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Abstract. Since its introduction in 1959, artificial intelligence 
technology has evolved rapidly and helped benefit research, 
industries and medicine. Deep learning, as a process of 
artificial intelligence (AI) is used in ophthalmology for data 
analysis, segmentation, automated diagnosis and possible 
outcome predictions. The association of deep learning and 
optical coherence tomography (OCT) technologies has proven 
reliable for the detection of retinal diseases and improving 
the diagnostic performance of the eye's posterior segment 
diseases. This review explored the possibility of implementing 
and using AI in establishing the diagnosis of retinal disorders. 
The benefits and limitations of AI in the field of retinal disease 
medical management were investigated by analyzing the most 
recent literature data. Furthermore, the future trends of AI 
involvement in ophthalmology were analyzed, as AI will be 
part of the decision‑making regarding the scientific investiga-
tion, diagnosis and therapeutic management.
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1. Introduction

In 1956 artificial intelligence (AI) was first described 
as a technology capable of thinking independently and 
reproducing human behavior after training (1). Machine 
learning (ML) was introduced in 1959 as an algorithm that, 
after exposure to multiple inputs can modify its behavior, 
automatically (2). Today, by developing computational power 
and neural networks, deep learning determines the perfec-
tion of automatic learning. Deep learning (DL), as a subset 
of machine learning, uses a programmable neural network 
that enables the machine to make its own decisions, without 
human aid. Convolutional neural networks (CNNs) play an 
important role in the development of these technologies (3). 
Convolutional layers, which are the basis of these networks, 
learn to extract the image features with the aid of convolu-
tional filters (4).

Deep learning is used in ophthalmology for data analysis, 
segmentation, automated diagnosis and possible outcome 
predictions (5). The association of deep learning and optical 
coherence tomography (OCT) technologies has proven 
reliable for the detection of retinal diseases and improving 
the diagnostic performance of the eye's posterior segment 
diseases (6‑8).

At present, some difficulties of translating these algorithms 
into the clinical practice may be encountered, such as incon-
sistency in the reporting metrics when analyzing data from 
multiple OCT devices, imaging protocols that are not stan-
dardized between devices, and limited capabilities in graphics 
processing.

The increase in the number of retinal disease cases has 
produced an ever‑growing demand for retinal image readers. 
The development of artificial intelligence (AI) and deep 
learning analysis of retinal imaging can reduce the number 
of ophthalmologists needed for image interpretation and the 
time allocated for this procedure. At the same time, AI may 
increase the efficiency of healthcare providers by establishing 
the correct and rapid diagnosis of retinal diseases.

In this review, the possibility of implementing and using AI 
in establishing the diagnosis of retinal disorders was explored. 
Moreover, the benefits and limitations of AI in the field of 
retinal disease medical management were reviewed.
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2. AI, ML, DL and computer programming

AI technologies entered the field of ophthalmology recently 
and have been in continue expansion ever since. In the near 
future AI will have an important impact on aiding research to 
achieve new discoveries and improving clinical practice.

Artificial intelligence. AI was defined by John McCarthy as 
the ‘science of creating intelligent machines which replicate 
human behavior’ (1).

Machine learning. ML is a subtype of AI. The computer soft-
ware learns from large volumes, without explicit instructions, 
on how to derive the required output (through trial and error). 
It becomes better at making its own decisions but still needs 
human guidance.

Deep learning. DL is a subtype of ML. It uses multiple layers 
of CNNs. These are made of software‑defined ‘neurons’ 
which together are processing data in order to get the required 
information. The neural networks are designed to be similar 
to the ones inside the human brain and reason in a similar 
manner. Thus the algorithm is able to determine on its own if 
the prediction made by the DL process is accurate or not.

Generative adversarial networks. GANs are paired neural 
networks used for unsupervised ML. This neural network 
generates images or other data and the discriminative neural 
network evaluates it and gives feedback to help in the learning 
process. GANs are used for fully supervised, semi‑supervised 
and reinforcement learning.

Computer programming. The computer programming is very 
important. The software programmer has to know in advance 
how to process the data to produce the required information. 
When the ML software has finished learning, it will generate 
the required output (9).

3. OCT and AI/deep learning

OCT images are used for the diagnosis, monitoring and 
management of many retinal conditions such as diabetic 
macular edema (DME) and age‑related macular degenera-
tion (AMD). Investigative efforts have been directed at utilizing 
deep learning algorithms as tools for automated reading of 
OCT images, for diagnostic purposes. Numerous algorithms 
have been developed and various landmarks identified in order 
to recognize non‑pathologic OCT images (10‑12).

There are 10 relevant anatomic layers visible on spec-
tral‑domain OCT. Algorithms can identify anywhere from 
4 to all 10 of these layers. Studies have shown wide variability 
in the identification of various landmarks. At the moment, the 
development of a consistently accurate algorithm is critically 
needed. The integration of these algorithms into a tele‑retinal 
screening pathway will be one way of integrating automated 
OCT reading into clinical practice.

Automated OCT reading has shown promising results in 
DME and identifying exudative AMD (7,8,13). In a recent 
study, Kermany et al (8) found 97.8% sensitivity, 97.4% 
specificity, and 0.99 AUROC (area under the receiver operating 

characteristic) curve for detecting referable AMD. An AUROC 
curve score over 0.7 relates to good and outstanding results, 
while under 0.5 proves no discrimination was made. Thus, DL 
can accurately diagnose AMD in the early stages.

OCT demonstrates high accuracy in detecting small 
amounts of fluid and the need to commence treatment in 
neovascular AMD (14‑17). Chakravarthy et al (16) recorded 
91.0% accuracy for diagnosing exudative AMD and 
Prahs et al (15) showed 95.5% accuracy for predicting the 
need for intravitreal injections.

Automated OCT reading has also been proven useful in 
the diagnosis of diabetic retinopathy, central serous chorio-
retinopathy, polypoidal choroidal vasculopathy and macular 
holes (13,18,19). Obviously, physicians may benefit from OCT 
reading algorithms as a triaging mechanism and a guide in the 
therapy decision‑making process.

4. AI and retinal diseases

Deep learning and the retinopathy of prematurity. ROP is a 
vasoproliferative disease that affects premature infants and it 
may lead to blindness (20). The initiation of ROP treatment 
is based on the International Classification Guide (ICROP), 
which is used to standardize the diagnosis and to determine 
treatment thresholds (21).

When examining a ROP eye, it is possible to visualize, 
at the level of the posterior pole, abnormal arterial tortuosity 
and venous dilatations, which define PLUS disease (22). The 
screening is performed by direct examination, by an ophthal-
mologist. For the same purpose, the images can be obtained 
with portable cameras examined afterward by a specialist.

Numerous clinical trials indicated that there are significant 
variability and inconsistency in the ROP diagnosis, which may 
lead to differences in treatment recommendations (23‑25).

Some deep learning algorithms have been created to 
minimize the clinical reasoning variability and inconsis-
tency in diagnosing ROP, many of them showing accuracy 
in detecting ‘plus’ or ‘pre‑plus’ disease (lower degree of 
vascular tortuosity) (26‑28). Brown et al (29) used deep 
learning for training a deep convolutional neural network on 
a set of 5,511 images. These images were previously rated by 
experts as ‘plus’, ‘pre‑plus’ or ‘normal’. The validation of a 
set of 100 retinal images showed: 93% sensitivity and 94% 
specificity for the detection of ‘plus’ disease and 100% sensi-
tivity and 94% species in detecting ‘pre‑plus’ disease. Similar 
studies showed that deep learning may be able to minimize 
inter‑observer variability.

In order to generate reliable image analysis algorithms, it 
is very important to have a clinically accepted reference stan-
dard for diagnosis. The effectiveness of deep learning image 
analysis as a screening tool for ROP needs to be evaluated in 
clinical daily practice.

Deep learning and diabetic retinopathy (DR). The incidence 
of DR is on the rise as the prevalence of obesity increases 
and the population ages. Undiagnosed DR is one of the main 
causes of vision loss (30‑32).

There are currently many studies aiming at the development 
of software programs that increase the efficiency of DR screening 
and management. Recent literature data showed that machine 
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learning classes (MLC, support vector machine, multiple layer 
perceptron classes and radial basis function neural network) 
can recognize and classify DR from images (30‑35). The 
results obtained (MLCs, AI programs) are comparable to those 
obtained when the retinal images were analyzed by ophthal-
mologists. In these studies, Ting et al (37), Gulshan et al (36), 
and Gargeya and Leng (38) used large data sets to create MLCs.

The researchers used as training images normal images 
and DR images (separated into categories of mild, moderate, 
severe, proliferative DR; referable DME and referable DR 
were additional categories from the same data set, but separate 
from the others classifications) (36). The results obtained were 
remarkable. The data validated DR (sensitivity, 0.87‑0.98; 
specificity, 0.90‑0.98 and AUROC, 0.936‑0.991) (36‑38). The 
software is able to recognize hemorrhages, exudation, micro-
aneurysms, cotton‑wool spots and neovascularization, build a 
model and based on it, is able to classify DR in stages.

Further research into how deep learning fits in the 
screening pathway is warranted.

Deep learning and age‑related macular degeneration. AMD 
is a frequent disease in the aging population, with the poten-
tial to cause important and irreversible visual function loss. 
AI has contributed significantly to the progress that has been 
made in screening AMD and may help both patients and 
health‑providers benefit from implementing AI as support in 
ophthalmological decision making (39).

Lee et al (40) created an AMD screening system capable 
of  differentiating between normal and AMD, OCT images. 
They obtained a peak sensitivity of 0.926, a specificity of 0.937 
and an AUROC of 0.9746. Their studies analyzed smaller size 
samples.

In a larger study, Treder et al (17) used 1112 OCT images. 
They created an MLC software which differentiates a healthy 
macula of one showing exudative AMD and obtained a sensi-
tivity of 1.00 and a specificity of 0.92.

Besides diagnosis, formulating a visual prognosis is a chal-
lenge for many researchers.

Some studies are focused on AMD grading and predicting 
the final visual acuity by using OCT images. The presumptive 
prognosis may influence the clinician's decision in establishing 
the treatment of the disease.

Schmidt‑Erfurth et al (39) predicted best‑corrected visual 
acuity at 1 year immediately after establishing the diagnosis 
of the disease with the help of AI. The registered error was 
12.9 letters. They trained their MLC on data sets from 614 eyes 
(2456 OCT scans). Aslam et al (41), in a similar study, reported 
a mean error of 8.21 letters. They analyzed only 847 OCT scans.

Burlina et al (42,43) made imaging assessment more 
efficient through grading systems, which have the potential to 
function as a decision support system for clinicians. The study 
group developed software for different MLCs using more than 
130,000 OCT images from 4,613 patients. Their conclusion 
was that deep CNN is the most precise. They obtained an 
accuracy of the analysis comprised between 0.884 and 0.916.

Some studies look at the role of AI as support to therapy 
decision‑making in AMD (if and when the anti‑vascular 
endothelial growth factor, anti‑VEGF, treatment is necessary). 
AI and predictive treatment technology have been proven 
as a useful addition to clinical practice. This is possible 

by training MLCs using OCT imaging. Prahs et al (44), 
Chakravarthy et al (16), Schlegl et al (45) found that their 
deep learning CNN was able to correctly predict the need for 
anti‑VEGF therapy (intravitreal injection) in 95% of the cases, 
similar to an average specialist. The researchers analyzed 
different features of the scan, particularly retinal fluid pres-
ence (46). Central retinal thickness and fluid localization are 
important biomarkers in OCT images.

Schmidt‑Erfurth and Waldstein (47) performed an analysis 
able to predict the functional prognosis (best‑corrected visual 
acuity outcomes) in neovascular AMD patients about to 
receive ranibizumab treatment. Bogunovic et al (48), applied 
an algorithm on 61 eyes with AMD. This algorithm used OCT 
biomarkers to reasonably predict drusen regression over the 
next 2 years. They obtained an AUROC curve of 0.75. Drusen 
regression has been shown to precede the progression of 
non‑exudative AMD (49‑52).

The above studies demonstrate that deep learning can be 
utilized to extract data that ophthalmologists cannot read. 
Deep learning results in image analysis are comparable to 
that of human performance (43). Many studies have already 
validated the potential of neural networks in diagnosing AMD.

5. Limitations

AI usage in clinical practice might present some potential 
risks. Some software programs are based on algorithms that 
lead to high false‑negative rates of detection of retinal diseases. 
Improper interpretation of the false‑positive results may lead 
to diagnostic errors and could be clinically disastrous for 
patients' vision.

Sometimes the ophthalmologist can not evaluate the 
metrics values used by the AI computer software to analyze 
the clinical data. The method by which a computer algorithm 
came to its conclusion, the reasoning process, is not always 
obvious.

It is possible that remote screening (patient's home 
screening) by automated AI systems, may become a problem 
due to a lack of patient confidence. Some studies show that 
many patients do not trust computer‑aided diagnosis and 
prefer in‑person ophthalmology visits (53).

Also, there is a risk for doctors to become addicted to 
technology and lose diagnostic abilities.

For some particular situations, when a physician disagrees 
with the results obtained by deep learning assessment, or when 
a patient does not receive counseling related to the required 
treatment it is necessary to introduce and apply medicolegal 
and ethical regulations.

All these potential shortcomings highlight the need for 
continuous improvement in AI technology.

6. The future

In the near future, AI will become more involved in the deci-
sion‑making regarding the scientific investigation, diagnosis 
and therapeutic management. Tele‑ophthalmology applica-
tions can transmit information to less developed regions that 
face a shortage of specialists (54). Already, a hybrid algorithm, 
with high sensitivity and specificity, named IDx‑DR, approved 
by FDA as a low to moderate risk device, is used for diabetic 
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retinopathy screening, aiding the management of patients that 
need referral to an ophthalmologist.

AI can quickly analyze large databases. Based on these 
analyzes, AI can explore the associations between disease 
features that may not be easily obvious to humans.

The clinical analysis of the ophthalmologist supported by 
the DL analysis results will improve the individualization of 
the medical management, for the benefit of the patients (55).

AI also plays an important role in scientific research. With 
the help of AI, the features of newly discovered eye diseases 
can be identified (53). It is expected that AI algorithms will 
help in identifying new biomarkers, specific to each disease, as 
they are able to search for characteristics themselves and are 
not limited to only recognizing clinical features.

Ongoing research aims to develop autonomous software 
able to diagnose simultaneously AMD, diabetic retinopathy 
and glaucoma, predict progression and recommend personal-
ized treatment.

7. Conclusions

AI/ DL (deep learning) algorithms using both OCT and fundus 
images will revolutionize techniques and methodologies of 
image analysis. Optimizing these (combined) technologies 
will accelerate the progress in this area. Currently, there are 
software programs that standardize OCT images from various 
devices and the results of these software packages are compa-
rable when the appropriate metrics are used consistently. 
Nevertheless, large databases, using real patient data, are 
required to optimize the performance of this type of analysis. 
Thus, computer‑assisted screening, diagnosis and prediction of 
the ophthalmic disease will reach new frontiers.

In ophthalmology AI has the potential to increase patient 
access to clinical screening/diagnosis and decrease health‑care 
costs, especially when the risk of the disease occurrence is 
high or the communities confront with low financial resources. 
However, legal regulations and solving of the reproducibility 
issues are required before AI based screening is incorporated 
in clinical practice.
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