 
hand preference group (18 out of 56, 32.1%) (18). The low 
number of opposite‑hand cases and the rate of MC twinning 
of generally 60% could mean that the opposite‑hand group 
is in fact MC  twins. Likewise, the relatively high concor-
dance (32.1%) for schizophrenia in the DC‑MZ twins' group 
would imply that many of the second study group are MC‑MZ 
same‑handed twins (18). A way of validating these results 
would be a study with clear data for placentation, obtained 
post‑partum; nonetheless, this study covers a mainly ignored 
possible source of schizophrenia in identical twins.

3. Linkage studies

Coupling studies was one of the first molecular genetic 
approaches. It resided in the notion that genetic traits located 
close to each other were more prone to be inherited together 
compared with traits farther apart (17). Although early linkage 
studies were inconsistent and hardly replicable, a large 
meta‑analysis found a genome‑wide result on 2q, fact confirmed 
partially five years later in another meta‑analysis (26,27).

A more recent and relevant large‑scale linkage study 
has reignited the interest in the disrupted in schizo-
phrenia 1 (DISC1) gene (associated with a large number of 
cytoskeletal proteins) resulted from a 1q42 translocation and 
previously described as segregating with psychopathology in a 
large Scottish family (28).

Other linkage studies using schizophrenia pedigrees of 
European and African American‑decent has identified a larger 
region on 6q (6q13‑q26) as implicated in the disease (29). Also, 
G72 on chromosome 13q32‑34, Epsin 4 on chromosome 5q33 
and other genes originally identified in linkage studies have 
follow up systematic association studies and fine‑mapping of 
the regions (28).

4. The search for candidate genes in schizophrenia

Although gene identification represents an important step to 
uncovering the complex pathophysiology of schizophrenia, 
the road to the genetic origins of this disease is strewn with 
difficulties. It would have been ideal if the binary diagnosis 
(‘affected’/‘unaffected’) employed in many genetic studies 
for schizophrenia were directly conclusive, but the vast 
phenotypic heterogeneity of the disease makes it difficult 
to account for the differences in representation throughout 
samples of various components of the illness. No single gene 
is necessary or sufficient to determine the disease, rather a 
combination of risk genes with small effects describe the 
highly heterogeneous genetic basis of schizophrenia (28). 
Other confounding variables of association studies of 
schizophrenia using the case‑control design include small 
sample sizes (making the results possible false positive/
negative), the unequal representation of allele frequencies 
in the study groups or the publication bias that results in 
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negative studies being rarely published in the journals where 
the original discovery was published (28‑30).The discovery 
of susceptibility genes has been made successful as a result 
of the completion of sequencing the human genome. With 
the new DNA amplification methods, the huge number of 
genetic variants in schizophrenia is now easily processed 
in association studies (17). The most often studied variants 
are SNPs, that are substitutions of single bases within the 
genome. Methodologically, the allele frequencies of a group 
with a phenotype (e.g. schizophrenia) are compared with a 
control group (a population without the disease) (17). Another 
variation used in studies is CNV, which is characterized by 
duplications or deletions of DNA sequence. This variation is 
much less common than SNPs and because it affects a larger 
part of a chromosome the risk ration of disease is higher.

A review by Karayiogou and Gorgos (28) brings together 
a series of important candidate genes for schizophrenia, 
which were identified through systematic positional cloning in 
regions of linkage and linkage disequilibrium (LD) mapping 
methods. They have highlighted the consistent linkage signal 
of the chromosome 13q32‑34 and also the implication of a 
broad region of the chromosome 8p12‑21.

The gene for proline dehydrogenase maps on the 22q11 
chromosome and association between hemizygous deletion 
of the 22q11 locus and schizophrenia has been previously 
stated (28). The gene codes for an enzyme that metabolizes 
L‑proline, an amino acid that may be directly involved in 
glutamatergic transmission, one of the core pathways impli-
cated in schizophrenia (32,33). Through fine‑mapping of the 
22q11 locus, overexpression of haplotypic variants at the 3' end 
of the gene has been identified (31,34). This finding has been 
confirmed in two independent studies evaluating a large (528) 
group of Chinese families, as well as 274 Ashkenazi Jewish 
origin families, even though a negative study was also 
published (35‑37).

In another important study on 360  Iranian subjects 
(175 schizophrenic and 185 controls) 3 polymorphisms of the 
PRODH gene (757C/T, 1766 A/G and 1852 G/A) were associ-
ated with an increased risk of schizophrenia (38).

Rare variants of the gene have shown to reduce the 
activity of the enzyme (31). In an animal‑model study on mice 
involving the PRODH gene variants, abnormal plasticity of 
glutamatergic synapses and dopamine dysregulation in the 
frontal cortex have been identified (39,40). The dysregulation 
of dopamine generates increased levels of transcripts of the 
cathecol‑O‑methyltransferase (COMT) gene, also located on 
the 22q11 chromosome. This seems to be a triggered compen-
satory response to the glutamate dysregulation (28).

Another gene of the 22q11 locus is the ZDHHC8, identified 
in the same LD screen of the PRODH gene previously presented. 
Of the five SNPs identified, one of them (rs175174) was associ-
ated with a 1.5‑fold increase risk of the disease (34,41).

Thirdly, the COMT gene is also located in 22q11 region, 
somewhere in between the 2 anterior genes described. Its 
codes for an enzyme involved in dopamine breakdown and 
a variant that modulates enzyme activity (Val, high activity; 
Met, low activity in the 158  codon) has been especially 
studied. The high activity (Val) allele appears to increase 
the risk of schizophrenia and affect executive function, a 
domain dysregulated in the disease, despite the unsubstantial 

results (42‑45). On animal models, the low activity variant 
also proved to increase the risk for disease, the insufficient 
enzyme inappropriately metabolizing the increased dopa-
mine (46). The result of the low activity enzyme was replicated 
in a follow‑up study of children with 22q11 microdeletion 
that showed decreased volume of the prefrontal cortex and 
levels of cognition, as well as the debut of psychotic episode 
in adolescence (47).

Dystrobrevin‑binding protein 1 (DTNBP1) or dysbindin 
is another gene identified by fine‑mapping of 6p24‑22 locus, 
previously cited in linkage studies. Dysbindin is part of the 
dystrophin protein complex (DPC), as well as the biogenesis 
of lysosome‑related organelle complex (BLOC) (48,49). Two 
studies showcased the decrease of DTNBP1 mARN in the 
dorsolateral prefrontal cortex and hippocampus of schizo-
phrenic patients compared with controls (50,51).

The same approach of fine‑mapping of 8p12‑21 chromo-
some locus, previously identified in linkage studies has given 
the Neurolregulin 1 (NRG1) gene. Many differences in the 
frequency of haplotypes throughout the samples could indicate 
important heterogeneity of the LD structure of NRG1 locus or 
the coexistence of several alleles of risk there (52,53). Because 
these haplotypes proved no functional relevance, the knockout 
NRG1 mice studied cannot be used to model the implication of 
the gene in determining schizophrenia (54,55).

The follow‑up systematic association studies for the 
disrupted in schizophrenia  1  (DISC1) gene identified in 
linkage studies, identified a positional candidate on 1q42. Even 
tough negative studies were reported, the gene showed asso-
ciation with schizophrenia for allelic heterogeneity (56‑58). 
The complexity of the gene is supported by different studies 
showing variants of the gene involved in altered hippocampal 
structure and functions in healthy individuals or visual 
working memory performance (59,60). Furthermore, the gene 
has unclear implications in development and plasticity, being 
involved in a series of cellular functions such as cell migra-
tion, microtubule function, membrane trafficking of receptors, 
neurite outgrowth, mitochondrial function and phosphodies-
terase signaling (61).

Also mentioned in the linkage studies chapter is the 
trace amine receptor 4 (TAAR6) gene that was subsequently 
fine‑mapped and identified as a positional candidate for 
schizophrenia on the 6q23.2 (62). It is considered a GPCR 
extensively expressed in the brain (63).

Another solid linkage signal for both bipolar disorder and 
schizophrenia has led to the fine‑mapping of the 13q32‑34 
locus. The results included several SNPs and haplotypes of 
the locus associated with schizophrenia in French‑Canadian 
studies and replicated in Russian ones (60). Through enzy-
matic studies it was shown that G72 modulates the activity of 
D‑amino acid oxidase (DAAO) and in turn affects glutama-
tergic signaling (64).

Similar implication in both schizophrenia and bipolar 
disorder were suggested for the abnormal expression of 
the carboxyl‑terminal PDZ ligand of neuronal nitric oxide 
synthase  (CAPON) gene  (65). CAPON was also shown 
to be involved in NMDA receptor‑coupled nitric oxide 
signaling (66).

Located on chromosome 5q33, Epsin  4 gene was 
fine‑mapped and 4 haplotypes showed evidence of LD with 
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schizophrenia (67). The gene codes for a protein involved in the 
transport and stability of neurotransmitter vesicles at synapses.

Finally, the GABA subunit gene cluster showed in sequen-
tial studies evidence for the implication of GABA transmission 
in schizophrenia (68).

To complement these findings, a separate meta‑analysis 
identified other associated genes at the dopaminergic (DRD2, 
DRD3 and DRD4) and serotoninergic (HTR2A, SLC6A4 and 
TPH1) systems, as well as genes affecting neuro development 
(AHI1, MTHFR, RELN and TRKA) (69).

Aside from the described candidate genes, another 
12 regions (2p, 5q, 3p, 11q, 2q, 1q, 22q, 8p, 6p, 20p, 13q and 
14q) of the human genome were identified to likely contain 
susceptibility gene for schizophrenia (69,70).

Taking the research results to the next level would mean 
to identify and characterize the susceptibility genes for 
schizophrenia in vivo, allowing for development of mecha-
nism‑targeted therapies.

5. Genome‑wide association studies: A quantum leap

The leap in GWAS studies consists in the number of SNPs 
tested, which could go up to 10 million in a single experiment 
compared with only a few SNPs analyzed in candidate gene 
studies (17). This significant quantitative improvement raises the 
significance threshold, reducing the chance of false‑positives.

Chronologically, in the first major genome‑wide study 
by O'Donovan  et  al a polymorphism in the zinc finger 
protein 804 A (ZNF804) gene was associated with schizo-
phrenia (71). The next important study by Stefansson et al (72)
brought about associations in the transcription factor 4 (TCF) 
gene, Neurogranin  (NRGRN) gene and the MHC region, 
the last association being convincingly replicated in large 
consortia (72‑74).

Psychiatric Genome Wide Association Study Consortium 
(PGC) represents the joint forces of many specialists 
world‑wide and was created out of the need for greater 
samples, reaching the level of thousands (11). The latest and 
most impressing study of the Consortium resulted in 128 asso-
ciations or 108 independent loci with genome‑wide relevance, 
obtained on a remarkable sample of 36,989  patients and 
113,075 controls (75).

However, impressing the results of GWAS studies compared 
with those of the previous era, the case control numbers remain 
too low to encircle the entire amount of genetic variability that 
accounts for susceptibility to schizophrenia.

6. Copy number variants: Rare but pivotal alleles

The possibility of assessing millions of SNPs at once intro-
duced by GWAS generated enthusiasm of resolving the genetic 
basis of schizophrenia. Although considerable genome wide 
meta‑analyses have singled‑out many promising candidate 
genes, they only account for ~2 of 80% heritability in schizo-
phrenia (76,77).

With increasing evidence showing that common variants 
cover a tiny fraction of heritability, the possible implication 
of rare variants (both SNPs and CNVs) becomes higher. 
Moreover, rare de novo CNVs with high penetrance could 
account for an important piece of the heritability puzzle (78).

By definition, CNVs are structural genomic variants that 
comprise of duplications, deletions, insertions and translocations 
of varying sizes from 1 kilobase to several megabase pairs (79). 
A well‑known CNV is the 22q11 deletion, 20‑30% of people 
with it having schizophrenia (80). Concomitantly, the 22q11.2 
deletion causes the velocardiofacial syndrome (Di  George 
syndrome), a multiphenotypical severe disorder (81).

In a study by Luo et al employing integration of priori-
tization data with genetic association and PPI interaction 
(protein‑protein interaction) the following 8 genes were iden-
tified to be frequently disrupted by CNVs in schizophrenia 
cases: NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDEI, 
SNAP29 and GJA5 (79).

7. Next generation sequencing

New advances in sequencing technologies come in the form 
of cost‑effective ‘whole genome sequencing’ and ‘well exome 
sequencing’. An initial pilot study applying NGS to a trio 
generated intriguing, yet unsustain results that await to be 
confirmed (82).

Three other larger studies lead the way in the NGS era. 
In a study by Gulsuner et al (13) genes involved in the fetal 
prefrontal cortex neurogenesis were identified after the exome 
sequencing of 105 patients with schizophrenia, 84 unaffected 
siblings and 210 unaffected parents. Fromer et al (83), aside 
from reinstating the genetic overlap of schizophrenia and 
neurodevelopmental disorders (autism and mental retarda-
tion), also signaled the presence of de novo CNVs in the 
activity‑regulated cytoskeleton‑associated protein (ARC) or 
N‑methyl‑D‑aspartate receptor complex (NMDAR). Lastly, 
Purcell et al (84) confirmed the presence of CNVs in ARC 
and NMDAR complex as well as in Fragile‑X‑mental retar-
dation‑protein‑protein complex (FMRP) and calcium channel 
complexes.

8. Conclusions

The level and scale of testing the genetic fabric of schizo-
phrenia has come a long way from the first twin‑pair studies 
to the meta‑analyses of GWAS involving simultaneous testing 
of millions of SNPs from thousands of subjects or ‘the whole 
genome sequencing’ applied in trios or case‑controls, courtesy 
of the NGS. This urge for covering exponentially more genome 
at once, illustrated even by the creation of Psychiatric Genome 
Wide Association Study Consortium (PGC) highlights once 
for all the enormous genetic heterogeneity and still unchar-
tered interdependences of genes in schizophrenia. From the 
impressing 80% heritability stated by Sullivan, very little 
has been pinpointed and confirmed in live models or come 
even close to the ultimate goal of targeted therapy. The closest 
to this much desired goal are maybe the prioritized CNVs 
of genes like NRXN1, CHRNA7, BCL9 or CYFIP1. Many 
confounding variables still plague all levels of testing starting 
from sample sizes, absence of negative studies of insufficient 
follow‑up for high credibility.
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