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Abstract. The present study examined whether Panax 
notoginseng saponins (PNS) alleviated advanced glycation 
end product (AGE)‑induced apoptosis in human umbilical vein 
endothelial cells (HUVECs). HUVECs were incubated with 
300 µg/ml AGEs alone or AGEs and PNS (0.05, 0.5 or 1 mg/ml) 
for 48 h. The results of the present study demonstrated that 
PNS effectively promoted cell viability, inhibited apoptosis 
and suppressed the activity of caspase‑3 in AGE‑induced 
HUVECs. The activities of monocyte chemoattractant 
protein‑1 and malondialdehyde were reduced, and superoxide 
dismutase activity was increased following treatment with 
PNS. Furthermore, PNS significantly increased the expression 
of silent information regulator 1 (SIRT1) and transforming 
growth factor (TGF)‑β1 proteins, and suppressed the expres‑
sion of inducible nitric oxide synthase and cyclooxyggenase‑2 
proteins in AGE‑induced HUVECs. Therefore, the present 
study demonstrated that PNS reduced AGE‑induced apoptosis 
by upregulating SIRT1 and antioxidants in HUVECs. The 
present findings suggest that the PNS may as an important 
pharmacological agent for AGE‑induced cardiovascular injury.

Introduction

Multiple large‑scale clinical studies have indicated that, in the 
early stages of diabetes, strict regulation of blood glucose levels 
may reduce the occurrence of diabetic vasculopathy complica‑
tions, including microangiopathy and macroangiopathy (1). If 
blood glucose levels of patients with diabetes are not strictly 
regulated in the long‑term, even in cases where levels are 
controlled in the future, chronic blood vessel complications 

associated with diabetes may develop (2). This phenomenon 
is termed as metabolic memory or hyperglycemic memory. 
Various studies have indicated that if long‑term blood glucose 
levels of patients with diabetes are not efficiently regulated, 
advanced glycation end products (AGEs) are generated through 
a series of non‑enzyme glycations and lipid oxidations (2,3). 
This phenomenon may be the primary reason for generating 
metabolic memory. Previous results have indicated that AGEs 
are highly correlated with severe degrees of diabetic macroan‑
giopathy and microangiopathy, but have no correlation with 
other glycated proteins (4). Furthermore, exogenous synthetic 
AGEs have been demonstrated to damage normal vascular 
endothelial cells and result in various lesions (5).

Silent information regulator 1 (SIRT1) is a conservative 
gene in mammalian cells that is located in endothelial cells 
and belongs to the histone acetylation enzyme family (6). A 
number of studies have suggested that endonuclear SIRT1 
has an important role in maintaining genome stability, 
regulating cell energy metabolism, lengthening cell survival 
and delaying cell aging (7). Previous results have revealed 
that SIRT1 may relieve and decrease various cell functions, 
including oxidative stress, inflammation and apoptosis, by 
regulating endothelial cells, endothelial nitric oxide synthase, 
p53, Foxo family components and endothelial cell regulation 
by regulating angiotensin receptor II acetylation (8). During 
the inflammatory response, SIRT1 downregulates nuclear 
factor (NF)‑κB subunit Rel/65 and B‑cell lymphoma associ‑
ated X  protein  (Bax) activity and reduces the generation 
of inflammatory factors and inhibits suppressor cells  (9). 
Furthermore, it has been indicated that SIRT1 may have a role 
in inhibiting and promoting cell protection in cardiovascular 
disease, diabetes mellitus, tumor formation, aging and inflam‑
mation (9,10). SIRT1 in sepsis are a few; however, SIRT1 is an 
important inflammatory and anti‑apoptotic factor.

Oxidative stress was first proposed by Seis in 1985 (11). 
Oxidative stress refers to the overproduction of oxides and 
limited anti‑oxide generation that results in unbalanced 
pro‑oxidation and anti‑oxidation, which promotes tissue 
damage and affects various mechanisms (12). Reactive oxygen 
species (ROS) are a primary source of oxidative stress and are 
associated with peroxidation, as well as superoxide anion and 
free radical generation (13). Additionally, ROS are continu‑
ously generated during the metabolic activities of cells (13). 
Under normal conditions, low concentrations of ROS regulate 
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the function of vascular cells and are necessary for the main‑
tenance of normal blood vessel functions (14). However, in 
cases where ROS are overproduced or not eliminated rapidly, 
cellular damage of human tissues may occur, including the 
reduction of nitric oxide activity, lipid oxidation and protein 
nitration (14). Multiple enzymes are involved in the genera‑
tion of ROS in vascular endothelial cells, including reduced 
nicotinamide adenine dinucleotide phosphate (NAPDH), 
xanthine oxidase, endothelial nitric oxide synthase, cycloox‑
yggenase‑2 (COX‑2) and lipoxygenase (15).

The primary component of Panax notoginseng sapo‑
nins (PNS) injections (Sanqi Panax Notoginseng) are Panax 
notoginseng saponins (16). PNS are effective pharmacological 
components of pseudo‑ginseng (16). PNS are widely applied in 
the clinic and are primarily used to carotid artery disease, hemi‑
plegia, sequelae of cerebrovascular disease and chest congestion 
and pains  (16). A previous study has shown that PNS have 
anti‑cerebral ischemic properties, improve blood rheological 
parameters and microcirculation, reduce the fat composition 
in the blood and alleviate free radical‑induced cell injury (16). 
Furthermore, PNS are typically used for curing ischemic cere‑
brovascular diseases and protecting ischemic damage of nerve 
cells (16). In the present study, it was investigated whether PNS 
alleviated AGE‑induced apoptosis of HUVECs.

Materials and methods

Reagents, cell culture and treatment. Kaighn's modification 
of Ham's F‑12 medium (F‑12  K medium), penicillin and 
streptomycin were purchased from Invitrogen; Thermo Fisher 
Scientific, Inc. (Waltham, MA, USA). Fetal calf serum (FCS) 
was purchased from Gibco; Thermo Fisher Scientific, Inc. 
Trypsin was obtained from Ameresco, Inc. (Framingham, MA, 
USA). Human umbilical vein endothelial cells (HUVECs) 
were purchased from Shanghai Cell Bank of Chinese Academy 
of Sciences and maintained in F‑12 K medium supplemented 
with 10% FBS, 100 U/l penicillin and 10 mg/l streptomycin 
at 37˚C in an atmosphere containing 5% CO2. PNS (95%) was 
purchased from Yunnan Botanical Pharmaceutical Co., Ltd. 
Advanced glycation end product (AGE‑BSA) was prepared 
using D‑glucose (Sigma‑Aldrich; Merck KGaA) and bovine 
serum albumin (Beyotime Institute of Biotechnology)

Cell viability. To determine the cell viability, HUVEC cells, 
at ~85% confluency, were incubated with F‑12 K medium 
containing 2% FBS and 300 µg/ml AGE alone or AGE and 
PNS (0.05, 0.5 or 1 mg/ml) for 48 h in a humidified atmo‑
sphere containing 5% CO2. The control group consisted of 
HUVEC cells incubated with F‑12  K medium containing 
2% FBS. Following a 4 h incubation period at 37˚C with 
50 µl 3‑(4,5‑dimethyl‑thiazol‑2‑yl)‑2,5‑diphenyltetrazolium 
bromide (MTT; 5  mg/ml; Invitrogen; Thermo Fisher 
Scientific, Inc.), the medium was discarded and 150 µl of 
dimethyl sulfoxide (Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany) was added. Cell viability was measured using a 
microplate reader (Model 550; Bio‑Rad Laboratories, Inc., 
Hercules, CA, USA).

Apoptosis rate assay. HUVEC cells, at ~85% confluency, 
were incubated with F‑12 K medium containing 2% FBS and 

300 µg/ml AGE or PNS (0.05, 0.5 or 1 mg/ml) for 48 h. Cells 
in the control group were treated with PBS. Cells were washed 
twice with 4˚C phosphate‑buffered saline and resuspended in 
100 µl binding buffer (Invitrogen; Thermo Fisher Scientific, 
Inc.). Cell was fixed with 4% paraformaldehyde for 15 min 
at room temperature. Subsequently, cells were stained with 
5 µl Annexin V‑fluorescein isothiocyanate (FITC) and 5 µl 
propidium iodide (PI) for 15 min at room temperature in the 
dark. The apoptotic rate was quantified using the Coulter Epics 
XL flow cytometer (Beckman Coulter, Inc., Brea, CA, USA).

ELISA. HUVEC cells (1x106 cells/ml, 200 µl/ well in 96 well 
plates) at a confluency of ~85% were incubated with F‑12 K 
medium supplemented with 2% FBS and 300 µg/ml AGE alone 
or AGE and PNS (0.05, 0.5 or 1 mg/ml) for 48 h in a humidified 
atmosphere containing 5% CO2. The control group consisted 
of HUVEC cells incubated with F‑12 K medium containing 
2% FBS at 37˚C. Cells were lysed in ice‑cold cell lysis buffer 
(Cell Signaling Technology, Inc., Danvers, MA, USA) and 
protease cocktails (1:100; Gibco; Thermo Fisher Scientific, 
Inc.). The supernatant was collected to measure the contents 
of caspase‑3 (cat. no. G015‑1‑3; Nanjing Jiancheng Biology 
Engineering Institute, Nanjing, China), monocyte chemoat‑
tractant protein‑1 (MCP‑1; cat. no. H115; Nanjing Jiancheng 
Biology Engineering Institute), malondialdehyde (MDA; 
cat. no. A003‑1‑2; Nanjing Jiancheng Biology Engineering 
Institute) and sodium dismutase superoxide dismutase (SOD; 
cat. no. A001‑3‑2; Nanjing Jiancheng Biology Engineering 
Institute) using an ELISA reader (Start Fax 2100; Awareness 
Technology Inc., Fisher Bioblock Scientific, Tournai, Belgium).

Western blotting. HUVEC cells were incubated with F‑12 K 
medium containing 2% FBS and 300 µg/ml AGE alone or 
AGE and PNS (control, 0.05, 0.5 or 1 mg/ml) for 48 h in a 
humidified atmosphere containing 5% CO2. Control group was 
HUVEC cells incubated with F‑12 K medium containing 2% 
FBS at 37˚C. Cell was lysed in ice‑cold cell lysis buffer (Cell 
Signaling Technology, Inc.) and protease cocktails. Protein 
concentration was determined using a BCA protein assay 
kit (Thermo Fisher Scientific, Inc.) according to the manu‑
facturer's instructions. Equal quantities of protein (50 µg) 
were loaded and separated using SDS‑PAGE (10% gels) and 
transferred to polyvinylidene difluoride (PVDF) membranes 
(GE Healthcare Life Sciences, Chalfont, UK). Following this, 
membranes were blocked with 5% milk solution (Yili Group 
Co., Ltd., Neimenggu, China) in 0.1% Tris‑buffered saline 
tween (TBS‑T) for 2 h at room temperature. Target protein 
bands in the PVDF membranes were probed with anti‑silent 
information regulator 1 (SIRT1; cat. no. sc‑74465, 1:1,000, 
Santa Cruz Biotechnology, Inc., Dallas, TX, USA), anti‑trans‑
forming growth factor (TGF)‑β1 (cat. no. 3709; 1:1,000; Cell 
Signaling Technology Inc.), anti‑inducible nitric oxide synthase 
(iNOS, cat. no. 13120, 1:1,000, Cell Signaling Technology, 
Inc.), anti‑cyclooxygenase 2 and anti‑GAPDH (cat. no. 5174, 
1:1,000, Cell Signaling Technology, Inc.) at 4˚C overnight. 
Following washing with TBS‑T for 5 min for a total of three 
times, PVDF membranes were incubated with Anti‑rabbit IgG, 
HRP‑linked Antibody (cat. no. 7074; 1:5,000; Cell Signaling 
Technology Inc.) for 1 h at 37˚C. Bands were detected using 
enhanced chemiluminescence reagents (SuperSignal West 
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Femto, Pierce; Thermo Fisher Scientific, Inc.). Images were 
captured using a FluorChem FC2 Imaging System (Alpha 
Innotech Corp., San Leandro, CA, USA).

Statistical analysis. Data are indicated as mean ± standard 
error of the mean using SPSS software (version 11.0; SPSS, 
Inc., Chicago, IL, USA). Data were analyzed using one‑way 
analysis of variance analysis and Tukey's post hoc test for 
three groups or data were analyzed using Student's t‑test for 
two groups. P<0.05 was considered to indicate a statistically 
significant difference.

Results

PNS promotes cell viability of AGE‑induced HUVECs. 
AGE‑induced HUVECs were established to study the effect 
of PNS on cell viability of AGE‑induced HUVECs. Cell 
viability of AGE‑induced HUVECs was determined using 
the MTT assay. As indicated in Fig. 1, the cell viability of 
AGE‑induced HUVECs was significantly reduced compared 
with that of the control (P<0.01). However, AGE‑treated cells 
with 0.5 or 1 mg/ml PNS exhibited significantly increased cell 
viability of AGE‑induced HUVECs compared with that of the 
AGE‑induced HUVECs model (P<0.01; Fig. 1).

PNS inhibits the apoptotic rate of AGE‑induced HUVECs. 
Annexin V‑FITC/PI was performed to examine the effect 
of PNS on the apoptotic rate in AGE‑induced HUVECs. A 
significant increase in the apoptotic rate was exhibited in 
AGE‑induced HUVECs compared with the control group 
(P<0.01; Fig. 2). Compared with the AGE‑induced HUVECs 
model group, the apoptotic rate of AGE‑induced HUVECs 
was significantly decreased by 0.5 or 1 mg/ml PNS treatment 
(P<0.01; Fig. 2).

PNS suppresses caspase‑3 activity of AGE‑induced HUVECs. 
The effect of PNS on caspase‑3 activity was evaluated in 
AGE‑induced HUVECs. AGE significantly induced caspase‑3 
activity in HUVECs compared with that of the control group 
(P<0.01; Fig. 3). Following treatment with 0.5 or 1 mg/ml PNS, 
caspase‑3 activity in AGE‑induced HUVECs was significantly 
reduced compared with the AGE‑induced HUVECs model 
(P<0.01; Fig. 3).

PNS suppresses MCP‑1 and MDA activities and increases 
SOD activity in AGE‑induced HUVECs. The present study 
explored the protective effect of PNS on AGE‑induced 
HUVECs, specifically exploring the effect of PNS on MCP‑1, 
MDA and SOD. As indicated in Fig. 4, AGEs significantly 
increased the levels of MCP‑1 and MDA and decreased the 
levels of SOD in HUVECs compared with control group (all 
P<0.01). However, treatment with 0.5 or 1 mg/ml PNS signifi‑
cantly reduced the MCP‑1 and MDA levels and increased the 
levels of SOD in AGE‑induced HUVECs compared with the 
AGE‑induced HUVECs model (P<0.01; Fig. 4).

PNS promotes the protein expression levels of SIRT1 in 
AGE‑induced HUVECs. To investigate the mechanism by 
which AGE‑induced HUVECs are regulated when treated 
with PNS, the protein expression levels of SIRT1 protein were 

investigated in HUVECs. AGEs significantly reduced the 
protein expression levels of SIRT1 in AGE‑induced HUVECs 
compared with the control group (P<0.01: Fig. 5). However, 
0.5 or 1  mg/ml PNS treatment significantly increased 
the protein expression levels of SIRT1 in AGE‑induced 
HUVECs compared with the AGE‑induced HUVECs model 
(P<0.01; Fig. 5).

PNS promotes the protein expression levels of TGF‑β1 in 
AGE‑induced HUVECs. To investigate whether TGF‑β1 
regulates AGE‑induced HUVECs by PNS, the present 

Figure 3. PNS suppresses caspase‑3 activity of AGE‑induced HUVECs. 
##P<0.01 vs. Control group; **P<0.01 vs. AGE group. Control, HUVECs 
without AGE and PNS (Control group); AGE, AGE‑induced HUVECs 
group; AGE + 0.05 mg/ml, AGE‑induced HUVECs + 0.05 mg/ml PNS 
group; AGE + 0.5 mg/ml, AGE‑induced HUVECs + 0.5 mg/ml PNS group; 
AGE + 1 mg/ml, AGE‑induced HUVECs + 1 mg/ml PNS group. HUVECs, 
human umbilical vein endothelial cells; PNS, Panax notoginseng saponins; 
AGE, advanced glycation end products.

Figure 1. PNS promotes the cell viability of AGE‑induced HUVECs. 
##P<0.01  vs.  control group; **P<0.01 vs. AGE group. Control, cells 
without treatment group; AGE, AGE‑induced HUVECs group; 
AGE  +  0.05  mg/ml, AGE‑induced HUVECs + 0.05  mg/ml PNS group; 
AGE  +  0.5  mg/ml, AGE‑induced HUVECs + 0.5  mg/ml PNS group; 
AGE + 1 mg/ml, AGE‑induced HUVECs + 1 mg/ml PNS group. HUVECs, 
human umbilical vein endothelial cells; PNS, Panax notoginseng saponins; 
AGE, advanced glycation end products.

Figure 2. PNS inhibits apoptosis of AGE‑induced HUVECs. 
##P<0.01 vs. Control group; **P<0.01 vs. AGE group. Control, HUVECs 
without AGE and PNS (Control group); AGE, AGE‑induced HUVECs 
group; AGE + 0.05 mg/ml, AGE‑induced HUVECs + 0.05 mg/ml PNS 
group; AGE + 0.5 mg/ml, AGE‑induced HUVECs + 0.5 mg/ml PNS group; 
AGE +1 mg/ml, AGE‑induced HUVECs + 1 mg/ml PNS group. HUVECs, 
human umbilical vein endothelial cells; PNS, Panax notoginseng saponins; 
AGE, advanced glycation end products.
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study analyzed the protein expression levels of TGF‑β1 in 
AGE‑induced HUVECs. As revealed in Fig. 6, the protein 
expression levels of TGF‑β1 were significantly reduced 
compared with the control group (P<0.01). TGF‑β1 protein 
expression levels were significantly increased by 0.5 or 
1 mg/ml PNS treatment compared with the AGE‑induced 
HUVECs model (P<0.01; Fig. 5).

PNS suppresses the protein expression levels of iNOS in 
AGE‑induced HUVECs. The present study observed that the 
iNOS protein expression levels of AGE‑induced HUVECs 
were significantly increased compared with the control group 
(P<0.01; Fig. 6). However, 0.5 or 1 mg/ml PNS treatment 
significantly reduced AGE‑induced iNOS protein expression 
levels in HUVECs compared with the AGE‑induced HUVECs 
model (P<0.01; Fig. 6).

PNS suppresses the protein expression levels of COX‑2 
in AGE‑induced HUVECs. To further explore the effect 
of PNS in AGE‑induced HUVECs, the protein expression 

levels of COX‑2 in AGE‑induced HUVECs were examined. 
As indicated in  Fig.  6, COX‑2 protein expression levels 
in AGE‑induced HUVECs were significantly increased 
compared with the control group (P<0.01). Treatment with 
0.5 and 1 mg/ml PNS significantly inhibited AGE‑induced 
COX‑2 protein expression levels in HUVECs compared with 
the AGE‑induced HUVECs model (P<0.01; Fig. 6).

Discussion

It is largely acknowledged that oxidative stress is a dangerous 
factor of coronary heart disease (17). Changes in vascular endo‑
thelial function and structure in diabetes is one of predominant 
causes of disability and mortality (18). An animal study indicated 
that, during the progression of disease in rats, AGEs in tissues 
are increased and impact the normal functions of tissues (18). 
For cardiovascular protection, candesartan is typically adminis‑
tered in clinic settings, which has been shown to downregulate 
the expression of AGE receptors in diabetic rats and reduce the 
generation of AGEs (5). A previous study has demonstrated that 

Figure 5. PNS activates SIRT1 and TGF‑β1 protein expression of AGE‑induced HUVECs. (A) Western blotting and (B and C) statistical analysis was performed 
and indicated that PNS suppressed SIRT1 and TGF‑β1 protein expression levels of AGE‑induced HUVECs. ##P<0.01 vs. Control group; **P<0.01 vs. AGE 
group. Control, HUVECs without AGE and PNS (Control group); AGE, AGE‑induced HUVECs group; AGE + 0.05 mg/ml, AGE‑induced HUVECs + 
0.05 mg/ml PNS group; AGE + 0.5 mg/ml, AGE‑induced HUVECs + 0.5 mg/ml PNS group; AGE + 1 mg/ml, AGE‑induced HUVECs + 1 mg/ml PNS group. 
HUVECs, human umbilical vein endothelial cells; AGE, advanced glycation end products; PNS, Panax notoginseng saponins; SIRT1, silent information 
regulator 1; TGF‑β1, transforming growth factor‑β1.

Figure 4. PNS suppresses MCP‑1 and MDA activity and increases SOD activity of AGE‑induced HUVECs. PNS suppressed (A) MCP‑1 and (B) MDA activity and 
(C) increased SOD activity of AGE‑induced HUVECs. ##P<0.01 vs. Control group; **P<0.01 vs. AGE group. Control, HUVECs without AGE and PNS (Control 
group); AGE, AGE‑induced HUVECs group; AGE + 0.05 mg/ml, AGE‑induced HUVECs + 0.05 mg/ml PNS group; AGE + 0.5 mg/ml, AGE‑induced HUVECs 
+ 0.5 mg/ml PNS group; AGE + 1 mg/ml, AGE‑induced HUVECs + 1 mg/ml PNS group. HUVECs, human umbilical vein endothelial cells; AGE, advanced 
glycation end products; PNS, Panax notoginseng saponins; MCP‑1, monocyte chemoattractant protein‑1; MDA, malondialdehyde; SOD, superoxide dismutase.
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long‑term hyperglycemia reduces mitochondrial functions and 
generates superfluous superoxide. Tissue proteins and nucleic 
acids undergo glycation and generate multiple AGEs (19). AGEs 
can coat mitochondrial proteins, restrain mitochondrial proteins 
and promote the generation of super‑oxygen ions (20). During 
the progression of hyperglycemia, damage to the cell accumu‑
lates (20). It has been demonstrated that even if hyperglycemia 
is corrected, the damage provoked by AGEs is irreversible (21). 
SOD levels and suppressed AGE‑induced iNOS and COX‑2 
expression in AGE‑induced HUVECs. Peng et al (21) demon‑
strated that P. notoginseng flower saponins (PNFS) significantly 
downregulated iNOS gene expression in RAW264.7 macro‑
phages. Ding et al (16) demonstrated that PNFS reduced acute 
ethanol‑induced liver injury through reducing ethanol‑mediated 
oxidative stress.

TGF‑β1 has multiple roles in regulating cardiovascular 
physiology and disease (22). One important role of TGF‑β1 
is to regulate endothelial cell function in the blood vascular 
system (23). Unbalanced TGF‑β1 signaling results in abnor‑
malities in embryo vascular development (24). Furthermore, 
TGF‑β1 has an important role in the formation of new blood 
capillaries (24). Furthermore, a previous study indicated that 
TGF‑β1 regulated proliferation, apoptosis, changes of perme‑
ability and morphogenesis of endothelial cells  (24). It has 
been demonstrated that, in patients with typical precursors of 
cardiovascular disease, such as obesity or diabetes, TGF‑β1 
plasma concentration is increased (23). The present findings 
revealed that PNS treatment significantly induced TGF‑β1 
protein expression in AGE‑induced HUVECs. Hu et al (25) 
revealed that PNS significantly inhibited the expression of 
TGF‑β1 in rats with peritoneal fibrosis.

Aging is the response of body to multiple factors within 
the internal and external environment  (26). Conditions 

such as radiation, anoxia, peroxidation, high glucose or 
hyperlipidaemia promote aging; however, aging is not 
determined by a single factor. In the literature, various 
aging markers have been indicated, such as telomerase, 
β‑galactosidase and SIRT1 gene  (26). SIRT1 has been 
implicated in gene silencing, resisting stress and prolonging 
lifespan (27). Furthermore, multiple studies have indicated 
that the SIRT1 gene has an important role on aging (26,27). 
Previous results demonstrated that knockout of SIRT1 
may promote animal aging (26). Furthermore, a previous 
study has suggested that SIRT1 is a key factor for resisting 
outside stimulation, oxidative stress, inflammation and 
autophagy  (7). Reports have demonstrated that SIRT1 
may prevent oxidative stress by inducing premature‑aging 
of HUVECs and inhibiting premature senility of oxida‑
tive stress, while increased SIRT1 expression plays an 
important role in the aging phenotype of HUVECs (28,29). 
Results from the present study demonstrated that PNS 
treatment significantly increased SIRT1 protein expression 
in AGE‑induced HUVECs and suggested that the SIRT1 
pathway has an important role in the sensitization effect 
of PNS to vasculopathy. Du et al  (30) reported that PNS 
protects the kidneys of rats from diabetes by upregulating 
SIRT1 and antioxidant effects.

In conclusion, the present study revealed that PNS 
significantly promoted the cell viability, inhibited the 
AGE‑induced apoptotic rate, inhibited MCP‑1 and MDA 
levels, increased SOD levels and suppressed AGE‑induced 
iNOS and COX‑2 protein expression levels in HUVECs, 
potentially through upregulating SIRT1 and TGF‑β1. The 
present study indicated the SIRT1 and TGF‑β1 are likely 
involved in PNS‑induced protection of AGE‑induced 
cardiovascular injury.

Figure 6. PNS suppresses iNOS and COX‑2 protein expression levels in AGE‑induced HUVECs. (A) Western blotting and (B and C) statistical analysis 
indicated that PNS suppressed iNOS and COX‑2 protein expression levels in AGE‑induced HUVECs. ##P<0.01 vs. Control group; **P<0.01 vs. AGE group. 
Control, HUVECs without AGE and PNS (Control group); AGE, AGE‑induced HUVECs group; AGE + 0.05 mg/ml, AGE‑induced HUVECs + 0.05 mg/ml 
PNS group; AGE + 0.5 mg/ml, AGE‑induced HUVECs + 0.5 mg/ml PNS group; AGE + 1 mg/ml, AGE‑induced HUVECs + 1 mg/ml PNS group. HUVECs, 
human umbilical vein endothelial cells; AGE, advanced glycation end products; PNS, Panax notoginseng saponins; iNOS, inducible nitric oxide synthase; 
COX‑2, cyclooxyggenase‑2.
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