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Abstract. The aim of the present study was to explore the 
potential anticonvulsant effects of β‑hydroxybutyrate (BHB) 
in a kainic acid (KA)‑induced rat epilepsy model. The 
KA‑induced rat seizure model was established and BHB was 
administrated intraperitoneally at a dose of 4 mmol/kg 30 min 
prior to KA injection. Hippocampal tissues were then obtained 
1, 3 and 7 days following KA administration, following which 
the expression levels of neuron‑specific enolase (NSE) and 
glial fibrillary acidic protein (GFAP) were measured using a 
double immunofluorescence labeling method. In addition, the 
contents of glutathione (GSH), γ‑aminobutyric acid (GABA) 
and ATP were measured using ELISA. Pretreatment with 
BHB markedly increased the expression of NSE after KA 
injection compared with that in the normal saline (NS) + KA 
group, suggesting that the application of BHB could alleviate 
neuronal damage in rats. The protective effect of BHB may 
be associated with suppressed inflammatory responses, which 
was indicated by the observed inhibition of GFAP expres‑
sion in rats in the BHB + KA group compared with that in 
the NS + KA group. It was also found that GSH and GABA 
contents were notably increased after the rats were pretreated 
with BHB compared with those in the NS + KA group. To 
conclude, the application of exogenous BHB can serve as a 
novel therapeutic agent for epilepsy.

Introduction

Epilepsy is a group of neurological disorders that is character‑
ized by epileptic seizures (1,2). As of 2015, ~39 million people 
were suffering from epilepsy (3), and it has been reported that 
~80% of cases occur in the developing world (4). Epilepsy 

resulted in 125,000 deaths in 2015, compared with 112,000 
in 1990 (5,6). Specifically, children in the 5‑9 years age group 
are particularly susceptible to morbidity associated with active 
epilepsy (7). Currently, seizures can be controlled with medi‑
cation in ~70% patients (8). However, for the remaining ~30% 
patients with epilepsy, seizures cannot be controlled with drugs 
due to adverse reactions (9,10). Therefore, it remains essential 
to explore novel treatment strategies for epilepsy.

A number of studies have previously demonstrated that 
β‑hydroxybutyrate (BHB) may serve an important role in 
epilepsy progression. Suzuki et al (11) found that BHB 
induced by a ketogenic diet (KD) may increase the concentra‑
tion of γ‑aminobutyric acid (GABA) in the epileptic brain by 
inhibiting astrocytic GABA degradation, which may account 
for its antiepileptic effects. Samoilova et al (12) showed that 
BHB is more suitable for treating epilepsy associated with 
metabolic disorders compared with that caused by KD. 
Additionally, BHB has been found to prevent neuronal injury 
induced by glutamate‑mediated lipid oxidation and glycolysis 
inhibition (13). The administration of BHB improved gluta‑
mate transport in the brain and conferred an anticonvulsant 
effect (14). Abdelmalik et al (15) found that pretreatment with 
BHB reduced the frequency of seizures induced by acute 
hypoglycemia. BHB has also been reported to exhibit anti‑
convulsant effects on epileptic models induced by pilocarpine, 
flurothyl and 4‑aminopyridine (16‑19).

A previous study demonstrated that exogenous BHB 
administration at a dose of 4 mmol/kg served as an alterna‑
tive to KD in exerting protective effects in a kainic acid 
(KA)‑induced the epilepsy model (20). Therefore, in the 
present study, the potential antiepileptic effects of exogenous 
BHB on KA‑induced epilepsy were explored further. The 
expression levels of neuro‑specific enolase (NSE) and glial 
fibrillary acidic protein (GFAP) were evaluated using double 
immunofluorescence labeling, whilst the contents of gluta‑
thione (GSH), GABA and ATP were measured using ELISA.

Materials and methods

Animals. A total of 60 male Wistar rats (age, 3 weeks; weight, 
60±10 g) were obtained from The Shandong University 
Animal Center. Rats had free access to food and tap water 
and were housed at a standard temperature (22±1˚C) and 
humidity (50±5%) under a 12‑h light/dark cycle. The rats were 

Antiepileptic effects of exogenous β‑hydroxybutyrate 
on kainic acid‑induced epilepsy

JIANPING SI1,  YINGYAN WANG2,  JING XU2  and  JIWEN WANG2

1Department of Pediatrics, The People's Hospital of Guangrao, Dongying, Shandong 257300; 2Department of Neurology, 
Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China

Received December 10, 2019;  Accepted July 10, 2020

DOI: 10.3892/etm.2020.9307

Correspondence to: Professor Jiwen Wang, Department of 
Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong 
University School of Medicine, 1678 Dongfang Road, Shanghai 
200127, P.R. China
E‑mail: wangjiwen@scmc.com.cn

Key words: β‑hydroxybutyrate, kainic acid, epilepsy, neuron 
damage



SI et al:  ANTIEPILEPTIC EFFECTS OF EXOGENOUS β‑HYDROXYBUTYRATE ON KAINIC ACID‑INDUCED EPILEPSY2

maintained under standard housing conditions until the time 
of the experiment. The present study was approved by the 
Ethics Committee of Shanghai Jiao Tong University School 
of Medicine (Shanghai, China). All experimental procedures 
were conducted according to the National Institute of Health 
Guidelines (21).

Establishment of the KA‑induced rat epilepsy model. On post‑
natal day 21, 60 Wistar rats were randomly assigned into the 
following four groups (n=15 rats in each group): i) normal saline 
(NS); ii) NS + KA; iii) BHB + KA; and iv) BHB groups. Rats 
in the BHB and NS groups were injected with 4 mmol/kg BHB 
(1 mmol/ml, cat. no. H6501; Sigma‑Aldrich, Merck KGaA) 
or 4 ml/kg NS, respectively. Rats in the BHB + KA group 
were pretreated with 4 mmol/kg BHB (1 mmol/ml) that was 
administered intraperitoneally 30 min prior to KA (10 mg/kg; 
cat. no. K0250; Sigma‑Aldrich, Merck KGaA) injection intra‑
peritoneally. Rats in the NS + KA group were administered 
NS intraperitoneally 30 min prior to KA injection. Selection of 
the BHB dose was based upon a previous study (20). Seizure 
behavior of rats was analyzed for 2 h, 1 h after KA administra‑
tion according to the scale previously devised by Racine (22): 
i) stage I, facial clonus; ii) stage II, head nodding or wet dog 
shaking; iii) stage III, forelimbs clonus; iv) stage IV, rearing 
forelimbs; and v) stage V, rearing, jumping or falling. Rats 
which presented with seizure behaviors of stages ≥IV were 
considered to be epileptic. If the status epilepticus continued 
for >90 min, 10% chloral hydrate (400 mg/kg; Sigma‑Aldrich; 
Merck KGaA) was injected intraperitoneally to stop seizure 
behavior. No rat exhibited any sign of peritonitis after chloral 
hydrate injection.

NSE and GFAP expression. At 1, 3 and 7 days after KA 
administration (n=5 rats at each time point), rats were anes‑
thetized with 10% chloral hydrate (400 mg/kg, intraperitoneal 
injection, n=5 rats at each time point in each group) and 
decapitated before their skulls were immediately cut open. 
No rats exhibited signs of pain after the administration of 
chloral hydrate. The left hemisphere of the brain was then 
obtained and immediately fixed in 4% paraformaldehyde 
for 24 h at 4˚C, which was embedded in paraffin and 4‑µm 
thick coronal paraffin sections were prepared for staining. 
The expression levels of NSE and GFAP in the hippocampal 
tissues were assessed using a double immunofluorescence 
labeling method. Coronal paraffin sections were dewaxed 
successively in xylene for 10 min twice and then rehydrated 
using a descending ethanol gradient before 0.3% Triton X‑100 
was added for 15 min at 37˚C. After blocking with 5% bovine 
serum albumin (Beijing Zhongshan Jinqiao Biotechnology Co. 
Ltd; OriGene Technologies, Inc.) for 1 h at 37˚C, the coronal 
paraffin sections were incubated with a rabbit NSE antibody 
(1:100 dilution; cat. no. ab79757; Abcam) and goat GFAP 
antibody (1:100 dilution; cat. no. ab53554; Abcam) overnight 
at 4˚C. After washing three times, the sections were incubated 
with DyLight® 488‑conjugated AffiniPure donkey anti‑rabbit 
IgG H + L (1:1,000 dilution; cat. no. ab96919; Abcam) and 
Alexa Fluor 647‑conjugated AffiniPure donkey anti‑goat IgG 
H + L (1:1,000 dilution; cat. no. A21447; Life Technologies; 
Thermo Fisher Scientific, Inc.) secondary antibodies for 2 h 
at room temperature. DAPI (100 ng/ml; Beijing Solarbio 

Science & Technology Co., Ltd.) was used to stain the nucleus 
for 15 min at room temperature. After washing for a further 
three times, the sections were observed under a fluorescence 
microscope at x400 magnification (Olympus Corporation), 
with three view fields of view taken per section. From the 
images, the mean optical density of NSE‑ and GFAP‑positive 
fibers was measured using the ImageJ (version 1.49; National 
Institute of health) program to assess changes in neuron and 
astrocyte content in the rat brains, respectively.

GSH and GABA content. Hippocampal tissues were removed 
from the right hemisphere 1, 3 and 7 days after KA admin‑
istration and immediately stored at ‑80˚C. The frozen 
hippocampal tissues were defrosted to room temperature 
and 9X weight of cold NS was added to the tissues and grind 
was done in ice‑cold NS. After the cells were fragmented, 
10% homogenized hippocampal tissue (the ratio of tissue:NS 
was 1:9) was centrifuged for 15 min at 510 x g at 4˚C. The 
supernatant was then obtained for subsequent experimenta‑
tion. Using a Bio‑Rad Model 450 microplate reader (Bio‑Rad 
Laboratories, Inc.), GSH (cat. no. CEA294Ge) and GABA 
(cat. no. CEA900Ge) contents were measured using the corre‑
sponding ELISA kits (Cloud‑Clone Corp.) according to the 
manufacturer's protocols.

Statistical analysis. Statistical analyses were performed using 
the SPSS software 20.0 (IBM Corp.). All data are presented 
as the mean ± standard error of the mean. Two‑way analysis 
of variance was used to analyze the main effect of treatment, 
the main effect of time, and the interaction between treatment 
and time. Significant differences between specific groups were 
analyzed using Bonferroni corrections. In the present study, 
P<0.05 was considered to indicate a statistically significant 
difference. All experiments were performed in triplicate.

Results

NSE and GFAP expression. The expression levels of NSE 
and GFAP were evaluated using double immunofluorescence 
(Figs. 1‑3). For NSE, the interaction between time and treat‑
ment revealed no statistically significant difference, whilst 
the main effect of the treatment factor was statistically 
significant (P<0.01). After KA administration, NSE expres‑
sion was found to be significantly lower in the NS + KA 
group compared with that in the NS group (D1, P<0.01; D3, 
P<0.05) and the BHB group (D1, D3, P<0.01; D7, P<0.05; 
Fig. 4A and Table SI). By contrast, the expression of NSE 
was revealed to be significantly higher in the BHB + KA 
group compared with that in the NS + KA group (P<0.05) 
after 1 day of KA administration (Fig. 4A and Table SI). No 
significant differences in NSE expression among different 
time points were observed, suggesting that time exerted little 
influence on NSE expression.

The interaction between treatment and time on GFAP 
expression showed significant differences (P<0.01), whilst the 
main effect of treatment on GFAP expression was also found 
to be significant (P<0.01). After 3 and 7 days of KA admin‑
istration, GFAP expression was significantly higher in the 
NS + KA group compared with that in the NS (D3, P<0.05; 
D7, P<0.01) and BHB groups (both P<0.01, Fig. 4B), whilst 
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the expression of GFAP was significantly decreased in the 
BHB + KA group compared with that in the NS + KA group 
(D3, P<0.05; D7, P<0.01; Fig. 4B and Table SII). However, after 
7 days of KA administration, GFAP expression was significantly 

higher in the BHB + KA compared with that in BHB group 
(P<0.01; Fig. 4B and Table SII). In addition, time was also found 
to significantly exert influence on GFAP expression (P<0.01). 
Within the NS + KA groups, GFAP expression increased along 

Figure 1. Immunofluorescence staining of NSE and GFAP in the hippocampus of rats 1 day after KA injection. Green signals represent NSE, red signals 
represent GFAP and the blue signals represent the cell nuclei stained with DAPI. Scale bar, 50 µm. NSE, neuron specific enolase; GFAP, glial fibrillary acidic 
protein; BHB, β‑hydroxybutyrate; KA, kainic acid; NS, normal saline.

Figure 2. Immunofluorescence staining of NSE and GFAP in the hippocampus tissues of rats 3 days after KA injection. Green signals represent NSE, red 
signals represent GFAP and blue signals represent the cell nuclei stained with DAPI. Scale bar, 50 µm. NSE, neuron specific enolase; GFAP, glial fibrillary 
acidic protein; BHB, β‑hydroxybutyrate; KA, kainic acid; NS, normal saline.
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with time (P<0.05, D1 vs. D3, D3 vs. D7; P<0.01, D1 vs. D7). By 
contrast, there was no significant difference among the different 
time points in NS, BHB+KA and BHB groups.

These results suggested that KA can cause neuron damage 
and compensatory astrocyte hyperplasia, which can be 
reversed by BHB treatment. There were no differences in NSE 
and GFAP expression between the BHB and NS groups at any 
point in time, indicating that BHB did not exert toxic effects 
on the brain tissues.

GSH content. There was no difference in the interaction 
between time and treatment on GSH contents, where the main 
effect of time also did not reveal significant influence. At 1 and 
7 days after KA administration, GSH content was found to be 
significantly lower in the NS + KA groups compared with that 
in the NS groups (both P<0.01) and the BHB groups (both 
P<0.01; Fig. 5 and Table SIII). GSH levels were also revealed to 

Figure 3. Immunofluorescence staining of NSE and GFAP in the hippocampus tissues of rats 7 days after KA injection. Green signals represent NSE, red 
signals represent GFAP and blue signals represent the cell nuclei stained with DAPI. Scale bar, 50 µm. NSE, neuron specific enolase; GFAP, glial fibrillary 
acidic protein; BHB, β‑hydroxybutyrate; KA, kainic acid; NS, normal saline.

Figure 4. Expression levels of NSE and GFAP in the hippocampal tissue. 
(A) NSE expression 1, 3 and 7 days after different treatments. KA admin‑
istration decreased the NSE expression (D1 and D3), whilst BHB alleviated 
this reduction (D1). (B) GFAP expression 1, 3 and 7 days after different treat‑
ments. KA administration increased the GFAP expression but pretreatment 
with BHB significantly reduced GFAP expression (D3 and D7). aP<0.05 vs. 
NS; bP<0.05 vs. NS+KA; cP<0.05 vs. BHB+KA; #P<0.05 vs. D1 NS + KA; 
*P<0.05 vs. D3 NS + KA; OD, optical density; NSE, neuron specific enolase; 
GFAP, glial fibrillary acidic protein; BHB, β‑hydroxybutyrate; KA, kainic 
acid; NS, normal saline.

Figure 5. GSH contents in the hippocampal tissues as measured using 
ELISA after 1, 3 and 7 days of different treatments. GSH contents were 
decreased after KA administration whilst pretreatment with BHB allevi‑
ated this reduction (D1 and D7). aP<0.05 vs. NS; bP<0.05 vs. NS+KA; BHB, 
β‑hydroxybutyrate; KA, kainic acid; NS, normal saline; GSH, glutathione.
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be significantly higher in the BHB + KA group compared with 
those in the NS + KA groups after 1 and 7 days (both P<0.01; 
Fig. 5 and Table SIII). These results suggested that BHB can 
alleviate the reduction in GSH caused by KA administration 
in rats. In addition, no differences in the GSH contents were 
observed between the BHB and NS groups, implicating the 
safety of BHB.

GABA contents. The interaction between time and treatment 
showed no significant influence on GABA levels, where the 
main effect of time also did not reveal statistical influence. 
After 1, 3 and 7 days of KA administration, GABA levels were 
significantly reduced in the NS + KA groups compared with 
those in the NS groups (all P<0.01) and the BHB groups (all 
P<0.01; Fig. 6 and Table SIV). At all three time points, following 
pretreatment with BHB, the GABA contents were found to be 
significantly higher in the BHB + KA group compared with 
those in the NS + KA group (D1 and D7, P<0.01; D3, P<0.05; 
Fig. 6 and Table SIV). However, in the BHB + KA group, 
GABA contents remained significantly decreased compared 
with those in NS (P<0.01) and BHB groups (P<0.01) 1 day 
after KA administration (Fig. 6 and Table SIV). These results 
demonstrated that KA administration reduced GABA levels 
whilst BHB alleviated this decrease in GABA caused by KA 
treatment in rats. No differences were found between BHB 
and NS groups in terms of GABA levels.

Discussion

Epilepsy is one of the most prevalent serious neurological 
disorders, for which it is important to develop novel effective 
therapies. Previous studies have documented exogenous BHB 
to be an anticonvulsant that exerts neuroprotective effects both 
in vitro and in vivo (12,23). In the present study, the antiepi‑
leptic effects of BHB in a KA‑induced epilepsy rat model were 
explored. Neuronal damage in the hippocampus was demon‑
strated to be alleviated after rats were pretreated with BHB. 
Additionally, the present study revealed that BHB was capable 
of blocking the activation of astrocytes whilst preserving the 
expression of GSH and GABA after KA administration.

NSE levels have been previously reported to be appli‑
cable for determining seizure durations and to estimate the 

prognosis of brain injuries (24). The NSE contents were 
found to be significantly higher in the serum of children 
with epilepsy compared with those in unaffected children, 
suggesting that elevated serum NSE after epileptic seizures 
may be associated with brain damage (25,26). GFAP is a glial 
cell marker in the development of the central nervous system 
that is mainly expressed in activated astrocytes (27,28). After 
epileptic seizure attacks, GFAP expression was previously 
revealed to be significantly elevated in astrocytes (29). In the 
present study, NSE and GFAP were used to stain neurons and 
activated astrocytes respectively, where KA injection resulted 
in an inflammatory environment in rat brains, as indicated by 
the extensive activation of glial cells. In addition, the number 
of neurons was found to be increased in the BHB + KA group 
compared with that in the NS + KA group whilst the degree 
of astrocyte activation was reduced. These results indicated 
that neuronal damage induced by KA was alleviated after the 
rats were pretreated with BHB, which may be due in part to its 
ability to inhibit the activation of glial cells.

It has been previously shown that oxidative stress is one 
of the main pathological mechanisms of epilepsy (30,31). 
During the progression of epilepsy, reactive oxygen species 
(ROS) can damage the cell membrane, proteins, enzymes 
and DNA components within the nucleus and the mitochon‑
dria (32). GSH is a part of the main antioxidant system that 
neutralizes the excessive ROS. GSH is capable of preventing 
damage to important cellular components caused by ROS, 
including free radicals, peroxides, lipid peroxides and heavy 
metals (33). Previous studies have demonstrated that the 
elimination of GSH is closely associated with a number 
of human diseases, including neurodegenerative diseases, 
diabetes and acquired immune deficiency syndrome (34,35). 
The present study showed that GSH levels in the hippo‑
campal tissues were significantly reduced after rats were 
treated with KA, suggesting that the ability to eliminate 
free radicals is reduced in epilepsy. Results from the present 
study also revealed that administration of BHB reversed the 
reduction in GSH caused by KA administration in the rat 
hippocampus. Therefore, it can be potentially concluded that 
BHB can diminish ROS damage caused by KA by preserving 
GSH levels. This is in accordance with a previous study that 
also showed that BHB treatment can reduce the overpro‑
duction of ROS and activate GSH further in the epileptic 
hippocampus (36).

GABA is the main inhibitory neurotransmitter in the central 
nervous system that serves a critical role in the development of 
epilepsy (37,38). Increased GABA synaptic activity can reduce 
the excitability of neurons (39), whilst a reduced GABA level 
can enhance the excitability of neurons (37). GABAA receptors 
are ligand‑gated ion channels that hyperpolarize neurons by 
increasing inward chloride conductance (38). Since the acti‑
vation of these receptors results in a rapid inhibitory effect, 
they serve a principal role in nerve transmission processes 
in the central nervous system (38). GABAB receptors can 
reduce calcium entry and mainly mediate slow synaptic 
inhibition, which is involved with numerous types of epilepsy 
and cognitive impairment (37,38). It was demonstrated that 
ketones can alter glutamate metabolism by increasing GABA 
synthesis, which would in turn dampen seizure activity (40). It 
has also been previously demonstrated that BHB can reduce 

Figure 6. GABA contents in the hippocampal tissues as measured using 
ELISA after 1, 3 and 7 days of different treatments. GABA contents were 
reduced by KA administration whilst BHB pretreatment relieved this reduc‑
tion (D1, D3 and D7). aP<0.05 vs. NS; bP<0.05 vs. NS + KA; cP<0.05 vs. 
BHB + KA; GABA, gamma‑aminobutyric acid; BHB, β‑hydroxybutyrate; 
KA, kainic acid; NS, normal saline.
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the incidence of seizure‑like activity in a GABAB‑dependent 
manner (41). In the present study, GABA levels in the 
hippocampal tissues were markedly reduced after rats were 
treated with KA. This reduction in GABA can increase the 
excitability of the neurons, thereby reducing the threshold of 
epileptic seizures. GABA levels in the hippocampus tissue 
were significantly increased after the rats were pretreated with 
BHB. These results suggest that elevations in the levels of 
GABA following the application of BHB can dampen seizure 
activity. In the present study, a correlation analysis between 
the GABA content and the number of neurons and astrocytes 
was not performed, which would be of significance for under‑
standing the mechanism of BHB further. This is a limitation 
of the present study.

It has been previously demonstrated that BHB is a 
more efficient energy source compared with glucose and 
that the presence of BHB can reduce ATP production from 
glycolysis (42,43). Glycolytic ATP is the primary source of 
energy that supports plasma membrane functions, including 
ATP‑sensitive potassium (KATP) channels. Lower glycolytic 
ATP levels would lead to higher KATP channel opening prob‑
ability, which would cause membrane hyperpolarization and 
reduce the influx of calcium via voltage‑gated calcium chan‑
nels. This would in turn reduce the release of excitatory amino 
acids and decreased neuron excitability (44‑46). KATP chan‑
nels, which are widely distributed in the hippocampus, would 
open with higher probability in the presence of BHB, which 
may underlie the anticonvulsive effects of ketone bodies.

In the present study, only the ATP contents in the BHB 
group were found to be greater compared with that of the 
detection threshold on day 7 (46.26±0.81 ng/g). This experi‑
ment could not detect ATP in other experimental groups. 
Considering the rapid degradation of ATP during the tissue 
preparation process, the frozen hippocampus tissues might 
have been the main cause of this. Due to the significant eleva‑
tions in ATP production, ATP could still be detected in the 
BHB group despite its rapid degradation.

Recently, several studies have demonstrated that BHB 
confers neuroprotective effects on the central nervous 
system against oxygen toxicity, Alzheimer's and Parkinson's 
disease (47‑49). Although a series of studies have demon‑
strated that BHB has protective effects in various epileptic 
models (9,20,36,50), it remains necessary to verify the effects 
of BHB in other epileptic models. Additionally, it is difficult 
to maintain stable BHB concentrations in the blood, which 
limits the efficacy of BHB administration for clinical applica‑
tion (45). Therefore, further studies focused on BHB treatment 
for antiepileptic therapy are required to confirm its efficacy 
and explore the underlying mechanisms.

Taken together, the similarity between the results mediated 
by BHB and KD in epileptic models suggest that exogenous 
BHB could replace KD as an anticonvulsant treatment for 
epilepsy. In particular, there are some limitations of KD 
applications, including nausea, constipation and abdominal 
pain (51). By contrast, BHB administration has not been 
reported to cause adverse effects, which may improve the 
patients' quality of life. Therefore, the application of exogenous 
BHB may serve as a novel therapeutic technique in treating 
epilepsy. However, it is essential to explore the therapeutic 
effect of exogenous BHB further in the future.
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