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Abstract. The current study aimed to establish a rat model 
of ageing insomnia induced by D‑galactose and/or para‑chlo-
rophenylalanine. Following establishment of the model, 
body weights were measured, and Morris water maze and 
pentobarbital‑induced sleep tests were performed. The serum 
levels of inflammatory mediators and the neural levels of 
neurotransmitters were detected. The results demonstrated 
that the body weights of PCPA+D‑gal‑induced ageing 
insomnia rats decreased significantly. Ageing insomnia rats 
exhibited longer latencies to the platform in the Morris water 
maze tests and fewer target crossings. The sleep latency of the 
model rats was longer and sleep time was shorter by contrast. 
The relative expression of hippocampal IL‑6, TNF‑α, NF‑κB 
and mGluR2 mRNA of the PCPA+D‑gal‑induced ageing 
insomnia group was higher, while the relative expression of 
5‑HT1AR and GABAARa1 mRNA were lower. The serum levels 
of IL‑1β, IL‑6, TNF‑α and brain level of glutamate increased 
in the PCPA+D‑gal‑induced ageing insomnia group, while the 
levels of 5‑HT and GABA decreased. In conclusion, memory 
function, sleep time, expression of inflammatory factors and 
neurotransmitters are altered in ageing insomnia rats induced 
by D‑galactose and para‑chlorophenylalanine, indicating 
the successful establishment of a murine model of ageing 
insomnia.

Introduction

Insomnia is a subjective experience characterized by difficulty 
in falling asleep and/or staying asleep, which results in poor 
sleep quality and/or quantity (1). The sleep characteristics of 
the elderly are different from those of young people (2). In 
China, the prevalence of insomnia is 17% and the percentage 
of the people whose sleep time is <6  h is 23%  (3), with 
increasing prevalence of insomnia among the elderly (4). The 
prevalence of elderly insomnia in China is 47.2% (5) and 57% 
in America (6). Insomnia severely affects the physical health 
and life quality of the elderly (7‑11) and increases social and 
economic burden (6).

The main clinical characteristic of ageing insomnia is diffi-
culty initiating sleep (12). Ageing individuals spend more time 
in the lighter stages of sleep than in deep sleep in non‑rapid 
eye movement sleep (NREM), as demonstrated by electroen-
cephalography (13). The main treatments of ageing insomnia 
are psychological/behavioral therapies, pharmacological 
treatment or a combination of both (6). Pharmacological treat-
ments are initially recommended when non‑pharmacological 
options do not attain satisfying sleep  (14). Currently, the 
commonly used ageing animal models include: D‑galactose 
(D‑gal)‑induced subacute  (15), β‑amyloid induced  (16,17), 
thymic senescence (18), rapid (19) and natural  (20) ageing 
models. The ageing model induced by D‑gal has been widely 
used (21,22) and has been evaluated in behavioral, biochemical 
and neurochemical aspects (23). The modeling methods of 
animal models of insomnia mainly include chemical reagent 
stimulation using intraperitoneal injection of para‑chlorophe-
nylalanine (PCPA) (24), the horizontal platform environmental 
deprivation method (25), the stress stimulation sleep depriva-
tion method (26), the gentle stimulation deprivation method 
and the forced exercise deprivation method  (27). Rat and 
mouse models can be used; however, rat models are optimal 
due to model stability in the establishment of the ageing model 
induced by D‑gal (28). Therefore, the current study established 
rat models.

Inflammatory factors are closely related to sleep and 
ageing  (29,30). Sleep has a regulatory effect on immune 
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function, with pro‑inflammatory cytokines reaching their 
peak levels during early night sleep and anti‑inflammatory 
cytokines reaching their peak levels during daytime waking 
hours  (31). Inflammatory cytokines interleukin (IL)‑1 and 
tumor necrosis factor (TNF)‑α participate the regulation 
of physiological sleep in the central nervous system  (32).  
Inflammatory cytokines are also involved in oxidative stress, 
and inflammation is associated with aging (33). IL‑1β, IL‑6 
and TNF‑α are the key inflammatory cytokines involved in 
oxidative stress. They are closely related to reactive oxygen 
species (ROS) and promote the activation of NF‑κB, as well as 
the expression of proinflammatory factor‑induced nitric oxide 
synthase and cyclooxygenase‑2 (34). Sleep is closely related 
to neurotransmitters (35). Glutamate, an important excitatory 
amino acid transmitter in brain tissue, can stimulate the 
activity of neurons (36). Gamma‑aminobutyric acid (GABA), 
an important inhibitory neurotransmitter in the central nervous 
system, can inhibit neuronal excitability and exert sedative and 
hypnotic effects (37). Glutamate and GABA play an important 
role in maintaining the balance of nerve cell inhibition and 
excitation function (38). 

In the current study, the ageing insomnia rat model was 
induced by continuous subcutaneous injection of D‑gal and 
intraperitoneal injection of PCPA. The levels of senility and 
sleep characteristics of ageing insomnia rat model were evalu-
ated, including memory function, sleep duration, inflammation 
factors and neurotransmitters. The results of the current study 
may provide experimental evidence for further research on 
ageing insomnia. 

Materials and methods

Reagents. D‑gal (purity, 99%) was purchased from Beijing 
Solarbio Science and Technology Co., Ltd. (cat no. 1013G051). 
PCPA and pentobarbital were purchased from Sigma‑Aldrich, 
Merck KGaA (cat no. SHBJ7057). IL‑1β (cat no. JL20884), IL‑6 
(cat no. JL20896), TNF‑α (cat no. JL29364), 5‑hydroxytrypta-
mine (5‑HT; cat no. JL13043), glutamate (cat no. JL13664) and 
gamma‑aminobutyric acid (GABA; cat no. JL47835) kits were 
purchased from Shanghai JiangLai Biotech. Co. Ltd. TRIzol® 

reagent was obtained from Invitrogen (Invitrogen; Thermo 
Fisher Scientific, Inc.). RevertAid First Strand cDNA Synthesis 
kit was purchased from Thermo Fisher Scientific, Inc. TB 
Green Premix Ex Taq II (Tli RNase Plus) was purchased from 
Takara Bio, Inc. 

Animals. A total of 40 male Sprague Dawley rats (weight, 
200±20 g; age, 2 months) were obtained from the Xinjiang 
Medical University Animal experiment center [approval 
protocol no. SYXK (X) 2018‑003]. The rats were housed in 
a specific pathogen‑free environment with room temperature 
of 25±2˚C, 12‑h light/dark cycles and free access to water and 
food. Their health and behavior were monitored daily. The 
primary humane endpoints used to determine when animals 
should be euthanized were reduced heart and respiration 
rate. ‘Guidelines for euthanasia of experimental animals’ 
was followed to minimize suffering and distress of the 
animals (39). 

Experimental procedures were conducted in accordance 
with the China Experimental Animals Administration 

Legislation and were approved by the Ethics Committee of 
Xinjiang Medical University.

Establishment of rat models. Ageing rat model induced by 
D‑gal or by PCPA are two classical rat models used in ageing 
and insomnia research, respectively (21,23). D‑gal and PCPA 
were used to establish ageing insomnia rat model in the 
current study, which was a composite rat model. A total of 
40 rats were randomly divided into 4 groups: Controls, PCPA 
group (insomnia group), D‑gal group (ageing group) and 
PCPA+D‑gal group (ageing insomnia group) with 10 rats in 
each group. 

Controls were subcutaneously injected with normal saline 
(120 mg/kg) for 42 days, then intraperitoneally injected with 
normal saline (300  mg/kg) for 3  days. Rats in the PCPA 
group were subcutaneously injected with normal saline 
(120  mg/kg) for 42  days, then intraperitoneally injected 
with PCPA (300 mg/kg) for 3 days. Rats in the D‑gal group 
were subcutaneously injected with D‑gal (120 mg/kg) for 
42 days and then intraperitoneally injected with normal saline 
(300 mg/kg) for 3 days. Rats in the PCPA+D‑gal group were 
subcutaneously injected with D‑gal (120 mg/kg) for 42 days 
and then intraperitoneally injected with PCPA (300 mg/kg) 
once a day for 3 days. Acute and/or adverse reactions of D‑gal 
and PCPA were not observed during the experiment. Weight 
gain was measured every week and for the final time on the 
day 46.

Morris water maze test. The spatial memory of the rats 
was assessed via the Morris water maze test on day 46. The 
Morris Water Maze (Chengdu Taimeng Co., Ltd.) consisted 
of a tank (radius, 120 cm; height, 50 cm) containing water 
at a height of 30 cm and a temperature of ~25˚C. The water 
maze was divided into 4 quadrants and the escape platform 
(diameter, 12 cm) was placed at a fixed position in the 3rd 
quadrant, 2.5 cm under the water. The midpoint was selected 
as the fixed entry point in each quadrant. The rats were placed 
into the water with their backs to the wall of the pool and 
detained on the platform for 10 sec as a sign of success in 
finding the platform. A water maze device was used to record 
the time required for the rats to find the platform from the 
entry point, which was defined as escape latency. Rats stayed 
on the platform for 10 sec and then the next quadrant experi-
ment was conducted. When the rats took >2 min to find the 
target platform, they were directed to the platform, stayed 
there for 10 sec and escape latency was recorded as 2 min. 
For spatial navigation training, the experiment was conducted 
once a day at each water entry point in each quadrant for a 
total of 4 times for 5 days. It is hypothesized that the time of 
each rat crossing the original platform within 2 min reflects 
the spatial memory ability, and the platform was removed 
only on the 6th day. Latency time to the platform and the 
number of target crossings were recorded and processed by 
a computer equipped with a TaiMeng Behavior Analysis 
System (Chengdu Taimeng Co., Ltd.).

Measurement of pentobarbital‑induced sleeping behavior. 
Experiments were carried out on day 46. Pentobarbital was 
diluted with 0.9% physiological saline and intraperitone-
ally injected into the rats (35 mg/kg). The rats were then 
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placed into another cage. Sleep latency was recorded as time 
elapsed between the pentobarbital injection and the time that 
rats could maintain 60 sec without flipping. Sleep time was 
recorded as the time between the elapse and the time that rats 
could not continue to remain in the supine position within 
30 sec.

Sample collection. Following behavioral tests, the rats were 
anesthetized with 10% chloral hydrate (Chengdu Kelong 
Chemical Co., Ltd.) by intraperitoneal injection into the 
abdominal cavity with 300 mg/kg (40). No sign of peritonitis 
was observed following the injection. No rats died during 
the experiment and all 40 rats were anesthetized. Blood 
samples (8‑10 ml) were collected from the abdominal aorta. 
The rats died of hemorrhagic shock following blood sample 
collection. Death was determined by non‑spontaneous 
breathing, lack of heartbeat and cold limbs. Cardiac and 
respiratory arrest were observed for 3‑5 min to confirm death. 
Body weight at the time of sacrifice (on day 46) are shown in 
Table SI. Brain tissue was dissected on ice for further analysis. 
Experiments, including anesthesia of rats, abdominal aortic 
blood collection, brain tissue separation, plasma centrifugation 
(2,000 x g for 15 min at 4˚C), liquid nitrogen quick‑freezing 
tissue, labeling and preservation of tissue and body disposal 
lasted ~5 h. 

ELISA. Neural serum levels of IL‑1β, IL‑6, TNF‑α and 
neurotransmitter levels of 5‑HT, glutamate and in brain tissue 
were detected using ELISA kits, according to the manufac-
turer's protocol. 

Reverse transcription quantitative (RT‑q) PCR. The hippo-
campi were isolated and collected to examine the mRNA 
level of inflammatory cytokines and neurotransmitter recep-
tors. RNA extraction was conducted using TRIzol® reagent. 
cDNA was synthesized using a RevertAid First Strand cDNA 
Synthesis kit, according to the manufacturers' instructions. 
RT‑qPCR reactions were conducted by a CFX96 RT‑qPCR 
system (Bio‑Rad Laboratories, Inc.) using TB Green™ Premix 
Ex Taq™ II (Tli RNase Plus). The thermocycling conditions 
included pre‑denaturation at 95˚C for 10 min, denaturation 
at 95˚C for 10 sec, annealing for 10 sec (annealing tempera-
tures: 60˚C for nuclear factor κ‑light‑chain‑enhancer of 
activated B cells (NF‑κB), 5‑hydroxytryptamine 1A receptor 
(5‑HT1AR) and metabotropic glutamate receptor 2 (mGluR2); 
62˚C for IL‑6 and GABA receptor α1 subtype (GABAARα1); 
62.5˚C for TNF‑α), extension at 72˚C for 10 sec, 40 cycles of 
extension at 95˚C for 15 sec and extension at 60˚C for 1 min. 
Measurements were performed in triplicate. The mRNA level 
of inflammatory cytokines and neurotransmitters was normal-
ized to reference GAPDH gene and quantified as relative 
expression of mRNA using the 2‑ΔΔCq method (41). The primer 
sequences are listed in Table I.

Statistical analysis. Each experiment was repeated three times. 
Data are presented as the mean ± standard deviation or standard 
error. SPSS software (version 21.0; IBM Corp.) was used for 
statistical analysis. One‑way ANOVA and Tukey's post‑hoc test 
were performed to compare differences between groups. P<0.05 
was considered to indicate a statistically significant difference. 

Results

Insomnia rats and ageing insomnia rats lost body weight 
rapidly on day  45 due to sleep deprivation induced by 
PCPA injection. The body weight of the rats in different 
groups were initially observed following model estab-
lishment. The results demonstrated that rats in the D‑gal 
and PCPA+D‑gal groups appeared to shed hair and move 
slower from the 5th week, while rats in the PCPA and the 
PCPA+D‑gal groups appeared to be excited and irascible 
from day 43. Weight gain in the D‑gal and PCPA+D groups 
was significantly lower compared with controls on days 
7‑42 (Fig. 1). Furthermore, weight gain in the PCPA group 
was significantly higher compared with PCPA+D group 
on days 7‑42. Weight gain in the PCPA and PCPA+D‑gal 
groups was significantly lower compared with controls 
on day 45. Moreover, weight gain in the D‑gal group was 
significantly higher compared with the PCPA+D‑gal group 
on day 45.

Spatial memory ability decreases in ageing insomnia 
PCPA+D‑gal rats. A Morris water maze was performed 
to assess the spatial memory ability of the rats. Rats in the 
PCPA+D‑gal groups suffered significant impairment in spatial 
learning ability on account of the longer latency time compared 
with controls from days 2‑5 (Fig. 2A). Furthermore, escape 
latency in the PCPA group was significantly shorter compared 
with the PCPA+D‑gal group from days 2‑5 (Fig.  2A). No 
significant difference of escape latency was found between the 
ageing D‑gal and insomnia PCPA groups (Fig. 2A).

Subsequently, the spatial memory was evaluated on the 
6th day. The escape latency of rats in PCPA+D‑gal groups 
was longer compared with the control group (Fig.  2B). 
Furthermore, escape latency in the D‑gal and PCPA 
groups was shorter compared with the PCPA+D‑gal group 
(Fig. 2B). 

Rats in D‑gal and PCPA+D‑gal groups exhibited lower 
target crossing numbers compared with the control group 
(Fig. 2C). Additionally, there were significantly more target 
crossings in the PCPA group compared with the PCP+D‑gal 
group (Fig. 2C). No significant difference was found between 
the PCPA and D‑gal groups (Fig. 2C).

According to the results of Morris water maze tests, the 
current study concluded that the spatial memory ability of the 
PCPA+D‑gal ageing insomnia rats significantly decreased 
compared with the control group. 

Ageing insomnia PCPA+D‑gal rats exhibit shorter sleep 
latency and sleep time. Sleep latency and sleep time through 
pentobarbital injections was investigated. The results demon-
strated that sleep latency of PCPA and PCPA+D‑gal rats was 
significantly longer compared with the control group (Fig. 3A). 
Furthermore, D‑gal rats exhibited shorter sleep latency 
compared with the PCPA+D‑gal group (Fig. 3A). 

The sleep time of D‑gal and PCPA+D‑gal rats was 
significantly shorter compared with the control group 
(Fig. 3B). Additionally, PCPA rats exhibited longer sleep time 
compared with the PCPA+D‑gal group (Fig. 3B). There was 
no significant difference between the PCPA and D‑gal groups 
(Fig. 3B). 
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Expression of pro‑inflammatory cytokines and neurotrans‑
mitter receptors at mRNA level are also influenced by 
D‑gal and PCPA injections. Hippocampal IL‑6, TNF‑α, 
NF‑κB, 5‑HT1AR, mGluR2 and GABAARα1 mRNA expres-
sion was determined using RT‑qPCR to establish whether 
inflammatory cytokines and neurotransmitter receptors 
were involved in cognitive impairment and insomnia. The 
results demonstrated that IL‑6, TNF‑α and NF‑κB mRNA 
expression were upregulated in the hippocampus of rats 
in the PCPA, D‑gal and PCPA+D‑gal groups compared 
with the control group (Fig. 4A‑C). However, there was 
no significant difference in the IL‑6, TNF‑α and NF‑κB 
mRNA expression levels in the PCPA and D‑gal groups 
compared with the PCPA+D‑gal group. Additionally, 
the PCPA and PCPA+D‑gal groups demonstrated down-
regulated 5‑HT1AR mRNA expression compared with the 
control group (Fig. 4D). The PCPA, D‑gal and PCPA+D‑gal 
groups demonstrated downregulated GABAARα1 mRNA 
expression compared with the control group (Fig. 4F). No 
significant difference was discovered between D‑gal, PCPA 
and PCPA+D‑gal groups. Furthermore, the PCPA and 
PCPA+D‑gal groups exhibited upregulated mGluR2 mRNA 
expression compared with the control group (Fig. 4E). The 
D‑gal group also demonstrated downregulated mGluR2 
mRNA expression compared with the PCPA+D‑gal group. 
The results indicate that the subcutaneous injection of 
D‑gal, intraperitoneal injection of PCPA and combined 

injection of D‑gal and PCPA altered inflammatory cytokine 
and neurotransmitter receptor mRNA expression in the rat 
hippocampus. 

Expression levels of pro‑inflammatory cytokines in neural 
serum and neurotransmitters in neural tissue. Subsequently, 
ELISA assays were used to investigate the expression of 
pro‑inflammatory cytokines and neurotransmitters. Serum 
expression of IL‑1β, IL‑6 and TNF‑α in the PCPA+D‑gal rats 
were significantly increased compared with the control group 
(Fig. 5A‑C). Furthermore, the levels of these cytokines in the 
PCPA and D‑gal rats were significantly decreased compared 
with the PCPA+D‑gal group. No significant difference of 
IL‑1β, IL‑6 and TNF‑α was found between the PCPA and 
D‑gal groups. The results indicated that the subcutaneous 
injection of D‑gal, intraperitoneal injection of PCPA and 
combined injection of D‑gal and PCPA all induced significant 
chronic inflammation in the rats.

Furthermore, neural levels of 5‑HT, glutamate and GABA 
were measured. The results demonstrated a significant decrease 
in the levels of 5‑HT in the PCPA+D‑gal groups compared with 
the control group (Fig. 5D). The levels of 5‑HT in brains of 
D‑gal and PCPA rats were significantly higher compared with 
the PCPA+D‑gal group. The PCPA+D‑gal groups exhibited a 
significant increase in the levels of glutamate compared with 
the control group (Fig. 5E). Furthermore, neural glutamate 
levels in the D‑gal and PCPA rats were significantly decreased 
compared with the PCPA+D‑gal group (Fig. 5E). The PCPA 
and PCPA+D‑gal groups exhibited a significant decrease in 
GABA levels compared with the control group (Fig. 5F). No 
significant difference was found in the levels of 5‑HT, gluta-
mate and GABA between the D‑gal and PCPA groups. These 
results demonstrated that the subcutaneous injection of D‑gal, 
intraperitoneal injection of PCPA and the combined injec-
tion of D‑gal and PCPA induced expression changes of the 
neurotransmitters in brains of the rats.

Discussion

Oxidative damage induced by ROS serves a crucial role in the 
pathophysiology of ageing (42,43). High doses of D‑gal induce 
ROS overexpression via the metabolism of D‑gal (44). The 
injection of D‑gal results in the increase of oxygen free radicals 
in the rat brain (21). Additionally, ageing alterations induced by 
D‑gal are similar to natural ageing processes (45). A previous 
study demonstrated that the levels of neurotransmitters in 

Table I. Forward and reverse primers used for reverse transcription quantitative PCR analysis.

Primer	 Forward	 Reverse

IL‑6	 5'‑AGGAGTGGCTAAGGACCAAGACC‑3'	 5'‑TGCCGAGTAGACCTCATAGTGACC‑3'
TNF‑α	 5'‑CCAATGGCGTGGAGCTGAGAG‑3'	 5'‑TCTGGTAGGAGACGGCGATGC‑3'
NF‑κb	 5'‑TGTGGTGGAGGACTTGCTGAG G‑3'	 5'‑AGTGCTGCCTTGCTGTTCTTGAG‑3'
5‑HT1AR	 5'‑AGGACCACGGCTACACCATCTAC‑3'	 5'‑CTGACAGTCTTGCGGATTCGGAAG‑3'
mGluR2	 5'‑ATC ACTGGTGGTATTGGCGGTTCC‑3'	 5'‑TGGCACTGGTAGAGGCGTAGC‑3'
GABAARα1	 5'‑TGAGCACACTGACTGGAAGAAGC‑3'	 5'‑TGGTCTCAGGCGATTGTCATAACC‑3'
GAPDH	 5'‑GACATGCCGCCTGGAGAAAC‑3'	 5'‑AGCCCAGGATGCCCTTTAGT‑3'

Figure 1. Weight gain in rats was measured each week and for the final time 
on day 46. Data are presented as mean ± standard deviation. #P<0.05 and 
##P<0.01 vs. control group. *P<0.05 and **P<0.01 vs. PCPA+D‑gal group. 
PCPA, para‑chlorophenylalanine; D‑gal, D‑galactose.
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the brain of PCPA‑induced insomnia rats were altered (23). 
Therefore, D‑gal and PCPA were used in this study to establish 
rat models of ageing and insomnia, respectively. Furthermore, 
another previous study reported that D‑gal‑induced ageing rats 
lose weight rapidly compared with the control group (46). In 
the current study, the results indicated that rats in both D‑gal 
and PCPA+D‑gal groups lost weight rapidly compared with 
control rats.

Cognitive decline increases with age during natural 
ageing  (47,48). It has been reported that in the Morris 
water maze, the latency time of D‑gal rats was longer, the 
number of target crossings was lower and that cognitive 
function decreased (49). Sleep disorder is closely related to 

cognition (50) and patients with primary insomnia have been 
reported to suffer from subjective memory impairment in 
virtual water mazes (51). Sleep duration is negatively corre-
lated with age in older adults (52) and chronic insomnia in the 
elderly is likely to exacerbate cognitive impairment (53). In the 
current study, D‑gal‑induced ageing rats, PCPA‑induced the 
insomnia rats and D‑gal‑ and PCPA‑induced ageing insomnia 
rats demonstrated cognitive decline in the Morris water maze. 
Therefore, the ageing and insomnia model exhibited decreased 
cognitive function.

Chronic inflammation is closely related to ageing (54). 
Inflammatory factors, such as IL‑1β, IL‑6 and TNF‑α, 
serve roles in D‑gal‑induced oxidative stress to simulate the 

Figure 2. The spatial memory ability of rats was observed using a Morris water maze test. (A) Latency to the platform within 2 min during 5 days spatial 
navigation training (s/2 min). (B) Escape latency to the platform within 2 min on day 6 (s/2 min). (C) The number of target crossings within 2 min. Data are 
presented as mean ± SEM. #P<0.05 and ###P<0.001 vs. control group. *P<0.05, **P<0.01 and ***P<0.001 vs. PCPA+D‑gal group. PCPA, para‑chlorophenylala-
nine; D‑gal, D‑galactose.

Figure 3. Pentobarbital (35 mg/kg) was intraperitoneally injected into rats to observe sleep latency and sleep time. The (A) sleep latency and (B) sleep time were 
recorded. Data are presented as mean ± SEM.  ###P<0.001 vs. control group. **P<0.01 and ***P<0.001 vs. PCPA+D‑gal group. PCPA, para‑chlorophenylalanine; 
D‑gal, D‑galactose.
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ageing process  (46). It has been reported that the plasma 
concentrations of IL‑1β, IL‑6 and TNF‑α in the D‑gal and 
PCPA induced ageing insomnia rats were significantly higher 
compared with the control group (55). Furthermore, inflam-
matory cytokines affect neurotransmitters related to sleep, 
such as norepinephrine and 5‑HT, which are transmitted to 
the central nervous system (56,57). IL‑1β, IL‑6 and TNF‑α are 
the key inflammatory factors related to sleep regulation (58), 
and IL‑1β increases non‑rapid eye movement sleep in electro-
encephalography (59). The I‑κ/NF‑κB signaling pathway is 
associated with sleep regulation and the immune system and 
hippocampus play a central role in insomnia (60). A previous 
study demonstrated that plasma levels of IL‑6 and TNF‑α 
in PCPA‑induced insomnia rats were significantly higher 
compared with the control group (25). In the current study, the 
results demonstrated that the serum content of IL‑1β, IL‑6 and 

TNF‑α and mRNA expression of IL‑6, TNF‑α and NF‑κB in 
neural tissues in the PCPA+D‑gal group were higher compared 
with control rats.

Glutamate is an important excitatory amino acid trans-
mitter in brain tissue  (36). mGluR2 is distributed in both 
pre‑ and post‑synaptic neurons, inhibits adenylate cyclization 
and regulates ion channel receptors by coupling with Gi/o, and 
negatively regulates neurotransmitter release (61). mGluR2 is 
involved in the physiology of sleep (62). Additionally, GABA 
is a major inhibitory neurotransmitter in the central nervous 
system (37). GABA inhibits neuronal excitation in the nervous 
system, and GABA receptors are widely used in the treatment 
of anxiety disorder, insomnia, epilepsy (62). Glutamate and 
GABA serve important roles in maintaining the stability of 
the balance between the inhibitory and excitatory functions of 
nerve cells (63). It has been demonstrated the amount of GABA 

Figure 4. Gene expression of inflammatory factors IL‑6, TNF‑α, NF‑κb and neurotransmitter receptors of 5‑HT1AR, mGluR2, Gamma‑aminobutyric acid 
A receptor α1 subtype in the hippocampus were assayed using RT‑PCR. mRNA expression of (A) IL‑6, (B) TNF‑α, (C) NF‑κb, (D) 5‑HT1AR, (E) mGluR2 
mRNA, and (F) GABAARα1. Data are presented as mean ± SEM. #P<0.05, ##P<0.01 vs. control group. *P<0.05 vs. PCPA+D‑gal group. IL‑6, interleukin 6; 
TNF‑α, tumor necrosis factor α; NF‑κb, nuclear factor κ‑light‑chain‑enhancer of activated B cells; 5‑HT1AR, 5‑hydroxytryptamine 1A receptor; mGluR2, 
metabotropic glutamate receptor 2. 
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in the brain tissue is positively associated with the changes 
in sleep‑wake depth (64). Furthermore, GABA serves inhibi-
tory roles by binding to its receptor (65) and GABAARα1 has 
a sedative effect (66). It has been reported that the expression 
of glutamate in cerebral cortex, hypothalamus and hippo-
campus of in PCPA‑induced insomnia rats increased, while 
the content of 5‑HT and GABA decreased compared with the 
control group (23). Woo et al (67) found that the expression of 
GABAARα1 protein was upregulated in the hypothalamus of 
mice with improved sleep time. In the current study, the results 
demonstrated that expression of 5‑HT and GABA decreased 
while glutamate increased in the D‑gal‑ and PCPA‑induced 
ageing insomnia rats compared with the control group. This 
indicated that ageing insomnia may be associated with 5‑HT, 
glutamate and GABA neurotransmitters.

The present study established an ageing insomnia rat 
model by injection of D‑galactose and PCPA. Changes in 

memory ability, inflammatory factors and neurotransmitters 
of model rats were observed. Future studies should include 
more behavioral tests, age‑related redox marker detections 
(oxidative stress), apoptotic proteins and body weight/5‑HT 
measurements in order to verify the results of the present study 
and elucidate ageing insomnia in the rat model.

In conclusion, the current study established an ageing 
insomnia rat model by an injection combination of D‑gal 
with PCPA, and evaluated the changes in cognitive behavior, 
sleep duration, inflammation factors and neurotransmitters in 
PCPA+D‑gal ageing insomnia rats. This ageing insomnia rat 
model induced by D‑gal and PCPA may an provide experi-
mental model for further research on ageing insomnia.
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