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Abstract. Pneumonia is a persistent and pervasive disease, the 
effects of which can be severe. MicroRNA (miR)‑127‑5p has 
been utilized as a novel biomarker for the diagnosis of severe 
pneumonia. The present study aimed to investigate the function 
of miR‑127‑5p during severe pneumonia. An in vitro model of 
severe pneumonia in Ana‑1 murine macrophages was estab-
lished using lipopolysaccharide (LPS). Subsequently, reverse 
transcription‑quantitative PCR and ELISA were performed to 
detect the mRNA and protein expression levels of interleukin 
(IL)‑1β, IL‑6 and tumor necrosis factor (TNF)‑α. Western blot-
ting was also performed to measure the activity of AKT and 
NF‑κB. The results indicated that compared with the control 
group, LPS treatment increased TNF receptor‑associated 
factor 1 (TRAF1) expression levels and reduced miR‑127‑5p 
expression levels. Furthermore, the results revealed that the 
3'‑untranslated region of TRAF1 was targeted by miR‑127‑5p. 
miR‑127‑5p mimic reduced LPS‑induced increases in IL‑1β, 
IL‑6 and TNF‑α expression by targeting TRAF1, which was 
potentially mediated by inactivation of the AKT and NF‑κB 
signaling pathways. Collectively, the results demonstrated 
that miR‑127‑5p may attenuate severe pneumonia by reducing 
LPS‑induced inflammatory cytokine production, and inacti-
vating the AKT and NF‑κB signaling pathways by targeting 
TRAF1.

Introduction

Pneumonia is a persistent and pervasive disease (1). Despite not 
usually being fatal, the effects of the disease can be severe; for 
example, 25% of American pediatric patients (age, 1‑6 years) 
hospitalized for pneumonia were admitted to intensive care 

units (ICUs), with 33.3% of pediatric ICU patients requiring 
mechanical ventilation in 2015 (2,3). Therefore, identifying 
the molecular mechanisms mediating severe pneumonia is 
important to reduce the disease burden.

MicroRNAs (miRNAs/miRs) are endogenous, evolution-
arily conserved, non‑coding RNAs that are ~22 nucleotides in 
length. miRNAs post‑transcriptionally regulate gene expression 
by targeting and binding to the 3'‑untranslated region (UTR) of 
target mRNAs (4‑7). In mammals, miRNAs are associated with 
various diseases, including cancer (8) and viral infections (9), 
and have been identified as biomarkers for pneumonia (10). 
Moreover, numerous miRNAs are involved in the progression 
of pneumonia; miR‑302e reduced inflammation during infantile 
pneumonia via the NF‑κB signaling pathway (11), miR‑146a‑5p 
regulated lipopolysaccharide (LPS)‑induced cell apoptosis and 
inflammation via CC motif chemokine ligand 5 during acute 
pneumonia (12), and miR‑370‑3p modulated LPS‑induced cell 
apoptosis and inflammation via toll like receptor 4 during acute 
pneumonia (13). It has also been reported that miR‑127 may 
reduce lung inflammation by targeting immunoglobulin (Ig)
G Fcγ receptor I (14). Additionally, miR‑127‑5p expression, 
which is reduced in bronchoalveolar lavage fluid, may serve as 
a biomarker for the diagnosis of the disease (15). The present 
study aimed to investigate the function of miR‑127‑5p during 
severe pneumonia, as well as the potential molecules regulated 
by miR‑127‑5p, to identify a potential therapeutic target for 
severe pneumonia.

Materials and methods

Cell culture. Ana‑1 murine macrophages were obtained from 
The Cell Bank of Type Culture Collection of the Chinese 
Academy of Sciences and cultured in RPMI‑1640 medium 
(Gibco; Thermo Fisher Scientific, Inc.) supplemented with 
10% low endotoxin fetal calf serum (Hyclone; GE Healthcare 
Life Sciences) and 1% penicillin‑streptomycin (Gibco; Thermo 
Fisher Scientific, Inc.) at 37˚C with 95% humidity and 5% CO2.

An in vitro model of pneumonia was induced by treating 
Ana‑1 murine macrophages with 0.1 µg/ml LPS (Sigma‑Aldrich; 
Merck KGaA) at 37˚C for 24 h (16). Subsequently, cells were 
randomly divided into the following four groups: Control (treated 
with saline), LPS, and/or LPS  +  miR‑127‑5p mimic and/or 
LPS + miR‑127‑5p mimic + pcDNA3.1‑TRAF1.
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Cell transfection. miR‑NC mimic (5'‑UAGUCUCGGGAGAC 
UCACUACC‑3') and miR‑127‑5p mimic (5'‑UAGUCUCGGG 
AGACUCGAAGUC‑3') were obtained from Guangzhou 
Ribobio Co., Ltd. miR‑NC mimic (200 nM) or miR‑127‑5p 
mimic (200  nM) were mixed with Lipofectamine®  2000 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) and incu-
bated for 15 min at room temperature. Subsequently, Ana‑1 
murine macrophages were seeded (1x106  cells/well) into 
6‑well plates and the mimic‑Lipofectamine mix was added to 
each well.

TRAF1 was amplified from Ana‑1 murine macrophages 
by PCR at thermocycling conditions of 95˚C for 15  min, 
followed by 30  cycles of denaturation at 98˚C for 10  sec, 
annealing at 55˚C for 30 sec and extension at 72˚C for 30 sec 
using PrimeSTAR Max DNA Polymerase (Takara Bio, Inc.) 
and then cloned into pcDNA3.1 (Thermo Fisher Scientific, 
Inc.) to generate pcDNA3.1 TRAF1. A total of 2 µg pcDNA3.1 
TRAF1 and pcDNA3.1 (control) were transfected into Ana‑1 
murine macrophages (1x105) using Lipofectamine®  2000 
reagent (Thermo Fisher Scientific, Inc.).

Following incubation for 48 h at 37˚C, transfection effi-
ciency was determined by reverse transcription‑quantitative 
PCR (RT‑qPCR). All experiments were performed 48  h 
post‑transfection.

ELISA. Ana‑1 murine macrophages (5x105  cells/well) 
were plated into 24‑well plates and incubated at 37˚C with 
95%  humidity and 5%  CO2 overnight. The protein levels 
of TNF‑α (cat. no. BMS607‑3; Invitrogen; Thermo Fisher 
Scientific, Inc.), IL‑6 (cat. no. RAB0308; Sigma‑Aldrich; 
Merck KGaA) and IL‑1β (cat. no. RAB0274; Sigma‑Aldrich; 
Merck KGaA) in the cell media were assessed using ELISA 
kits, according to the manufacturer's protocol.

RT‑qPCR. Total RNA was extracted from Ana‑1 murine 
macrophages using TRIzol® (Invitrogen; Thermo Fisher 
Scientific, Inc.) and mirVana kits (Applied Biosystems; 
Thermo Fisher Scientific, Inc.) for the detection of RNA and 
miRNA, respectively, according to the manufacturer's 
protocol. The TaqMan Gene Expression assay and TaqMan 
MicroRNA Reverse Transcription kits (Applied Biosystems; 
Thermo Fisher Scientific, Inc.) were used to reverse transcribe 
RNA(RT temperature protocols: (50˚C for 2 min, 95˚C for 
10 min, followed with 95˚C for 15 sec and 60˚C for 1 min for 
40 cycles) and miRNA (RT temperature protocols: 16˚C for 30 
min, 42˚C for 30 min and 85˚C for 5 min) to cDNA, respec-
tively, according to the manufacturer's protocol. Subsequently, 
qPCR was performed using a SYBR Green qPCR Master Mix 
kit (Takara Biotechnology Co., Ltd) the StepOnePlus™ 
Real‑Time PCR system (Applied Biosystems; Thermo Fisher 
Scientific, Inc.) with the following thermocycling conditions: 
initial denaturation at 95˚C for 2 min, 35 cycles of 95˚C for 
15 sec and 64˚C for 30 sec. The kit and the system were used 
according to the manufacturer's protocol. The following 
primer pairs were used for qPCR: miR‑127‑5p, forward 5'‑CT 
CTTCAAGCTCCAAACCAAAC‑3', reverse 5'‑GTATCC 
ACCAGAACCACCAGG‑3'; IL‑1β, forward 5'‑GAAAGC 
TCTCCACCTAATG‑3', reverse 5'‑GCCGTCTTTCATTACA 
CAGG‑3'; IL‑6, forward 5'‑CCAGAGATACAAAGAAATG 
ATGG‑3', reverse 5'‑ACTCCAGAAGACCAGAGGAAA‑3'; 

TNF‑α, forward 5'‑TCTCATCAGTTCTATGGCCC‑3', reverse 
5'‑GGGATGAGACAAGGTACAAC‑3'; U6, forward 5'‑AT 
TGGAACGATACAGAGAAGATT 3', reverse 5'‑GGAACGCT 
TCACGAATTTG 3'; and GAPDH, forward 5'‑TGATGACA 
TCAAGAAGGTGGTGAAG‑3' and reverse 5'‑TCCTTGGA 
GGCCATGTGGGCCAT‑3'. mRNA and miRNA expression 
levels were quantified using the 2‑ΔΔCq method (17). mRNA and 
miRNA expression levels were normalized to the internal 
reference genes GAPDH and U6, respectively.

Western blotting. Total protein was extracted from Ana‑1 
murine macrophages using RIPA buffer (Roche Diagnostics) 
and protein concentrations were determined using BCA 
(Beyotime Institute of Biotechnology). Proteins were then sepa-
rated via 8% SDS‑PAGE and transferred to PVDF membranes 
(EMD Millipore), which were subsequently blocked with 5% 
non‑fat milk at room temperature for 1 h. The membranes were 
incubated at 4˚C overnight with primary antibodies targeted 
against the following: GAPDH (cat no. 5174; 1:1,000), TRAF1 
(cat no. 4710; 1:1,000), phosphorylated (p)‑AKT (cat no. 4060; 
1:1,000), AKT (cat no. 4691; 1:1000), p‑p65 (cat no. 3033; 
1:1,000) and p65 (cat no. 8242; 1:1,000; all, Cell Signaling 
Technology, Inc.). Following primary antibody incubation, 
the membranes were incubated with an anti‑rabbit horse-
radish peroxidase‑conjugated IgG secondary antibody (cat 
no. 7047; 1:2,000; Cell Signaling Technology, Inc.) at room 
temperature for 2 h. Protein bands were visualized using an 
enhanced chemiluminescence detection system (PerkinElmer, 
Inc.). Protein expression was semi‑quantified using Quantity 
One software (version 4.62; Bio‑Rad Laboratories, Inc.) with 
GAPDH as the loading control.

Dual luciferase reporter assay. TargetScan (version 7.1; www.
targetscan.org/vert_71) was used to predict the binding site 
between miR‑127‑5p and the 3'‑UTR of TRAF1.

The wild‑type (WT) 3'‑UTR of TRAF1, containing 
complementary sequences for the seed sequence of 
miR‑127‑5p, was amplified from Ana‑1 murine macrophages 
via PCR with the thermocycling conditions of 95˚C for 15 min, 
followed by 30  cycles of denaturation at 98˚C for 10  sec, 
annealing at 55˚C for 30 sec and extension at 72˚C for 30 sec 
via PrimeSTAR Max DNA Polymerase (Takara Bio, Inc.) and 
cloned into the psi‑CHECK‑2 vector (Promega Corporation). 
The mutant (MUT) 3'‑UTR of TRAF1 was constructed using 
the QuikChange II Site‑Directed Mutagenesis kit (Agilent 
Technologies, Inc.), according to the manufacturer's protocol.

Ana‑1 murine macrophages (1x104 cells/well) were seeded 
into 96‑well plates and transfected with psi-CHECK-2-TRAF1-
WT‑3'UTR (400 ng) or psi‑CHECK-2‑TRAF1‑MUT‑3'‑UTR 
(400 ng) and miR‑127‑5p mimic (50 ng) or miR‑NC mimic 
(50  ng) using Lipofectamine®  2000 reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.). Following incubation for 
48  h at 37˚C, luciferase activities were determined using 
a Dual‑Luciferase assay system (Promega Corporation), 
according to the manufacturer's protocol. Firefly luciferase 
activity was normalized to Renilla luciferase activity.

Statistical analysis. Statistical analyses were performed using 
GraphPad Prism software (version 5.04; GraphPad Software, 
Inc.). Data are expressed as the mean ±  standard error of 
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the mean. Differences between two groups were analyzed 
using the unpaired Student's t‑test. Differences among four 
groups were analyzed using one‑way ANOVA followed by 
Bonferroni's post hoc test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

miR‑127‑5p expression is downregulated during pneumonia. 
Once the in vitro model of pneumonia was established using 
LPS, as evidenced by increased inflammatory cytokines 
(data not shown), the expression of miR‑127‑5p in Ana‑1 
murine macrophages was detected by RT‑qPCR. The results 
indicated that miR‑127‑5p expression was significantly 
decreased in Ana‑1 murine macrophages following LPS 
exposure compared with the control group (Fig. 1); there-
fore, LPS‑treated Ana‑1 murine macrophages were used for 
subsequent experiments.

miR‑127‑5p targets the 3'‑UTR of TRAF1. TargetScan 
indicated that miR‑127‑5p targeted TRAF1 at the 

2,118‑2,124 position of the 3'‑UTR (Fig. 2A). To determine 
whether miR‑127‑5p mimic was successfully transfected into 
Ana‑1 murine macrophages, the expression of miR‑127‑5p 
in the miR‑NC mimic and miR‑127‑5p mimic groups 
was detected by RT‑qPCR. miR‑127‑5p expression was 
significantly increased in the miR‑127‑5p mimic group 
compared with the miR‑NC mimic group (Fig.  2B). A 
dual‑luciferase reporter assay was subsequently performed to 
investigate the interaction between miR‑127‑5p and the 3'‑UTR 
of TRAF1. Luciferase activity was significantly reduced in the 
TRAF1‑WT‑3'UTR + miR‑127‑5p mimic group compared with 
the TRAF1‑WT‑3'UTR + miR‑NC mimic group. However, 
no significant difference in luciferase activity was observed 
between the TRAF1‑MUT‑3'UTR + miR‑127‑5p mimic and 
TRAF1‑MUT‑3'UTR + miR‑NC mimic groups (Fig. 2C).

miR‑127‑5p inhibits TRAF1 expression. To determine whether 
miR‑127‑5p mimic could regulate the expression of TRAF1, 
the mRNA and protein expression levels of TRAF1 were 
detected using western blotting and RT‑qPCR, respectively. 
The results suggested that the mRNA (Fig. 3A) and protein 

Figure 1. miR‑127‑5p expression is downregulated during pneumonia. Compared with the control group, miR‑127‑5p expression was significantly decreased 
in the LPS (0.1 µg/ml) group. **P<0.01 vs. the control group. miR, microRNA; LPS, lipopolysaccharide.

Figure 2. miR‑127‑5p targets TRAF 3'‑UTR. (A) miR‑127‑5p targets the 2,118‑2,124 position of TRAF 3'‑UTR. (B) miR‑127‑5p expression levels were 
significantly increased in the miR‑127‑5p mimic group compared with the miR‑NC mimic group. (C) Luciferase activity was significantly decreased in the 
miR‑126‑5p mimic group compared with the miR‑NC mimic group in Ana‑1 murine macrophages transfected with TRAF1‑WT‑3'UTR. **P<0.01 vs. the 
miR‑NC mimic group. 3'‑UTR, 3'‑untranslated region; miR, microRNA; NC, negative control; TRAF1, tumor necrosis factor receptor‑associated factor 1; 
WT, wild‑type; MUT, mutant.
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(Fig. 3B and C) expression levels of TRAF1 were significantly 
decreased in the miR‑127‑5p mimic group compared with the 
miR‑NC mimic group.

TRAF1 expression is upregulated during pneumonia. 
Following the establishment of the in vitro LPS‑induced 
pneumonia model, the mRNA and protein expression levels 
of TRAF1 were detected in Ana‑1 murine macrophages 
using RT‑qPCR and western blotting, respectively. TRAF1 
mRNA (Fig. 4A) and protein (Fig. 4B and C) expression 
levels were significantly increased in Ana‑1 murine macro-
phages following LPS treatment compared with the control 
group.

TRAF1 overexpression is induced by pcDNA3.1‑TRAF1. 
TRAF1 mRNA (Fig. 5A) and protein (Fig. 5B and C) expression 
levels were significantly increased in the pcDNA3.1‑TRAF1 
group compared with the pcDNA3.1 group.

miR‑127‑5p mimic downregulates TNF‑α, IL‑1β and IL‑6 
levels by targeting TRAF1. To determine the function of 
miR‑127‑5p during pneumonia, the mRNA and protein 
expression levels of certain inflammatory cytokines, including 
TNF‑α, IL‑1β and IL‑6, were detected using RT‑qPCR and 
ELISA, respectively.

The mRNA expression levels of TNF‑α, IL‑1β and IL‑6 
were significantly increased in the LPS group compared 
with the control group. Furthermore, LPS‑induced effects on 
inflammatory cytokine expression were significantly decreased 
following transfection with the miR‑127‑5p mimic; however, 
TRAF1 overexpression reversed miR‑127‑5p mimic‑induced 
effects (Fig. 6A). The protein levels of TNF‑α, IL‑1β and IL‑6 
displayed a similar pattern to the mRNA levels in response 
to LPS, miR‑127‑5p mimic and pcDNA3.2‑TRAF1 (Fig. 6B).

miR‑127‑5p mimic blocks the AKT/NF‑κB signaling pathway 
by targeting TRAF1. To determine the effect of miR‑127‑5p 

Figure 3. miR-127-5p inhibits TRAF1 expression. TRAF1 (A) mRNA and (B and C) protein expression levels were decreased in the miR-127-5p mimic group 
compared with the miR-NC mimic group. **P<0.01 vs. the miR-NC mimic group. miR, microRNA; NC, negative control; TRAF1, tumor necrosis factor 
receptor-associated factor 1.

Figure 4. TRAF1 expression is upregulated during pneumonia. TRAF1 (A) mRNA and (B and C) protein expression levels were increased in the LPS (0.1 µg/
ml) group compared with the control group. **P<0.01 vs. the control group. LPS, lipopolysaccharide; TRAF1, tumor necrosis factor receptor-associated factor 
1.

Figure 5. TRAF1 overexpression is induced by pcDNA3.1-TRAF1. TRAF1 (A) mRNA and (B and C) protein expression levels were increased in the pcDNA3.1-
TRAF1 group compared with the pcDNA3.1 group. **P<0.01 vs. the pcDNA3.1 group. TRAF1, TNF receptor-associated factor 1.
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on the signaling pathway involved in pneumonia, AKT phos-
phorylation and NF‑κB activity were measured by western 
blotting. The ratios of p‑AKT/AKT and p‑p65/p65 expression 
levels were significantly increased in the LPS group compared 
with the control group. LPS‑induced effects were significantly 
decreased by transfection with the miR‑127‑5p mimic; however, 
treatment with miR‑127‑5p mimic + pcDNA3.1‑TRAF1 did 
not significantly alter LPS‑induced effects (Fig. 7A and B).

Discussion

Pneumonia is a persistent and pervasive disease (1); therefore, 
further investigation into the molecules that mediate severe 
pneumonia is required to identify novel therapeutics for the 
disease and reduce the disease burden.

miR‑127 serves a role in numerous lung diseases. For example, 
miR‑127 inhibits lung inflammation by targeting IgG  Fcγ 
receptor I (14). Additionally, miR‑127‑5p, which is downregulated 
in bronchoalveolar lavage fluid, serves as a novel biomarker for 
the diagnosis of severe pneumonia (15). In the present study, lower 
miR‑127‑5p expression levels were observed in the LPS group 

compared with the control group, indicating the inhibitory effects 
of miR‑127‑5p during severe pneumonia. However, to the best of 
our knowledge, the molecules underlying this effect during severe 
pneumonia have not been previously reported.

The present study indicated that TRAF1 was targeted 
by miR‑127‑5p. TRAF1 is associated with a number of 
lung diseases, including asthma  (18), non‑small cell lung 
cancer (19) and lung inflammation (20). In the present study, 
higher TRAF1 expression levels were observed in the LPS 
group compared with the control group. In addition, TRAF1 
was targeted by miR‑127‑5p and its expression was decreased 
by miR‑127‑5p mimic, indicating the enhancing effects of 
TRAF1 during severe pneumonia.

In in vitro monocyte models of pneumonia, LPS increased 
the levels of TNF‑α, IL‑1β and IL‑6 (21,22). TNF is one of 
the most studied proinflammatory cytokines that displays 
numerous immunomodulatory activities (23). TNF is highly 
active in the lung and is therefore implicated in numerous 
pulmonary diseases, including asthma, chronic bronchitis and 
chronic obstructive pulmonary disease (24). Serum TNF‑α and 
IL‑6 levels have been associated with early death in patients 

Figure 6. miR‑127‑5p mimic downregulates TNF‑α, IL‑1β and IL‑6 levels by targeting TRAF1. miR‑127‑5p mimic reversed LPS‑induced TNF‑α, IL‑1β and 
IL‑6 (A) mRNA expression and (B) protein levels, and TRAF1 overexpression inhibited miR‑127‑5p mimic‑induced effects. **P<0.01, ***P<0.001 vs. the control 
group (miR‑NC mimic + pcDNA3.1); #P<0.05 and ##P<0.01 vs. the miR‑127‑5p mimic group; &P<0.05 vs. the LPS + miR‑127‑5p mimic group. IL, interleukin; 
LPS, lipopolysaccharide; miR, microRNA; TNF, tumor necrosis factor; TRAF1, TNF receptor‑associated factor 1.

Figure 7. miR‑127‑5p mimic blocks the AKT/NF‑κB signaling pathway by targeting TRAF1. Protein expression levels were (A) determined by western blot-
ting, and (B) the ratios of p‑AKT/AKT and p‑65/p65 were semi‑quantified. **P<0.01, ***P<0.001 vs. the control group (miR‑NC mimic + pcDNA3.1); #P<0.05 
vs. the miR‑127‑5p mimic group; &P<0.05 vs. the LPS + miR‑127‑5p mimic group. LPS, lipopolysaccharide; miR, microRNA; p, phosphorylated; TRAF1, 
tumor necrosis factor receptor‑associated factor 1.
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with community‑acquired pneumonia  (25). In addition, 
IL‑1β is a biomarker for the severity of community‑acquired 
pneumonia in pediatric patients  (26). Consistent with the 
aforementioned studies (21‑26), the present study indicated 
that miR‑127‑5p mimic reversed LPS‑induced upregulation 
of TNF‑α, IL‑1β and IL‑6 levels, and TRAF1 overexpression 
inhibited miR‑127‑5p mimic‑induced effects. Collectively, 
these results indicated that miR‑127‑5p inhibited LPS‑induced 
inflammation by targeting TRAF1 during severe pneumonia.

NF‑κB activation is a prerequisite for the production of a 
number of inflammatory cytokines, including TNF‑α, IL‑1β 
and IL‑6 (27), which leads to a more severe inflammatory 
reaction in stimulated macrophages (28). AKT is an upstream 
activator of the NF‑κB signaling pathway (29). In the present 
study, miR‑127‑5p mimic reversed LPS‑induced activation 
of p‑AKT and p‑p65, which was rescued by TRAF1 overex-
pression. Collectively, the results indicated that miR‑127‑5p 
inhibited LPS‑induced AKT/NF‑κB activation by targeting 
TRAF1 during severe pneumonia.

In conclusion, miR‑127‑5p may attenuate severe pneu-
monia, by reducing LPS‑induced production of TNF‑α, IL‑1β 
and IL‑6, and inactivating the AKT/NF‑κB signaling pathway 
via TRAF1. Therefore, the present study suggested that TRAF1 
may serve as a therapeutic target for severe pneumonia.
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