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Abstract. Metastatic renal cell carcinoma (RCC) is associated 
with poor prognosis. Ras protein activator like 2 (RASAL2) 
protein has been previously demonstrated to serves as a tumor 
suppressor in a variety of malignancies. Therefore, the aim 
of the present study was to investigate the role of RASAL2 
in RCC. Reverse transcription‑quantitative PCR, western 
blot analysis and immunohistochemistry were performed to 
measure mRNA and protein expression in RCC tissues, whilst 
immunofluorescence and western blotting were performed to 
evaluate protein expression in RCC cells. A Cell Counting 
Kit‑8 and 5‑bromo‑2'‑deoxyuridine staining were applied to 
determine cell viability, and Transwell assays were conducted 
to measure RCC cell invasion and migration. RASAL2 
expression was identified to be downregulated in RCC tissues, 
which associate negatively with RCC pathological grade. 
Sox2 expression, in addition to ERK1/2 and p38 MAPK 
phosphorylation, were demonstrated to be increased in RCC 
tissues. In RCC cells, RASAL2 overexpression decreased 
the expression of Sox2 and the activation of ERK1/2 and p38 
MAPK. Physiologically, RASAL2 overexpression decreased 
RCC cell viability, invasion and migration. The expression 
of metalloproteinase‑2/9 and tissue inhibitor of metallopro‑
teinase 1 were also identified to be decreased and increased by 
RASAL2 overexpression, respectively. By contrast, RASAL2 
knockdown exerted opposite effects on RCC cells compared 
with those observed following RASAL2 overexpression. 
RASAL2 expression decreased RCC cell viability, migra‑
tion and invasion, which was demonstrated to be associated 
with the inactivation of SOX2/ERK1/2/p38 MAPK signaling. 

These results suggest that RASAL2 may potentially serve as 
a potential target for the development of novel therapeutic 
intervention strategies against RCC.

Introduction

Renal cell carcinoma (RCC) is the most common type of 
kidney malignancy (1,2). About 190,000 new cases are diag‑
nosed, and over 91,000 RCC patients were related with death 
in 2003 worldwide, with the incidence of RCC increasing by 
~2% every 10 years (3). The morbidity and mortality associ‑
ated with RCC are also typically increased in males compared 
with females (4,5). The high rates of morbidity and mortality 
as a result of RCC are mainly due to RCC metastasis (6). 
Although improvements have been made in cancer therapy, 
RCC remains relatively insensitive to conventional thera‑
peutic interventions (7), as metastasis is a common feature 
of late‑stage RCC. Therefore, metastatic tumor cells further 
aggravate the condition of patients with RCC. Effective treat‑
ment for metastatic RCC that are available remain insufficient, 
leading to poor prognoses (8). Molecular targeted therapy 
against cancer has garnered significant attention worldwide, 
where research effort has been focused on the exploration and 
development of targeted therapy against RCC. Therefore, the 
identification of a potential target that can interfere with RCC 
progression is of utmost importance.

Ras protein activator like 2 (RASAL2) is a Ras 
GTPase‑activating protein. RASAL2 catalyzes GTP to GDP, 
which inactivates Ras. Dysregulation of the Ras signaling 
pathway is frequently observed in cancer cells (5). RASAL2 
expression has also been previously revealed to be aberrantly 
altered in a number of different tumors (9‑14), where it appears 
to serve as a tumor suppressor gene (5,15,16). Although 
RASAL2 has been reported to inhibit epithelial‑mesenchymal 
transition (EMT), a process which serves important roles 
in cancer cell metastasis (17,18), the functional profile of 
RASAL2 in RCC remains poorly understood. Therefore, 
in the present study, RASAL2 expression and function was 
investigated in RCC.

Ras‑MAPK signaling pathway dysfunction, particularly 
those of ERK1/2 and p38 MAPK, is frequently observed 
in human malignancies (19‑21). In particular, a number of 
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important cellular processes, including cell growth and 
apoptosis, are associated with the ERK1/2 and p38 MAPK 
signaling pathways (22,23). The MAPK signaling pathway has 
been reported to regulate EMT by modulating the expression 
of Sox2 (24‑27), a transcription factor that is involved in the 
regulation of cancer cell physiology.

In the present study, the hypothesis that RASAL2 may 
regulate RCC progression by modulating the Sox2/MAPK 
signaling pathway was explored. The results from the present 
study may provide novel insights into the mechanism under‑
lying RASAL2‑mediated regulation of RCC progression, 
which can be a potential therapeutic target in RCC therapy.

Materials and methods

Tissue collection. The experiment protocol on human 
tissues was approved by the Ethics Committee of the 
Shaanxi Friendship Hospital. Tumor tissues and the matched 
para‑carcinoma tissues from the same patient were collected 
from 21 patients with RCC (Average age: 64.5±11.3 years; 
male/female: 13/8) who were admitted to the Shaanxi 
Friendship Hospital between August 2016 and November 
2017. Inclusion criteria included the pathological diagnosis 
was clearly RCC; successful surgical treatment; and recur‑
rence or metastasis of RCC was the immediate cause of death. 
Exclusion criteria included unclear pathological diagnosis; 
multiple basic diseases; no surgical treatment; and patients 
with fatal cardiovascular or cerebrovascular diseases or 
accidental death.

The patients enrolled were pathologically diagnosed with 
RCC and signed informed consent forms. According to the 
World Health Organization grading system (28), RCC tissues 
were divided into the following three groups in the present 
study: i) High‑grade, ii) middle‑grade; and iii) low‑grade.

Cell culture. ACHN cells, a human renal carcinoma cell 
line, was purchased from the American Type Culture 
Collection (ATCC). Cells were cultured routinely in Eagle's 
Minimum Essential Medium (EMEM; ATCC) containing 
10% FBS (Gibco; Thermo Fisher Scientific, Inc.) and 10% 
penicillin/streptomycin, at 37˚C with 5% CO2.

Cell transfection. Cells were seeded into 6‑well plates at a 
density of 1.0x104 cells/well. Following starving overnight 
without serum, cells were transfected with the 1 µg control 
vector (pcDNA3.1), 1 µg RASAL2 overexpression plasmid 
(pcDNA3.1‑RASAL2), 1 µg short hairpin (sh) RASAL2 
plasmid (pGPU6‑RASAL2; targeting RASAL2 sequence, 
5'‑CCC TCG TGT TCT TGC TGA TAT‑3') οr 1 µg shRASAL2 
or 1 µg scramble plasmid (negative control shRNA plasmid). 
All plasmids were purchased from Shanghai GenePharma 
Co., Ltd.. Transfection reactions were performed using 
Lipofectamine® 3000 (Invitrogen; Thermo Fisher Scientific, 
Inc.) according to the manufacturer's protocol. All cells were 
collected and subjected to further experiments 24 h following 
transfection.

Cell counting Kit‑8 (CCK‑8) assay. Cells were seeded into 
96‑well plates at a density of 1x102 cells/well prior to trans‑
fection using the protocol aforementioned. After 24 h, 10 µl 

CCK‑8 reagent (Beyotime Institute of Biotechnology) were 
added into each well. The cells were then incubated at 37˚C for 
a further 4 h. Absorbance values were measured in each well 
at 450 nm using a microplate reader (Thermo Fisher Scientific, 
Inc.), which were then correlated to cell proliferation activity. 
Cell proliferation activity (%)=(OD value in the experimental 
group‑OD value in the blank group)/(OD value in the control 
group‑OD value in the blank group) x100%.

5‑bromo‑2'‑deoxyuridine (BrdU) staining. Cells (2x104 cells) 
from each group were inoculated on cell culture slides and 
incubated at 37˚C for 72 h, followed by being labeled with 
10 µmol/l BrdU solution (Sigma‑Aldrich; Merck KGaA; cat. 
no. B5002) at 37˚C for 48 h. After washing with PBS, the cells 
were fixed with 4% paraformaldehyde at room temperature 
for 30 min. After washing with PBS, the cells were treated 
with 2 mol/l HCl at 37˚C for 5 min, neutralized with 0.1 mol/l 
sodium tetraborate at room temperature for 10 min and then 
washed with 0.2% triton X‑100 at room temperature for 5 min. 
After sealing with 3% BSA (Thermo Fisher Scientific, Inc.; 
cat. no. BP9704‑100) at room temperature for 1 h, Brdu anti‑
bodies (1:200; Abbiotec, Inc.; cat. no. 251163) was applied at 
4˚C overnight. After washing with PBS, cells were incubated 
with sheep anti‑mouse IgG/Alexa Fluor594 (1:100, ProteinTech 
Group, Inc.; cat. no. SA00006‑3) at room temperature in 
darkness for 1 h. After washing with PBS, 1 mg/ml DAPI 
(Invitrogen, Thermo Fisher Scientific, Inc.; cat. no. D1306) was 
added to the cells at room temperature for 10 min. The BrdU 
positive cells were observed under a fluorescence microscope 
(Leica FW 4500 B microscope; Leica Microsystems GmbH), 
magnification x100.

Transwell assays. Cell invasion and migration were evaluated 
using Transwell assays. the upper chamber (BD Biosciences) 
were precoated with or without Matrigel (cat. no. M8370; 
Beijing Solarbio Science and Technology Co., Ltd.) for 30 mins 
at 37˚C. Chambers that were coated with Matrigel were used 
for invasion assays whilst those without were used for migra‑
tion assays. Briefly, the transfected RCC cells with serum‑free 
medium were seeded into the upper chamber (BD Biosciences) 
at a density of 1.0x105 cells/ml. The lower chamber was added 
with medium supplemented with 10% FBS. Cells that invaded or 
migrated through the membrane were subsequently stained 
with 500 µl 0.1% crystal violet at 37˚C for 30 min after incuba‑
tion for 36 h. The cells were observed using a light microscope 
(magnification, x100). Five different fields were observed and 
photographed. The relative cell migration and invasion rates 
were counted through the number of the migrated or invaded 
cells/the number of the inoculated cells in the same field.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from tissues and cells using TRIzol® 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's protocols. cDNA was obtained from 
1 µg total RNA using GoScript™ Reverse Transcription kit 
(Promega Corporation) according to manufacturer's protocol, 
using the following temperature setting: 25˚C for 5 min, 
at 42˚C for 60 min and 70˚C for 15 min. Subsequent qPCR 
amplification was performed using Fast SYBR™ Green 
Master Mix (Invitrogen; Thermo Fisher Scientific, Inc.) 
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according to manufacturer's protocol. The following thermo‑
cycling conditions were used: Initial denaturation at 95˚C for 
20 sec, followed by 40 cycles at denature at 95˚C for 3 sec, 
and annealing/extension at 60˚C for 30 sec. The sequences of 
primers used were as follows: RASAL2 forward, 5'‑TCC CTC 
GTG TTC TTG CTG AT‑3' and reverse: 5'‑GTC TGT GTT GTC 
CTG GCT TG‑3'; GAPDH forward, 5'‑TGC ACC ACC AAC 
TGC TTA GC‑3' and reverse, 5'‑GGC ATG GAC TGT GGT CAT 
GAG‑3'. Relative RASAL2 expression was normalized to that 
of GAPDH and calculated using the 2‑ΔΔCq method (12).

Western blotting. Total proteins were extracted from tissues 
and cells using Total Protein Extraction kit (Merck Millipore; 
cat. no. XY‑AP200A). Protein concentration was measured 
using the Bicinchoninic Acid protein assay kit (Shanghai 
Qcbio Science & Technologies Co., Ltd.). A total of 1 µg 
total protein were loaded per well and separated by 10% 
SDS‑PAGE, proteins were transferred onto PVDF membranes 
(EMD Millipore). The membranes were then blocked using 
5% bovine serum albumin (Gibco; Thermo Fisher Scientific, 
Inc.) for 1 h at 37˚C. Following incubation with primary anti‑
bodies at 4˚C overnight, the membranes were then treated with 
corresponding horseradish peroxidase‑conjugated secondary 
antibodies (1:5,000; cat. nos., ab205719 and ab205719; 
Abcam) at room temperature for 1 h. ECL Plus reagent 
(Beyotime Institute of Biotechnology) was used to visualize 
the membranes, following which Quantity One software 
(version 4.62; Bio‑Rad Laboratories, Inc.) was used for densi‑
tometric analysis according to the manufacturer's protocols. 
The following primary antibodies were used: Anti‑RASAL2 
antibody (cat. no. ab121578; 1:100; Abcam), anti‑SOX2 (cat. 
no. ab97959; 1:200; Abcam), anti‑phosphorylated (p)‑ERK1/2 
(cat. no. ab201015; 1:400; Abcam), anti‑ERK1/2 (cat. 
no. ab54230; 1:1,000; Abcam), anti‑p38 (cat. no. ab27986; 
1:1,000; Abcam), anti‑p‑p38 (cat. no. ab47363; 1:2,000; 
Abcam), anti‑MMP‑2 (cat. no. ab97779; 1:2,000; Abcam), 
anti‑MMP‑9 (cat. no. ab38898; 1:2,000; Abcam), anti‑TIMP1 
(cat. no. ab61224; 1:1,000; Abcam) and anti‑GAPDH (cat. 
no. ab9485; 1:2,500; Abcam).

Immunohistochemical (IHC) staining. The tumor and 
para‑carcinoma normal tissues were fixed using 4% parafor‑
maldehyde overnight at 4˚C, embedded in paraffin and sliced 
into sections of 3‑4 µm thickness. RCC was divided into 
low‑grade and high‑grade according to previously published 
criteria (29). Slides were subsequently dewaxed with dimeth‑
ylbenzene, hydrated with dimethylbenzene and treated with 
an alcohol gradient (100, 95, 80 and 75%). After washing, the 
antigen retrieval was performed by heating the sections at 95˚C 
in sodium citrate buffer (pH 6.0; 10 mM; cat. no. 25229‑1; 
Wuhan Sanying Biotechnology). The cooled sections were then 
incubated in 3% hydrogen peroxide (H2O2) solution for 10 min 
at room temperature. Following blocking with 10% normal 
goat serum (Thermo Fisher Scientific, Inc.) at 37˚C for 30 min, 
slides were incubated with anti‑RASAL2 antibody (1:50; 
cat. no. ab216127; Abcam) at 4˚C overnight. The slides were 
then incubated with biotin‑labeled secondary antibody (cat. 
no. A0279; 1:200; Beyotime Institute of Biotechnology) at room 
temperature for 1 h. Slides were first treated with horseradish 
peroxidase‑linked streptavidin (1:500, Vector Laboratories; 

cat. no. SA‑5014) at room temperature for 30 min, following 
which they were incubated with 3'3'‑diaminobenzidine (DAB) 
for 5 min at room temperature. The sections were then stained 
with hematoxylin at room temperature for 2 min. Sections 
were observed using a light microscope (magnification x100). 
The results were assessed by two senior pathologists. RASAL2 
was positive with brown‑yellow staining of nucleus/cytoplasm. 
According to the percentage of positive cells: 1 point: 1‑10%; 
2 points: 10‑50%; 3 points: 50‑80%; 4 points: >80%.

Immunofluorescence (IF) staining. Cells (2x105 cells/ml) were 
fixed with 4% paraformaldehyde at room temperature for 
15 min and treated with 0.5% Triton X‑100 for 20 min at room 
temperature. Following blocking with 10% normal goat serum 
(Thermo Fisher Scientific, Inc.) at 37˚C for 30 min, slides were 
incubated with the anti‑RASAL2 primary antibody (1:100; 
cat. no. ab121578; Abcam) at 4˚C overnight. The slides were 
then incubated with Alexa Fluor® 594‑conjugated secondary 
antibody (1:200; cat. no. ab150120; Abcam) for 1 h at room 
temperature, following which nuclei were stained using DAPI 
(1:10; cat. no. D1306; Invitrogen; Thermo Fisher Scientific, 
Inc.) at room temperature for 5 mins and the slides were 
observed using a fluorescence microscope (Leica FW 4500 B 
microscope; Leica Microsystems GmbH).

Statistical analysis. Statistical analysis was performed using 
GraphPad Prism software version 6.0 (GraphPad Software, 
Inc.). Data are presented the mean ± SD from at least three 
replicates of the experiment, where comparisons were calcu‑
lated using one‑way ANOVA followed by Tukey's test. P<0.05 
was considered to indicate a statistically significant difference.

Results

RASAL2 expression is decreased in RCC tissues. RT‑qPCR 
and western blotting were performed to measure RASAL2 
mRNA and protein expression levels in RCC tissues. RASAL2 
expression was revealed to be significantly decreased in RCC 
tissues at mRNA and protein levels compared with adjacent 
normal tissues (Fig. 1A and B). Specifically, RASAL2 
expression was significantly decreased in high‑grade RCC 
tissues compared with the middle‑grade samples, whilst 
RASAL2 expression was in turn significantly decreased in 
middle‑grade RCC tissues compared those in low‑grade RCC 
tissues (P<0.05; Fig. 1A and B). In IHC staining, the brown 
staining represented RASAL2 staining. And it was discovered 
that RASAL2 expression was significantly decreased in RCC 
tissues compared with in normal tissues. RASAL2 expres‑
sion was significantly decreased in high‑grade RCC tissues 
compared with middle‑grade RCC tissues, whilst RASAL2 
expression in middle‑grade RCC tissues was significantly 
decreased compared with low‑grade RCC tissues (P<0.05; 
Fig. 1C). Therefore, these results suggest that RASAL2 was 
downregulated in RCC tissues compared with corresponding 
normal tissues, where its expression level is negatively 
associated with histological tumor grade.

SOX2 expression, and ERK and p38 MAPK activation 
levels are increased in RCC tissues. The expression levels 
of SOX2, p‑ERK/ERK and p‑p38/p38 were identified to be 
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significantly increased in RCC tissues compared with those 
in normal tissues; a trend that was observed to be positively 
associated with tumor grade, suggesting that SOX2 and the 
phosphorylated ERK and P38 were significantly enhanced in 
RCC tissues (P<0.05; Fig. 2).

Overexpression and knockdown of RASAL2 expression in 
ACHN cells. To investigate the potential underlying mecha‑
nism and function of RASAL2 in RCC, ACHN cells were 
transfected with plasmids encoding either the RASAL2 
protein or RASAL2 shRNA to overexpress or silence RASAL2 
expression, respectively. Data from RT‑qPCR, western blot‑
ting and IF staining demonstrated that RASAL2 expression 
was significantly increased in cells transfected with RASAL2 
plasmids compared with those transfected with corresponding 
control, whilst RASAL2 expression was significantly lower in 
cells transfected with shRASAL2 compared with those trans‑
fected with the scramble shRNA (P<0.05; Fig. 3). Therefore, 
these observations suggest that the manipulation of RASAL2 
expression ACHN cells was successful.

Effect of RASAL2 expression on RCC cell viability, invasion 
and migration. The effects of RASAL2 overexpression and 
knockdown on RCC cell viability, invasion and migration 
were subsequently evaluated on ACHN cells. As shown in 
Fig. 4A, compared with the control group, overexpression of 
RASAL2 significantly decreased cell viability (P<0.05), and 
the cell viability was significantly increased in RASAL2 

knockdown group relative to scramble group (P<0.05). In 
addition, the migration and invasion abilities of ACHN cells 
were significantly decreased in RASAL2 overexpression 
group with respect to the control group; by contrast, the migra‑
tion and invasive capacities of ACHN cells were significantly 
increased in the RASAL2 knockdown group versus that in the 
scramble group (P<0.05; Fig. 4B‑D). Moreover, the results of 
BrdU staining also disclosed that overexpression of RASAL2 
prominently suppressed the proliferation of RCC cells, and 
knockdown of RASAL2 had a significant promoting effect on 
the RCC cell proliferation (P<0.05; Fig. 4E).

Effect of RASAL2 expression on MMP‑2, MMP‑9 and TIMP‑1 
in RCC cells. Subsequently, the possible regulatory effects of 
RASAL2 overexpression or knockdown on the MMP‑2, MMP‑9 
and TIMP‑1 expressions in RCC were further investigated. The 
results of western blot assay exhibited that relative to the control 
group, RASAL2 overexpression significantly downregulated 
MMP‑2 and MMP‑9 expressions, and significantly upregulated 
TIMP‑1 expression in ACHN cells. By contrast, compared 
with the scramble group, RASAL2 knockdown significantly 
increased MMP‑2 and MMP‑9 expressions, and markedly 
decreased TIMP‑1 expression in ACHN cells (P<0.05; Fig. 5).

Effect of RASAL2 expression on SOX2 expression and 
the activation of ERK and p38 MAPK in RCC cells. 
Subsequently, western blot assays were used to evaluate the 
effects of RASAL2 overexpression and silencing on SOX2 

Figure 1. RASAL2 expression was decreased in RCC tissues. (A) Comparison of RASAL2 mRNA expression in normal and RCC tissues, measured using 
reverse transcription‑quantitative PCR. (B) Comparison of RASAL2 protein expression in normal tissue and RCC tissues, measured using western blot‑
ting. (C) Comparison of RASAL2 protein localization in normal and RCC tissues, as measured using immunohistochemical staining. Scale bars=100 µm 
(upper panel); Scale bars=50 µm (lower panel). *P<0.05 vs. normal RCC tissue. @P<0.05 vs. low‑grade RCC. #P<0.05 vs. middle‑grade RCC. RCC, renal cell 
carcinoma; RASAL1, ras protein activator like 2.
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Figure 3. Overexpression and knockdown of RASAL2 expression in ACHN cells. (A) RASAL2 expression was evaluated in ACHN cells using reverse 
transcription‑quantitative PCR, (B) western blotting and (C) immunofluorescence staining following transfection with plasmids expressing either the RASAL2 
protein or shRASAL2. Magnification, x200. *P<0.05 vs. Control group. #P<0.05 vs. scramble group. Blank, un‑transfected control; Control, control pcDNA.31 
plasmid; sh, short hairpin RNA; scramble, scrambled shRNA; RASAL2, ras protein activator like 2; shRASAL2, RASAL2 shRNA.

Figure 2. SOX2, p‑ERK and p‑p38 MAPK expressions were notably elevated in RCC tissues. Protein expression levels of SOX2, ERK1/2, p‑ERK1/2, p38 
and p‑p3 were measured in RCC tissues by western blotting analysis. And the relative expressions were calculated in accordance with the gray value. *P<0.05 
vs. normal RCC tissue. @P<0.05 vs. low‑grade RCC. #P<0.05 vs. middle‑grade RCC. RCC, renal cell carcinoma; p‑, phosphorylated.
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expression and the activations of ERK and p38 MAPK in 
ACHN cells. It was discovered that the levels of SOX2, 
p‑ERK/ERK and p‑p38/p38 were significantly downregu‑
lated in ACHN cells transfected with RASAL2 plasmid 
compared with that cells transfected with corresponding 
control plasmid. Meanwhile, compared with ACHN cells 
transfected with the scramble, silence of RASAL2 exhib‑
ited significant promoting effects on the expressions of 
SOX2, p‑ERK/ERK and p‑p38/p38 in ACHN cells (P<0.05; 
Fig. 6). Taken together, these results suggest that RASAL2 
overexpression suppressed the activation of SOX2/ERK/p38 
MAPK signaling pathway, and RASAL2 knockdown poten‑
tiated the SOX2/ERK/p38 MAPK signaling pathway in 
RCC cells.

Discussion

The clinical prognosis of patients with metastatic RCC is 
poor, where the numbers of therapeutic methods that are 
effective in prolonging the survival time of patients with RCC 
remain insufficient (30,31). Therefore, it is of importance to 
elucidate the specific mechanism and function underlying the 
pathophysiology of RCC. The present study demonstrated that 
RASAL2 exerted inhibitory effects on RCC by inhibiting cell 
migration and invasion through regulation of the SOX2/MAPK 
signaling pathway.

RASAL2 has been previously demonstrated to be a 
Ras GAP tumor suppressor in gastric cancer (32). In the 
present study, RASAL2 expression was identified to be 

Figure 4. Effect of manipulating RASAL2 expression on RCC cell viability, migration and invasion. (A) Following RASAL2 overexpression or knockdown 
in ACHN cells, cell viability was measured using Cell Counting Kit‑8 assay. (B‑D) ACHN cell migration and invasion ability was evaluated using Transwell 
assays following RASAL2 overexpression or knockdown. Magnification, x200; scale bars=50 µm. Relative cell migration and invasion rates were calculated 
depending on the number of cells in different fields. (E) BrdU staining was conducted to evaluate the proliferation of RCC cells after RASAL2 overexpression or 
knockdown. Magnification, x100; scale bars=100 µm *P<0.05 vs. Control group. #P<0.05 vs. scramble group. OD, optical density; Blank, un‑transfected control; 
Control, control pcDNA.31 plasmid; sh, short hairpin RNA; scramble, scrambled shRNA; RASAL2, ras protein activator like 2; shRASAL2, RASAL2 shRNA.
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decreased in RCC tissues, particularly in high‑grade RCC. 
This suggests that the inhibition of RASAL2 may contribute 
to the progression of RCC. Consistent with this notion, 
RASAL2 suppression promoted tumorigenesis in breast 
cancer in a previous study (5) In addition, the expression 

levels of RASAL2 were identified to be inversely associ‑
ated with pathological grade in triple‑negative or estrogen 
receptor‑negative breast tumors (11). In the present study, the 
role of RASAL2 in RCC was investigated in vitro, where 
the overexpression and suppression of RASAL2 expression 

Figure 6. Effect of manipulating RASAL2 expression on SOX2 expression, ERK phosphorylation and p38 MAPK phosphorylation in RCC cells. SOX2, 
ERK, p38 MAPK expression, in addition to ERK and p38 MAPK phosphorylation, were assessed in ACHN cells by western blotting following RASAL2 
overexpression or knockdown. GAPDH was used as loading control. *P<0.05 vs. Control group. #P<0.05 vs. scramble group. Blank, un‑transfected control; 
Control, control pcDNA.31 plasmid; sh, short hairpin RNA; scramble, scrambled shRNA; RASAL2, ras protein activator like 2; shRASAL2, RASAL2 
shRNA; p‑, phosphorylated.

Figure 5. Effect of manipulating RASAL2 expression on MMP‑2, MMP‑9 and TIMP‑1 expression in RCC cells. Protein expression of MMP‑2, MMP‑9 
and TIMP‑1 was assessed by western blotting in ACHN cells following RASAL2 overexpression or knockdown. GAPDH was used as the loading control. 
*P<0.05 vs. Control group. #P<0.05 vs. scramble group. Blank, un‑transfected control; Control, control pcDNA.31 plasmid; sh, short hairpin RNA; scramble, 
scrambled shRNA; RASAL2, ras protein activator like 2; shRASAL2, RASAL2 shRNA; MMP, matrix metalloproteinase; TIMP‑1, tissue inhibitor of 
metalloproteinases 1.
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were successfully performed in ACHN cells, a model RCC 
cell line. Subsequently, the effect of RASAL2 on RCC cell 
viability was investigated, as excessive cell proliferation 
is one of the primary hallmarks of cancer physiology (33). 
ACHN cell viability was revealed to be inhibited by 
RASAL2 overexpression but was increased by RASAL2 
knockdown. Additionally, invasion and migration levels 
were decreased by RASAL2 overexpression but enhanced 
by RASAL2 knockdown in ACHN cells, suggesting that 
decreased RASAL2 expression promotes the invasive 
capabilities of RCC. Supporting this, a previous study has 
reported that RASAL2 downregulation in ovarian cancer 
cells increased EMT and metastasis (34). During the EMT 
process, epithelial cells lose their polarity and transform 
into mesenchymal cells, where they acquire migratory 
and invasive phenotypes (35). During this process, matrix 
metalloproteinases (MMPs) such as MMP‑2/9 and tissue 
inhibitor of metalloproteinases 1 (TIMPs) such as TIMP‑1, 
their corresponding endogenous inhibitors, exert pivotal 
roles (36,37). Therefore, the effects of RASAL2 which 
support the observations from the invasion assay were subse‑
quently investigated. MMP‑2/9 expression was demonstrated 
to be decreased by RASAL2 overexpression, whilst it was 
increased by RASAL2 knockdown. By contrast, the opposite 
trend was observed in TIMP‑1 expression compared with 
that of MMP2/9 following the manipulation of RASAL2 
expression. Altogether, these results suggest that RASAL2 
served as an inhibitory factor in RCC by suppressing inva‑
sion, consistent with results identified in previous studies on 
RASAL2 (14). However, as previous reports have also previ‑
ously demonstrated that RASAL2 serves as an oncogene in 
other types of cancer (16,38), the role of RASAL2 is most 
likely to be dependent on the type of malignancy, where its 
physiological role remains controversial.

Interaction between growth factors and their corre‑
sponding receptors is essential for the initiation of signaling 
cascades through activation of downstream signaling 
pathways, with the MAPK pathway one of the most widely 
studied (39). MAPK is of great significance in signal trans‑
duction (40) and can result in a variety of effects on cellular 
processes (41). The MAPK signaling family includes 
ERK1/2, JNK1/2 and p38 MAPK (40). Previous studies have 
demonstrated that the activation status of ERK1/2 and p38 
were associated with metastatic tumors (42‑44), including 
that of RCC (45‑47). As SOX2 has also been reported 
to associate with ERK1/2 and p38 signaling in bladder 
cancer (48), the involvement of the SOX2/ERK/p38 pathway 
on RCC was evaluated. SOX2 expression, in addition to the 
activation of ERK1/2 and p38 MAPK, were identified to be 
elevated in RCC tissues.

RASAL2 is involved in a number of cancer types through 
the SOX2/MAPK signaling pathway (17,49). Therefore, in 
the present study it was hypothesized that a potential asso‑
ciation between RASAL2 and SOX2/ERK/p38 signaling 
may exist during RCC onset. To study the mechanism 
underlying the effects of RASAL2 on RCC, the activity of 
the SOX2/ERK/p38 signaling pathway was subsequently 
determined in vitro following manipulation of RASAL2 
expression. ERK and p38 MAPK activation were found to 
be decreased and increased by RASAL2 overexpression 

and knockdown in ACHN cells, respectively. According to 
previous studies, the inhibition of ERK1/2 and p38 MAPK 
signaling may prove to be beneficial to the inhibition of 
prostate cancer progression (50,51). In addition, it has also 
been previously reported that SOX2 bridges RASAL2 to 
the MAPK pathway in the regulation of EMT in bladder 
cancer cells (7,8). In the present study, RASAL2 overexpres‑
sion increased the expression of SOX2, whilst its RASAL2 
knockdown decreased SOX2 expression, suggesting that 
SOX2 may function as a bridge between RASAL2 and the 
ERK/p38 MAPK signaling pathway. Intracellular mecha‑
nisms underlying tumor pathophysiology are highly complex. 
Although the involvement of ERK1/2 and p38 MAPK in cell 
invasion has been reported in prostate cancer (51), the role 
of ERK1/2 and p38 MAPK in RCC cells has yet to be fully 
elucidated. Therefore, the use of ERK1/2 or p38 MAPK 
inhibitors may be useful to illustrate the role of ERK1/2 and 
p38 MAPK further in RCC in future studies, which serve 
as a limitation to the present study. In addition, the effect of 
RASAL2 on the SOX2/ERK/p38 MAPK signaling pathway 
should be determined in vivo in future studies, to confirm the 
role of RASAL2 in RCC.

Taken together, the present study demonstrated that 
RASAL2 overexpression can inhibit RCC cell viability, 
migration and invasion. In addition, these results support the 
notion that RASAL2 can serve as a potential therapeutic target 
for RCC.
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