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Abstract. Obesity and its related diseases, such as type 
2 diabetes, hypertension and cardiovascular disease, are 
steadily increasing worldwide. Over the past few decades, 
numerous studies have focused on the differentiation and 
function of brown and beige fat, providing evidence for their 
therapeutic potential in treating obesity. However, no specific 
novel drug has been developed to treat obesity in this way. 
Peptides are a class of chemically active substances, which 
are linked together by amino acids using peptide bonds. They 
have specific physiological activities, including browning of 
white fat. As signal molecules regulated by the neuroendo‑
crine system, the role of polypeptides, such as neuropeptide 
Y, brain‑gut peptide and glucagon‑like peptide in obesity and 
its related complications has been revealed. Notably, with the 
rapid development of peptidomics, peptide drugs have been 
widely used in the prevention and treatment of metabolic 
diseases, due to their short half‑life, small apparent distribu‑
tion volume, low toxicity and low side effects. The present 
review summarizes the progress and the new trend of peptide 
research, which may provide novel targets for the prevention 
and treatment of obesity.
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1. Introduction

Obesity is a nutritional disorder that is caused by the excessive 
accumulation of white adipose tissue (WAT) in the body, which 
is characterized by a high body mass index and interferes with 
the body's energy balance (1). Obesity is a major risk factor 
for a number of different diseases, such as type 2 diabetes, 
cardiovascular disease, hypertension, fatty liver disease and 
some malignant tumors (2,3). The health of an individual is 
not only impeded by obesity, but it also causes huge economic 
losses to families and society (4).

The treatment of obesity primarily focuses on diet and 
physical exercise  (5). When lifestyle changes fail, drugs 
and surgery will be considered as treatment options (6). At 
present, a number of so‑called anti‑obesity drugs have been 
developed, which affect digestion and absorption (7). These 
drugs can produce significant weight loss in the individual; 
however, some patients are unwilling to receive this type of 
treatment, due to side effects such as insomnia, hypertension 
and dizziness (5). Polypeptide drugs have been widely used in 
the prevention and treatment of various diseases, due to their 
notable pharmacodynamics, low dosage and low number of 
side effects (8). By 2015, ~140 types of polypeptide drugs had 
entered clinical trials, and >500 types of polypeptide drugs were 
in the pre‑clinical stage (9). The majority of polypeptides act 
as signaling molecules in the regulation of the neuroendocrine 
system to prevent obesity and type 2 diabetes (10). Peptides 
have become a novel research area for the potential treatment 
of metabolic diseases such as diabetes and hyperlipidemia. A 
number of reports have demonstrated the roles of peptides, such 
as neuropeptide Y (11), adrenomedullin 2 (12), atrial natriuretic 
peptide and brain natriuretic peptide (13), in the treatment of 
obesity. The present review describes the progress and trend of 
polypeptides in obesity research, a novel target for the preven‑
tion and treatment of obesity and its related complications.
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2. Definition and classification of adipose tissue

There are two types of adipose tissue in mammals: WAT, 
which stores energy in the form of lipids, and brown adipose 
tissue (BAT), which produces heat by consuming energy (14). 
WAT is widely distributed throughout the body and is respon‑
sible for obesity (15). On the basis of its location, WAT can be 
divided into visceral WAT and superficial WAT, also known as 
the inguinal WAT (15). The concept of BAT was first described 
in the 16th century, and it was originally thought to exist 
only in hibernating mammals and infants (16). However, in 
2007, BAT was identified to be present in the supraclavicular 
and neck of the human body (16). In the subsequent 2 years, 
functional BAT was identified in adults (17‑19). BAT can be 
activated by cold stimulation and produce a non‑trembling 
fever  (20). This process primarily relies on the mitochon‑
drial brown fat uncoupling protein‑1 (UCP‑1) protein, which 
produces a proton gradient, that is then oxidized and phos‑
phorylated through the respiratory chain in the mitochondrial 
inner membrane to produce heat  (21). It is worth noting 
that individuals with low body fat have higher BAT activity 
compared with that in individuals with high body fat, indi‑
cating its role in reducing obesity (22). Recently, brown‑like 
adipocytes, which are also known as beige adipocytes, have 
been described within the WAT, particularly in white inguinal 
adipocytes  (23,24). Beige adipocytes are similar to brown 
adipocytes morphologically, as they contain multilocular 
lipids and have a high number of mitochondria enriched by 
UCP‑1 (25). Furthermore, beige adipocytes possess numerous 
BAT‑specific genes, including UCP‑1, cell death‑inducing 
DNA fragmentation factor, Peroxisome proliferator‑activated 
receptor gamma coactivator 1‑α (PGC‑1α), positive regula‑
tory domain containing 16 (PRDM16) and CCAAT/enhancer 
binding protein Beta;GH, growth hormone (26). Beige cells 
show similar functions to brown adipocytes, such as producing 
heat (25,27) and increasing the use of nutrients to assist with 
the balance of energy throughout the body (28). Typically, the 
process that promotes the transformation of white fat to beige 
fat is called browning of white fat, and could be used as a 
potential strategy to treat obesity (25). A number of genes have 
been indicated to be responsible for the browning of white fat, 
including PRDM16 and peroxisome proliferators‑activated 
receptors (PPARs). Activation of PPARα has been shown 
to promote the action of beige adipocytes via PRDM16 and 
PGC‑1α (29). PPARγ activator/agonist has been widely used 
to induce browning of white fat (30‑32). The browning effect 
has been associated with the induction of PGC‑1α expression 
following PPAR agonist treatment (30,33). In recent years, it 
has been demonstrated that polypeptides serve an important 
regulatory role in brown fat activation and differentiation, and 
the browning of white fat.

3. Definition and classification of polypeptides

A polypeptide is a type of small molecular compound, which 
is composed of amino acids and linked by peptide bonds (34). 
A polypeptide synthesized by two amino acids is called a 
dipeptide, and similarly, there are tripeptides and tetrapep‑
tides. Generally, polypeptides consisting of 2‑9 amino acids 
in length are termed oligo‑peptides and those >10 amino 

acids in length are termed polypeptides (34). Typically, the 
term protein refers to polypeptides containing more amino 
acids (usually >20), such as leptin (34). Polypeptides serve 
an important role at the physiological or pathological level, 
and participate in the occurrence and development of a 
number of diseases (34). Polypeptides can be divided into 
endogenous or exogenous polypeptides, depending on the 
source. Endogenous polypeptides are important regulators of 
biological processes originating from endogenous proteolysis 
events or peptides encoded by non‑coding RNA (35‑37), and 
exist in the human body and have biological activities such 
as promoting energy metabolism and inhibiting insulin resis‑
tance. Exogenous polypeptides are bioactive peptides that 
exist in the natural world, such as in plants or animals (38). 
Peptides can act on specific target organs by either paracrine 
or autocrine signaling (38). Exogenous polypeptides can be 
divided into physiological active peptides and food sensory 
peptides, according to their function. Physiological active 
peptides serve an important role in the body, and include 
antimicrobial, neuropeptide and antihypertensive peptides, 
while food sensory peptides refer to those that have no physi‑
ological activity but have food sensory properties, such as 
enzymatic hydrolysates of soybean protein (food additives), 
methyl aspartate (sweeteners) and ornithine‑B‑alanine acids 
(bitter peptides) (38).

4. Modes of action of polypeptides

Polypeptides serve important roles in inflammation, tumor 
development, metabolic diseases, nervous system diseases 
and circulatory system diseases  (39‑42), and exert their 
functions through a variety of complex methods, primarily 
involving receptor binding, protein interaction and hormone 
activation (Table I).

Receptor binding. The receptor is an important molecule that 
provides physiological regulation within the human bod by 
binding with the ligand to transduce biological signals (9). 
Peptides can specifically recognize and bind to receptors on 
the cell surface, thus exerting the effects of agonists or inhibi‑
tors (9). For example, neuropeptide Y (NPY) is involved in 
the establishment of insulin resistance in adipose tissue via 
the long‑term overexpression of NPY5 receptor in the para‑
ventricular nucleus  (43), while neuromedin S can bind to 
neuromedin U receptors (NMUR; NMUR1 and NMUR2) (38). 
It is well‑known that leptin inhibits food intake and increases 
energy consumption by acting on receptors in the central 
nervous system to regulate the activity of appetite‑related 
central neurons in the brain (44).

Protein interactions. A protein is the final form of gene func‑
tion. Some polypeptides can bind to proteins directly, which 
hinders the normal function of the protein (45). For example, 
the long non‑coding (lnc)RNA HOXB‑AS3 encodes a 
conserved 53 amino acid peptide (8). The HOXB‑AS3 peptide, 
not lncRNA, suppresses colon cancer growth by binding to 
its protein competitively (8). A small number of polypeptides 
can also affect the conformation and folding of proteins by 
directly binding with target proteins. For example, Amyloid 
beta peptide of Alzheimer's disease directly binds to the target 
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protein and affects its conformation, serving a pivotal role in 
the pathogenesis of Alzheimer's disease (46).

Hormone effects. Some peptides can promote or inhibit the 
release of specific hormones. The gastric growth hormone 
releasing polypeptide (ghrelin) is a polypeptide composed of 
28 amino acids (47). When ghrelin is combined with growth 
hormone secretagogue receptor, it can promote the secretion 
of growth hormone (GH) (47). In addition, several intestinal 
peptides have been indicated to induce gastric leptin release, 
leading to weight loss (48,49).

5. Classical polypeptides in obesity

Introduction. Peptides have the advantage of being stable, 
having a low molecular weight and high lipophilicity (9). In 
recent years, the area of peptidomics has rapidly developed, 
and the association between numerous polypeptides have been 
investigated with the occurrence and prevention of obesity 
and its related complications (50,51). Therefore, identifying 
novel polypeptide drugs, which could prevent and cure obesity 
would improve the regulatory network of adipocyte function 
and offer new possibilities for the treatment of obesity. A list 
of some classical peptides together with their targets, sources 
and functions are presented in Table II.

Leptin. Leptin is a protein hormone that is secreted by 
adipose tissue (52). It has been widely hypothesized that after 
entering the blood circulation, it participates in the regula‑
tion of sugar, fat and energy metabolism (52). Early in 1997, 
Montague et al (53) demonstrated that leptin was a significant 
regulator of human energy balance via genetic evidence. 
Studies have revealed that leptin treatment can cause anorexia, 
physical activity increase, weight loss and lead to endocrine 
function and metabolic changes, which have a positive effect 
on the diet and nondigestive behaviors of patients with leptin 
deficiency (54,55). Leptin is primarily produced by adipose 
tissue, but the stomach also produces a small amount (56). 
Therefore, it was hypothesized that leptin may serve an 
important role in diet control by cooperating with other satiety 
peptides (49,57). Evidence indicates that gastric leptin can be 
released by a number of intestinal peptides such as ghrelin 

and cholecystokinin  (49,56). In addition, it is known that 
insulin is a hormone released into the blood shortly following 
the ingestion of food, and can also stimulate the secretion of 
gastric leptin (58). In a previous study, insulin and leptin were 
indicated to increase WAT browning and energy consumption 
and prevent diet‑induced obesity in combination, by activating 
hypothalamic neurons (59).

Over a period of time, there has been an increase in the 
amount of research investigating the role of leptin in the patho‑
genesis of obesity (60). However, recently, numerous studies 
have recognized that leptin may also participate in the adapta‑
tion to energy deficiency (61,62). Some studies have indicated 
that leptin participates in the regulation of neuroendocrine 
response to starvation, the change of hormone concentration 
and has an impact on the activity of the sympathetic nervous 
system and reproductive function (63,64).

NPY. NPY is a type of polypeptide molecule that widely exists 
in the central and peripheral nervous system, is a single‑chain 
polypeptide and is composed of 36 amino acids (65). Injection 
of NPY into the hypothalamus has been revealed to induce 
appetite and regulate energy metabolism, and the expression 
level of NPY has previously been associated with leptin (66). 
Loh et al (67) demonstrated that knockout of NPY could alle‑
viate obesity induced by leptin deficiency in mice. Previous 
studies have also revealed that NPY could not only antagonize 
the activity of the sympathetic nervous system, reduce the 
lipolysis of white adipocytes and inhibit the heat production 
of brown adipocytes (68), but could also directly act on NPY 
receptors in the peripheral adipose tissue to promote adipo‑
genesis, leading to obesity (69). Furthermore, NPY is involved 
in the downstream mechanism of CREB phosphorylation by 
inhibiting cAMP accumulation and the cAMP‑PKA‑depen‑
dent p38 MAPK pathway (70). Wan et al (11) demonstrated 
that NPY reduces dibutyryl‑cAMP activity of brown adipo‑
cytes by inhibiting brown fat‑related gene expression and 
mitochondrial function.

Glucagon‑like peptide‑1 (GLP‑1). GLP‑1 is secreted by 
ileal endocrine cells and can promote insulin secretion (71). 
It has been successfully marketed as a drug to treat type 2 
diabetes (71). In the treatment of obesity, it was previously found 

Table I. Mode of action of peptides.

Mode of action	 Typical peptides	 Features	 Function	 (Refs.)

Receptor binding	 Neuropeptide Y	 Acts via the Y5 Receptor	 Increased insulin resistance in	 (43)
			   adipose tissue
	 Leptin	 Receptors of the central nervous	 Inhibiting food intake and	 (44)
		  system	 increasing energy consumption
Protein interaction	 AÎ² peptides	 Acts on proteins and changes	 Involvement in the pathogenesis	 (46)
		  their structure	 of Alzheimer's disease
Hormonal effect	 Ghrelin	 Combines with growth hormone	 Promoting the secretion of	 (47)
		  secretagogue receptor	 growth hormone
	 Intestinal peptides	 Induces gastric leptin release	 Weight loss	 (48,49)

Ghrelin, growth hormone‑releasing peptide.
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that GLP‑1 and its receptor agonists could inhibit food intake, 
reduce weight and alleviate obesity (72). The GLP‑1 receptor 
is widely expressed in the hypothalamus, particularly in the 
supraoptic nucleus, the paraventricular nucleus and the arcuate 
nucleus (72). GLP‑1 acts on the GLP‑1 receptor to inhibit food 
intake (73). In a previous study, it was demonstrated GLP‑1 
receptor‑KO mice did not become obese (74). Injecting GLP‑1 
into the peripheral or central nervous system has also been 
indicated to effectively reduce the intake of food in rats (74). 
Furthermore, Perez‑Tilve  et  al  (75) indicated that GLP‑1 
increased energy consumption and increased body tempera‑
ture in patients with obesity. In an in vitro experiment, GLP‑1 
stimulation on differentiated 3T3 cells and human adipocytes 
was demonstrated to inhibit gene expression associated with 
differentiation and promote gene expression associated with 
lipid degradation (76). In addition, GLP‑1 receptor has also 
been revealed to promote browning of white fat through the 
SIRT‑1‑dependent pathway (77).

Ghrelin. Ghrelin is a 28‑amino‑acid polypeptide that is 
secreted by X/A‑like cells of the gastric acid secreting 
glands, and is also expressed in the small intestine and the 
hypothalamus (78). Ghrelin is an endogenous ligand of the 
GH secreting hormone receptor (GHS‑R), and when bound to 
GHS‑R, it can stimulate the secretion of GH (78). In a previous 
clinical study, it was indicated that ghrelin injection caused a 
hunger response and significantly increased food intake (79). 
This is consistent with the fact that ghrelin injection could 
also promote gastrointestinal motility, stimulate gastric acid 
secretion and protect gastric mucosa (80). Ghrelin primarily 
acts through the central appetite regulatory network, and it is 
also the first confirmed active appetite promoting factor (81). 
Tschöp et al (82) revealed that injection of ghrelin into the 
ventricle or periphery of the rat brain increased food intake, 

which was also consistent with the effect of NPY injection. In 
additional studies, injection of ghrelin into the central nervous 
system of NPY‑KO rats was demonstrated to increase food 
intake, suggesting that the role of ghrelin in promoting food 
intake does not depend solely on NPY (83). Furthermore, in 
animal studies (84,85), it was also revealed that ghrelin could 
reduce energy metabolism, promote lipid accumulation in 
white adipocytes, inhibit BAT function and lead to obesity. 
Intervention of mature 3T3‑L1 cells in vitro promotes the 
secretion of pro‑inflammatory factors (86). In addition to the 
effect of dietary regulation on obesity, ghrelin also accelerates 
metabolism. The peripheral injection of ghrelin can reduce 
fat utilization in rodents and cause obesity, while the intrace‑
rebral injection can lead to food intake and weight gain (82). 
Notably, ghrelin has also been associated with sleep. Ghrelin 
increases within 1 h of sleep and regulates sleep‑promoting 
GHs, which contribute to slow‑wave sleep (87). Based on the 
multiple functions of ghrelin, ghrelin analogues, as stimu‑
lants and inhibitors, could be used as clinical drugs for the 
treatment of related diseases such as digestive and metabolic 
diseases, particularly in the treatment of obesity using ghrelin 
inhibitors (88).

Adrenomedullin‑2 (AM2). AM2/intermediate is a secreted 
peptide, which serves a significant role in protecting the cardio‑
vascular system (50,89). AM2 treatment has been demonstrated 
to significantly reduce blood glucose levels, improve glucose 
tolerance and insulin sensitivity by inhibiting major histocom‑
patibility complex (MHC) II in adipocytes (90). Similarly, in a 
mouse model, the aAM2 transgenic mice showed more energy 
consumption due to their increased oxygen consumption and 
carbon dioxide production (12). These effects may be due to 
the decrease of PGC1α acetylation and the increase of AMP 
activated protein kinase phosphorylation, which lead to the 

Table II. Common peptides in obesity research.

Target	 Peptide	 Function	 Source	 (Refs.) 

Hypothalamic neurons 	 Leptin	 WAT browning (up)	 Adipose tissue and	 (59)
		  Thermogenesis (up)	 stomach
CAMP‑PKA‑dependent pathways	 Neuropeptide Y	 Adipogenesis (up)	 Central and peripheral	 (70)
		  Thermogenesis (down)	 nervous system
Sirt‑1 dependent pathway	 Glucagon‑like	 Adipogenesis(down)	 Ileum	 (77)
	 peptide‑1	 WAT browning (up)
Central appetite regulatory network	 Ghrelin	 Adipogenesis (up)	 Gastric, small intestine	 (81)
		  Thermogenesis (down)	 and hypothalamus
Class II MHC and UCP1 	 Adrenomedullin 2	 Thermogenesis (up)	 Adrenaline	 (90)
		  Insulin sensitivity (up)
FGF21 and UCP1	 Irisin	 Thermogenesis (up)	 Muscle and adipose tissue	 (93)
		  Insulin sensitivity (up)
PKA‑mediated phosphorylation	 Adropin	 Adipogenesis (down)	 Liver and brain	 (51)
		  Insulin resistance (down)
Unknown mechanism	 Preptin	 Adipogenesis (up)	 Pancreas	 (100)
		  Insulin resistance (up)

Sirt‑1, Sirtuin; Ghrelin, growth hormone‑releasing peptide; MHC, major histocompatibility complex; UCP1, uncoupling protein 1; up, increase; 
down, decrease.
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interaction between PGC1α and PR domain containing 16, and 
the promotion of the uncoupling protein 1 (UCP1) expression 
in adipocytes (12,91). These results suggest that upregulation 
of UCP1 is a way for endogenous AM2 to participate in energy 
metabolism of adipocytes.

Irisin. The irisin protein is encoded by the FNDC5 gene and 
is expressed in both human adipose tissue and muscle (92). A 
previous study demonstrated that irisin was associated with 
insulin resistance and obesity (93). The results indicated that 
the levels of circulating irisin and the expression level of the 
FNDC5 gene in adipose tissue and muscle were significantly 
lower in patients with obesity and type 2 diabetes compared 
with that in patients without these diseases, suggesting that 
the loss of brown‑like characteristics may be a potential 
target for obesity treatment  (93). Similarly, in a study by 
Pérez‑Sotelo et al (94), using stable gene silencing of FNDC5, 
the results revealed that FNDC5‑KO adipocytes exhibited 
reduced UCP1 expression levels and enhanced adipogenesis. In 
addition, a previous study revealed that FNDC5 and/or FGF21 
treatment increased thermogenesis and upregulated brown 
fat gene expression, suggesting that exercise‑induced irisin 
secretion may have evolved from muscle contraction associ‑
ated with tremor, which in combination with FGF21, promotes 
brown fat thermogenesis (95). Irisin‑mediated muscle‑adipose 
crosstalk may represent a thermogenic, cold‑activated endo‑
crine axis, which could be used in the development of obesity 
therapeutics (95).

Adropin. Adropin is a secreted peptide that is composed of 76 
amino acids translated from the energy homeostasis associ‑
ated gene, which has been associated with metabolic control 
and vascular function (96). Adropin does not directly regulate 
food intake; however, it has been indicated to be involved in 
the prevention of insulin resistance, dyslipidemia and impaired 
glucose tolerance, thus preventing obesity (97). In in vitro 
experiments using primary mouse hepatocytes, adropin 
34‑76 was demonstrated to directly affect liver metabolism, 
and reduce glucose production and PKA‑mediated phos‑
phorylation (51). Gao et al (51) indicated that the major hepatic 
signaling pathways contributed to the improved glycemic 
control achieved with adropin 34‑76 treatment in cases of 
obesity. In addition, the function of adropin gene KO was inves‑
tigated in C57BL/6J mice and the results revealed that adropin 
deficiency could aggravate the metabolic defects caused by 
a high‑fat diet (HFD) (98). In cell experiments, adropin was 
found to reduce lipid accumulation, as well as the expression 
of proadipogenic genes in 3T3‑L1 cells and rat preadipocytes, 
suggesting that adropin attenuates the differentiation of pread‑
ipocytes into mature fat cells (99). In summary, these results 
suggested that adropin serves an important role in fatty acid 
metabolism control, metabolic homeostasis, impaired glucose 
tolerance and protection from insulin resistance.

Preptin. Preptin is a derivative of the proinsulin growth 
factor II and composed of 34 amino acids (100). It is secreted 
by pancreatic islet β cells and considered to be a physiological 
enhancer of insulin secretion (100). In addition, preptin can 
stimulate the proliferation, differentiation and survival of 
osteoblasts (101). In terms of metabolism, a previous study 

demonstrated that the primary function of preptin was to 
moderate glucose‑mediated insulin release, which in return 
regulated the metabolism of carbohydrates, proteins and 
lipids (100). Consistent with this conclusion, another study 
revealed that preptin was significantly higher in patients 
who were obese and overweight compared with that in the 
control group, suggesting that the elevated serum preptin, 
together with insulin resistance are associated with obesity 
and overweight (102). In addition, a positive correlation was 
identified between the concentration of preptin and insulin 
resistance (102). However, the specific mechanisms governing 
this requires further investigation.

6. Study on new polypeptides in obesity

Functional peptides and their homologous fragments. The 
core functional fragments of polypeptides are very short, 
usually only a few amino acids in length, and highly homolo‑
gous fragments often have similar functions (103). GLP‑1 has 
two bioactive forms in vivo; GLP‑1 (7‑37) and GLP‑1 (7‑36) 
amides. Among them, GLP‑1 (7‑36) amides are easily degraded 
by dipeptidyl peptidase IV (DPP IV) and neutral endopep‑
tidase  (NEP) 24.11 in the blood  (104). GLP‑1  (7‑36) was 
indicated to be cleaved by DPP IV to produce GLP‑1 (9‑36), 
while GLP‑1 (28‑36) and GLP‑1 (32‑36) were produced by 
NEP 24.11 (104). The role of GLP‑1 (9‑36) and GLP‑1 (28‑36) 
in promoting energy metabolism and inhibiting insulin resis‑
tance to prevent diabetes has been supported (105,106). Recent 
studies have indicated that 5‑peptide GLP‑1  (32‑36) also 
serves a similar role (107). Short peptides are more likely to 
escape the degradation of proteases and may have improved 
functions compared with that in the original versions, which 
is also an important way to modify polypeptide drugs (103). 
GLP‑1 and its homologous fragments serve similar roles. 
Esenatide, a novel compound with natural GLP‑1 activity, has 
been approved for use in the treatment of type 2 diabetes (108). 
These results suggested that novel polypeptide drugs to treat 
obesity using homology could be identified.

Fragmentation of protein molecules. Fragments of protein 
molecules were originally hypothesized to be non‑functional 
peptide segments; however, recent studies have revealed 
that they have important functions (109,110). These can be 
secreted as hormone molecules into the extracellular space, 
transported to target organs and serve similar or opposite 
roles with protein precursors (109). Early studies on slit guid‑
ance ligand 2 (SLIT2) have focused on brain development. 
A previous study  (111) has revealed that beige adipocytes 
could synthesize and secrete SLIT2, which is regulated by 
the PRDM16 gene. In vivo experiments and cell studies have 
also revealed that SLIT2 could promote adipose tissue heat 
production, enhance energy metabolism and regulate blood 
sugar levels (111,112). Further studies have indicated that the 
SLIT2 protein could be cleaved into fragments of different 
sizes, and the 50 kD fragment of the C‑terminal end also has a 
similar function of the SLIT2 protein (111). The mechanism of 
action is primarily through the activation of the PKA signaling 
pathway. Furthermore, previous studies investigating neonatal 
progeroid syndrome (NPS) have demonstrated that NPS was 
associated with the truncated mutation in the FBN1 gene at the 
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3' end, which results in the inability of profibrillin to process 
fibrillin‑1 and asprosin (the 25 kD peptide segment) (113). 
Asprosin has been indicated to be significantly elevated in 
the blood in individuals who are insulin‑resistant and in 
mouse models, to bind to liver surface receptors and promote 
the rapid increase of blood sugar levels by activating the 
‘G protein‑cAMP‑PKA’ signaling pathway (113).

Endogenous peptides in bodily fluid. Endogenous peptides 
are important regulators of a number of biological processes, 
including heredity, maturity, aging and death (35,36). Among 
them, breast milk contains a number of natural peptides 
with different biological activities (114). It can regulate the 
immune system, and exhibits antimicrobial, antioxidant 
properties and decrease the risk of obesity, atherogenesis, 
arterial hypertension and type 2 diabetes (114,115). A previous 
study demonstrated that Valine‑Proline‑Proline is a tripeptide 
derived from casein, is composed of three amino acids, which 
can improve insulin resistance in mice fed with a HFD, and 
alleviates inflammation by reducing the secretion of tumor 
necrosis factor‑α and interleukin‑1β (116). K‑casein‑derived 
glycogenous peptide has been indicated to inhibit the prolifer‑
ation of adipocytes and reduce their lipid accumulation (117). 
By analyzing the differentially expressed polypeptides in the 
breast milk of macrosomia mothers, Cui et al (118) indicated 
that the polypeptide, casein 24 from β‑casein in breast milk, 
exhibited a killing effect on common pathogenic bacteria in 
newborns, while k‑casein 89 could inhibit the proliferation of 
human preadipocytes. These findings provide novel informa‑
tion that may be used in the prevention of obesity and reveal 
the important role of milk‑derived peptides in this disease. 
Human bodily fluid contains a large number of endogenous 
polypeptides, most of which are also derived from degraded 
fragments of protein precursors (119). The study investigating 
milk‑derived peptides further suggests that endogenous poly‑
peptides in bodily fluids serve an important role in regulating 
obesity and other diseases and provides a novel method for the 
treatment of obesity and other diseases including atherogen‑
esis, arterial hypertension and type 2 diabetes.

Function of intracellular peptides. Intracellular peptides 
are small molecular peptides that are 2‑21  amino acids in 
length and are produced by proteasome or proteasome hydro‑
lysis (120). Traditionally, the majority of these peptides are 
degraded by cell aminopeptidases, and a few are transferred 
to the endoplasmic reticulum to participate in antigen presen‑
tation of MHC  I  (120,121). At present, >400 intracellular 
peptides (122‑124) have been identified in mouse tissues and 
human cell lines, and typically serve a role in the regulation of 
signal transduction, mitochondrial stress, growth and develop‑
ment (125,126). Since adipocytes are the primary site of lipid 
deposition, and obesity and its related complications are associ‑
ated with the increase of adipocyte volume and dysfunction (1), 
research has now focused on the role of endogenous endopeptides 
in adipose tissue. In 2012, Berti et al (127) revealed that intra‑
cellular peptides (diazepam binding inhibitor, LDBI and VGN) 
derived from adipose tissue in rats could be used to improve 
insulin‑induced glucose intake and it was preliminarily demon‑
strated that endopeptides were involved in adipocyte insulin 
resistance. EPO‑derived Helix B‑surface peptide, which is a 

source of erythropoietin, was demonstrated to inhibit the differ‑
entiation of 3T3L1 cells and secretion of inflammatory factors, 
as well as improving obesity and insulin resistance induced by a 
HFD (128). Na/K‑ATPase‑derived breakdown‑derived peptide 
was also indicated to inhibit adipocyte differentiation and oxida‑
tive stress, thus reducing obesity and insulin resistance induced 
by a HFD (129). As a novel component of adipocyte function 
regulation, intracellular peptides are expected to receive more 
attention in future studies.

7. Conclusion

In the United States, the rate of obesity in both adults and 
adolescents has increased between 1999‑2000 and 2013‑2014, 
indicating that the existing treatment options have failed to 
effectively control the prevalence of obesity (130). By 2014, the 
obesity rate for adults and adolescents had reached 36 and 17%, 
respectively in the USA (130). Peptide drugs have an effective 
molecular basis, such as a low molecular weight, good lipophi‑
licity, easy nucleation and stability (9). An increasing amount 
of evidence in human and mice has revealed the potential of 
peptides, as a target of anti‑obesity therapeutics (9). The devel‑
opment of peptide drugs has received more attention recently.

Peptidomics is a new branch of proteomics, which is 
based on the research of endogenous protein fragments. These 
endogenous protein fragments are different from the secreted 
pathway peptides that serve a role in the extracellular space, 
and are termed intracellular peptides, as they primarily exist 
in the cytoplasm, mitochondria and/or the nucleus  (131). 
Intracellular peptides serve an important role in the energy 
metabolism of brown and white fat, and they have a high 
degree of homology in human and mouse cell lines  (132). 
Notably, in clinical and preclinical practice, peptide drugs 
have made marked achievements in the treatment of energy 
metabolism, such as GLP‑1 (133), adropin, preptin (100) and 
irisin  (93). Furthermore, metformin, as a classic drug for 
the treatment of type 2 diabetes, also has a unique effect in 
reducing weight  (134). In a previous study (135), potential 
active peptides were screened using metformin, providing 
potential targets for the treatment of obesity.

At present, the rapid development of proteomics has 
brought novel concepts to peptide research (8,9). Among them, 
functional peptide homologous regions, fragments of protein 
molecules, and endogenous peptides produced by adipocytes, 
have attracted the attention of researchers  (103,109,114). 
On the other hand, new research has revealed that the short 
open reading frame of non‑coding genes could also encode 
peptides (35,136). These polypeptides could prevent insulin 
resistance and obesity caused by age and a HFD. The polypep‑
tide derived from the non‑coding gene, ribosomal RNAs and 
the candidate mRNA from the coding region, provides novel 
targets for identifying new peptides.

The advantages of peptide drugs are clear; however, 
there are also some side effects. The USA, European Union, 
Australia and Japan have approved several weight‑loss 
drugs (9). These are co‑agonists of a variety of gut hormones, 
including GLP‑1, glucagon and gastric inhibitory peptide; 
however, they are rarely used in patients, partly due to concerns 
about safety and effectiveness, and due to inadequate coverage 
of health insurance (137). It is known that GLP‑1R agonists 
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could effectively treat obesity by inhibiting feeding and 
hyperglycemia through vagal afferent (138). However, given 
therapeutically, GLP‑1 analogues have been demonstrated to 
cause side effects including nausea, vomiting and loss of appe‑
tite, which limits the dosage (139). Obesity is compounded 
by neurobiology (140). Therefore, reducing the side effects of 
peptide drugs and increasing the medical insurance system of 
obesity drug treatment is important (141).

In conclusion, with the rapid development of peptidomics, 
polypeptide research has become a new hotspot in the treat‑
ment of obesity. Furthermore, numerous polypeptide drugs 
have been developed for the treatment of obesity. The present 
review discussed the studies of polypeptides in obesity regu‑
lation, highlighted the new trend of polypeptides in obesity 
research, and introduced new concepts, such as endogenous 
polypeptide, further providing information on the potential 
molecular therapeutic targets that may be used in the treatment 
of obesity.
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