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Abstract. Puerarin belongs to the family of flavonoids extracted 
from Pueraria  lobata (Wild.) Ohwi, which exhibits anti‑
oxidative, anti‑inflammatory, anti‑hyperglycemic, antitumor, 
anti‑hypertensive and anti‑atherosclerotic activities. In the 
present study, the effects of puerarin on oxidized low‑density 
lipoprotein (ox‑LDL)‑stimulated vascular smooth muscle cells 
(VSMCs) were explored to understand the mechanisms under‑
lying the anti‑atherosclerotic effects of puerarin. VSMCs were 
treated with various concentrations of puerarin (0, 20, 40 and 
80 µM) prior to stimulation with ox‑LDL (50 µg/ml). VSMC 
viability was evaluated by performing MTT and Cell Counting 
Kit‑8 assays. Moreover, superoxide dismutase  (SOD) and 
malondialdehyde (MDA) levels were measured by performing 
ELISAs. The mRNA expression levels of interleukin‑6 (IL‑6) 
and tumor necrosis factor‑α (TNF‑α) were determined via 
reverse transcription‑quantitative PCR. Western blotting 
was conducted to assess the levels of p38‑MAPK and JNK 
phosphorylation. The results indicated that puerarin inhib‑
ited ox‑LDL‑induced VSMC viability. Moreover, puerarin 
significantly decreased the mRNA expression levels of IL‑6 
and TNF‑α, significantly reduced the production of MDA and 
significantly increased SOD activity in ox‑LDL‑stimulated 
VSMCs. Puerarin also inhibited ox‑LDL‑induced phosphory‑
lation of p38 and JNK in VSMCs. The results suggested that 
puerarin reduced ox‑LDL‑induced VSMC viability via inhi‑
bition of the p38 MAPK and JNK signaling pathways. The 
present study provided theoretical evidence that puerarin may 

serve as a therapeutic agent to reduce the development of 
atherosclerosis.

Introduction

Atherosclerosis is an important pathological manifestation of 
cardiovascular diseases and chronic inflammatory disease (1), 
which is the result of a build‑up of fatty materials, such as 
cholesterol and lipids (2‑4). Atherosclerosis affects arterial 
blood vessels, resulting in thickening of the vascular wall 
and a narrowing of the lumen  (5). Previous studies have 
indicated that cells of the arterial wall, including T cells, 
monocyte‑derived macrophages, endothelial cells and vascular 
smooth muscle cells (VSMCs), are associated with the devel‑
opment of atherosclerosis (1,6). Although the mechanism is 
not fully understood, it is widely accepted that the abnormal 
proliferation of VSMCs located in the arterial intima leads 
to intimal thickening of the aorta, serving an important role 
in the pathogenesis and progression of atherosclerosis (7,8). 
Therefore, inhibiting VSMC proliferation may serve as a 
useful therapeutic approach for atherosclerosis.

Pueraria  lobata (Wild.) Ohwi, is widely used in tradi‑
tional Chinese medicine as a treatment for cardiovascular 
diseases, diabetes and liver diseases (9‑11). Puerarin (4'‑7'‑dihy
droxy‑8‑β‑D‑glucosylisoflavone, C21H20O10; Fig.  1), one 
of the major isoflavonoid compounds isolated from the 
root of Pueraria  lobata, is considered as one of the main 
pharmacologically active constituents of this treatment (12). 
Moreover, puerarin has been reported to display various 
pharmacological properties, including anti‑oxidative  (13), 
anti‑inflammatory (14), antitumor (15), anti‑hypercholester‑
olemic  (9), anti‑hyperglycemic  (16) and anti‑hypertensive 
activities (13). Furthermore, puerarin has been reported to have 
beneficial effects in the treatment of atherosclerosis (12,17,18). 
However, the role and mechanism underlying puerarin activity 
on oxidized low‑density lipoprotein  (ox‑LDL)‑stimulated 
VSMCs has not been previously reported. Ox‑LDL‑induced 
VSMC proliferation in the intima of the arterial wall serves 
a critical role in the progress of atherosclerosis (19), there‑
fore inhibiting ox‑LDL‑induced proliferation may serve as a 
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potential therapeutic strategy for atherosclerosis. The present 
study aimed to evaluate the potential protective effect of puer‑
arin on ox‑LDL‑stimulated VSMCs and to further identify the 
underlying mechanisms of its action.

Materials and methods

Cell culture and treatments. Human VSMCs were obtained 
from The Cell Bank of Type Culture Collection of the 
Chinese Academy of Sciences. VSMCs were seeded 
(1x104 cells/well) into 96‑well microplates and cultured in 
DMEM (Gibco; Thermo Fisher Scientific, Inc.) supplemented 
with 10% heat‑inactivated FBS (Hangzhou Sijiqing Biological 
Engineering Materials Co., Ltd.) and 1% penicillin/strepto‑
mycin (Sigma‑Aldrich; Merck KGaA) at 37˚C with 5% CO2. 
Following pretreatment with 0, 20, 40 or 80 µM puerarin 
(purity, ≥98%; Sichuan Weikeqi Biological Technology Co., 
Ltd.) for 24 h at 37˚C, cells were treated with 50 µg/ml ox‑LDL 
(Guangzhou Yiyuan Biological Technology Co., Ltd.) for 24 h 
at 37˚C (20).

Cell viability assay. Cell viability was evaluated by performing 
an MTT assay (Beijing Solarbio Science & Technology 
Co., Ltd.). Cells were seeded (1x104 cells/well) into 96‑well 
microplates and cultured in DMEM overnight at 37˚C. 
Subsequently, cells were incubated with DMEM containing 
0.01% DMSO or puerarin (20, 40 or 80 µM) at 37˚C for 24 h. 
Cells were then stimulated with ox‑LDL (50 µg/ml) for 24 h at 
37˚C. Subsequently, 5 mg/ml MTT solution was added to each 
well for 4 h at 37˚C. DMSO (150 µl) was added to each well 
for 15 min to dissolve the purple formazan. Absorbance was 
measured at a wavelength of 490 nm using a microplate reader 
(Thermo Fisher Scientific, Inc.).

The Cell Counting Kit‑8 (CCK‑8) assay (Sigma‑Aldrich; 
Merck KGaA) was conducted to determine cell viability 
according to the manufacturer's protocol. Briefly, following 
treatment, 10 µl CCK‑8 reagent was added into each well for 
2 h at 37˚C. Absorbance was measured at a wavelength of 
450 nm using a microplate reader (Thermo Fisher Scientific, 
Inc.). Cell viability was calculated according to the following 
formula: Cell viability (%)=absorbance of test sample/absor‑
bance of control x100.

Detection of oxidative stress biomarkers, superoxide 
dismutase (SOD) and malondialdehyde (MDA). Cells were 
seeded (1x104 cells/well) into 6‑well microplates and cultured 
in DMEM overnight at 37˚C. Subsequently, cells were incu‑
bated with DMEM containing 0.01% DMSO or puerarin (20, 
40 and 80 µM) for 24 h at 37˚C. Cells were then stimulated 
with 50 µg/ml ox‑LDL for 24 h at 37˚C. Cells were collected 
and lysed on ice using RIPA lysis buffer (Beyotime Institute 
of Biotechnology). Following centrifugation at 13,000 x g for 
5 min at 4˚C, the supernatant was collected to determine SOD 
(cat. no. 20190602) activity and MDA (cat. no. 20190508) 
content using commercial kits (Nanjing Jiancheng Institute of 
Biological Engineering Co., Ltd.) according to the manufac‑
turer's protocol.

Western blotting. Cells were seeded (1x104 cells/well) into 
6‑well microplates and cultured in DMEM overnight at 37˚C. 

Cells were incubated with DMEM containing 0.01% DMSO or 
puerarin (20, 40 and 80 µM) for 24 h at 37˚C. Cells were then 
stimulated with 50 µg/ml ox‑LDL for 24 h at 37˚C. Cells were 
collected and lysed on ice with RIPA lysis buffer (Beyotime 
Institute of Biotechnology). Total protein was quantified using 
a bicinchoninic acid protein assay kit (Beyotime Institute of 
Biotechnology). Equal amounts of protein (50 µg) were sepa‑
rated via 10% SDS‑PAGE (120 V for 1.5 h) and transferred 
onto PVDF membranes (100 V for 1 h), which were blocked 
with 5% skimmed milk in TBST (0.05% Tween‑20) for 1 h at 
room temperature. After blocking, the membranes were incu‑
bated overnight at 4˚C with the following primary antibodies: 
Anti‑p38 (1:1,000; cat. no. sc‑7281; Santa Cruz Biotechnology, 
Inc.), anti‑p‑p38 (1:1,000; cat.  no.  sc‑7937; Santa Cruz 
Biotechnology, Inc.), JNK (1:1,000; cat. no. sc‑6531; Santa 
Cruz Biotechnology, Inc.), p‑JNK (1:1,000; cat. no. sc‑3824; 
Santa Cruz Biotechnology, Inc.), anti‑GAPDH (1:1,000; 
cat. no. sc‑6341; Santa Cruz Biotechnology, Inc.). Following 
incubation, the membranes were washed three times in TBST, 
before the membranes were incubated with an appropriate 
horseradish peroxidase‑conjugated secondary antibody for 
1 h at room temperature (1:5,000; cat. no. sc‑5203; Santa Cruz 
Biotechnology, Inc.). Protein bands were visualized using 
enhanced chemiluminescence reagent (Amersham; Cytiva). 
Protein expression levels were semi‑quantified using ImageJ 
software (version 1.46; National Institutes of Health) with 
GAPDH as the loading control.

Reverse transcription‑quantitative PCR (RT‑qPCR). Cells 
were seeded (1x104 cells/well) into 6‑well microplates and 
cultured in DMEM overnight at 37˚C. Cells were incubated 
with DMEM containing 0.01% DMSO or puerarin (20, 40 and 
80 µM) for 24 h at 37˚C. Cells were then exposed to 50 µg/ml 
ox‑LDL for 24 h at 37˚C. Subsequently, total RNA was extracted 
from the cells using TRIzol® (Takara Biomedical Technology 
Co., Ltd., China) according to the manufacturer's protocol. 
Total RNA was reverse transcribed using the PrimeScript 
RT Master Mix kit (Takara Biotechnology Co., Ltd.) at 37˚C 
for 15  min and 85˚C for 5 min. Subsequently, qPCR was 
performed using SYBR® Premix Ex Taq (TransGen Biotech 
Co., Ltd.) with the following thermocycling conditions: Initial 
denaturation at 95˚C for 5  min; followed by 40  cycles of 
denaturation at 95˚C for 10 sec, annealing at 60˚C for 15 sec 
and extension at 72˚C for 30 sec; followed by a final extension 
at 72˚C for 10 min. The following primers were used: IL‑6 
forward, 5'‑CTC​TCC​GCA​AGA​GAC​TTC​CA‑3' and reverse, 

Figure 1. Chemical structure of puerarin.
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5'‑TGG​TCT​TCT​GGA​GTT​CCG​TT‑3'; TNF‑α forward, 
5'‑TCT​CAT​CAG​TTC​TAT​GGC​CC‑3' and reverse, 5'‑GGG​
AGT​AGA​CAA​GGT​ACA​AC‑3'; GAPDH forward, 5'‑GTT​
ACC​AGG​GCT​GCC​TTC​TC‑3' and reverse, 5'‑GAT​GGT​GAT​
GGG​TTT​CCC​GT‑3'. mRNA expression levels were quantified 
using the 2‑ΔΔCq method (21) and normalized to the internal 
reference gene GAPDH.

Statistical analysis. Statistical analyses were performed 
using SPSS (version 19.0; IBM Corp.). All experiments were 
performed in triplicate. Comparisons among multiple groups 
were analyzed using one‑way ANOVA followed by Tukey's 
post hoc test. Data are presented as the mean ± SEM. P<0.05 
was considered to indicate a statistically significant difference.

Results

Puerarin inhibits cell viability in ox‑LDL‑stimulated VSMCs. 
To evaluate the cytotoxicity of puerarin on VSMCs, cells were 

treated with puerarin (0, 20, 40 and 80 µM) for 24 h. The MTT 
assay results suggested that puerarin did not significantly alter 
VSMC viability compared with the control group (Fig. 2A). 
Following incubation with different concentrations of puerarin 
for 24 h, cells were stimulated with 50 µg/ml ox‑LDL for 
24 h to evaluate the effect of puerarin on cell viability in 
ox‑LDL‑induced VSMCs. Cell viability was significantly 
increased in ox‑LDL‑induced VSMCs compared with the 
control group (Fig. 2B). However, pretreatment with puerarin 
significantly inhibited ox‑LDL‑induced cell viability. Similar 
results were observed in the CCK‑8 assay (Fig. 2C).

Puerarin regulates the production of oxidative stress‑related 
markers in ox‑LDL‑stimulated VSMCs. To investigate the 
mechanism underlying the inhibitory effect of puerarin on 
ox‑LDL‑induced cell proliferation, the effect of puerarin on 
SOD activity and MDA content was determined. ox‑LDL 
significantly increased the content of MDA in VSMCs 
compared with the control group (Fig.  3B). Puerarin 

Figure 2. Puerarin inhibited cell viability in ox‑LDL‑stimulated VSMCs. The MTT assay was performed to assess the effect of puerarin on cell viability 
in (A) VSMCs and (B) ox‑LDL‑induced VSMCs. (C) The CCK‑8 assay was performed to assess the effect of puerarin on cell viability in VSMCs. *P<0.05 
vs. control VSMCs; #P<0.05 vs. ox‑LDL‑stimulated VSMCs. ox‑LDL, oxidized low‑density lipoprotein; VSMC, vascular smooth muscle cell; CCK‑8, Cell 
Counting Kit‑8; OD, optical density.

Figure 3. Puerarin regulates the production of oxidative stress‑related makers in ox‑LDL‑induced VSMCs. Effect of puerarin on (A) SOD activity and 
(B) MDA content in ox‑LDL‑induced VSMCs. *P<0.05 vs. control VSMCs; #P<0.05 vs. ox‑LDL‑stimulated VSMCs. ox‑LDL, oxidized low‑density lipoprotein; 
VSMC, vascular smooth muscle cell; SOD, superoxide dismutase; MDA, malondialdehyde.



HU et al:  PUERARIN PROTECTS VASCULAR SMOOTH MUSCLE CELLS FROM DAMAGE4

pretreatment significantly attenuated ox‑LDL‑induced MDA 
levels. In addition, compared with the control group, SOD 
activity was significantly decreased by ox‑LDL in VSMCs, 
but pretreatment with puerarin diminished ox‑LDL‑mediated 
effects on SOD activity (Fig. 3B). The results suggested that 
puerarin significantly inhibited ox‑LDL‑induced oxidative 
stress in VSMCs.

Puerarin inhibits proinflammatory cytokines in ox‑LDL‑stim‑
ulated VSMCs. The effect of puerarin on IL‑6 and TNF‑α 
mRNA expression levels in ox‑LDL‑stimulated VSMCs was 
examined. ox‑LDL significantly increased the mRNA expres‑
sion levels of IL‑6 and TNF‑α in VSMCs compared with 
the control group (Fig. 4A). However, puerarin pretreatment 
significantly decreased the mRNA expression levels of IL‑6 
and TNF‑α in ox‑LDL‑stimulated VSMCs (Fig.  4B). The 
results suggested that puerarin inhibited proinflammatory 
cytokines in ox‑LDL‑stimulated VSMCs.

Puerarin prevents the activation of p38 MAPK and JNK 
signaling pathways in ox‑LDL‑stimulated VSMCs. To further 
elucidate whether the p38 MAPK and JNK signaling pathways 

were involved in the effect of puerarin in ox‑LDL‑stimulated 
VSMCs, the phosphorylation levels of p38 and JNK were 
analyzed via western blotting. The expression levels of 
p‑p38 and p‑JNK were significantly increased by ox‑LDL in 
VSMCs compared with the control group (Fig. 5A and B). 
Puerarin pretreatment significantly decreased the expression 
levels of p‑p38 and p‑JNK in ox‑LDL‑stimulated VSMCs. 
The results indicated that puerarin inhibited the activation of 
p38 MAPK and JNK signaling pathways in ox‑LDL‑induced 
VSMCs.

Discussion

During the progression of atherosclerosis, abnormal VSMC 
proliferation and migration serve key roles in causing stenosis 
and intimal thickening (22). A number of factors affect VSMC 
proliferation and migration, including hypertension, dyslip‑
idemia and oxidative stress (4). As a well‑established index 
of oxidative stress, ox‑LDL is involved in the generation of 
atherosclerotic lesions (4). Numerous studies have indicated 
that ox‑LDL can induce VSMC proliferation and migration, 
which are pathological events that are crucial for neointima 

Figure 5. Puerarin prevents the activation of p38 MAPK and JNK signaling pathways in ox‑LDL‑induced VSMCs. The protein expression ratios of (A) p‑38/p38 
and (B) p‑JNK/JNK were determined via western blotting. *P<0.05 vs. control VSMCs; #P<0.05 vs. ox‑LDL‑stimulated VSMCs. ox‑LDL, oxidized low‑density 
lipoprotein; VSMC, vascular smooth muscle cell; p, phosphorylated.

Figure 4. Puerarin inhibits proinflammatory cytokines in ox‑LDL‑induced VSMCs. Effect of puerarin on the mRNA expression levels of (A) TNF‑α and 
(B) IL‑6 in ox‑LDL‑induced VSMCs. *P<0.05 vs. control VSMCs; #P<0.05 vs. ox‑LDL‑stimulated VSMCs. ox‑LDL, oxidized low‑density lipoprotein; VSMC, 
vascular smooth muscle cell.
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formation (23) and stimulate activation of the MAPK signaling 
pathway  (24,25). Therefore, if a substance can effectively 
prevent ox‑LDL‑induced VSMC proliferation, it should inhibit 
the development of atherosclerosis.

Puerarin, a major isoflavone isolated from the root of 
Pueraria lobata, has been reported to treat various cardio‑
vascular diseases, including arterial hypertension, angina, 
myocardial infarction and arrhythmia (26‑28). Puerarin has 
anti‑atherosclerotic activity in diet‑induced atherosclerosis 
in rabbits and rats  (17,18). Puerarin prevents the patho‑
genesis of atherosclerosis, which may be mediated by its 
anti‑inflammatory and antioxidative stress actions (28,29). 
A key finding of the present study was that puerarin signifi‑
cantly inhibited ox‑LDL‑induced VSMC viability. In the 
present study, whether cell viability was inhibited by puerarin 
when VSMCs were exposed to ox‑LDL was investigated. 
The results demonstrated that ox‑LDL enhanced VSMC 
viability compared with the control group, but pretreatment 
with puerarin significantly reversed ox‑LDL‑mediated effects 
in VSMCs. Moreover, compared with the control group, 
ox‑LDL significantly decreased SOD activity and significantly 
increased MDA content, suggesting that the level of oxidative 
stress in VSMCs induced by ox‑LDL was higher compared 
with control conditions. The antioxidant activity of puerarin 
was further indicated by its ability to reverse ox‑LDL‑mediated 
alterations in SOD activity and MDA content.

For the clinical development of puerarin as a treatment, 
understanding the mechanism underlying how it inhibits 
VSMC proliferation is important. The present study focused 
on the MAPK signaling pathway in VSMCs. Previous 
studies demonstrated that ox‑LDL activated the MAPK 
signaling pathway, including p38, ERK and JNK in VSMCs, 
which promoted cell proliferation (30,31). Puerarin prevents 
ox‑LDL‑induced proliferation and inhibits the phosphoryla‑
tion of ERK1/2 in VSMCs  (32). Puerarin inhibits VSMC 
proliferation induced by fine particulate matter via reducing 
the elevated expression levels of p‑p38 MAPK (33). Moreover, 
puerarin markedly stimulates bone marrow stromal cell differ‑
entiation towards an osteogenic phenotype via the ERK1/2 
and p38‑MAPK signaling pathways (34). The aforementioned 
study results indicated that puerarin displays protective effects 
in different diseases by regulating MAPK signaling pathways. 
In the present study, puerarin inhibited the activation of the 
p38 MAPK and JNK signaling pathways in ox‑LDL‑induced 
VSMCs.

Certain studies have speculated that the p38 MAPK 
signaling pathway is associated with inflammasome acti‑
vation  (5,35,36). Activation of the p38 MAPK signaling 
pathway increases the expression of TNF‑α and IL‑6 (36,37). 
In the present study, similar results were obtained. Although 
the present study did not further investigate the mechanism 
of MAPK signaling pathway and inflammasome activation, 
relative indices were observed and it was suggested that the 
MAPK signaling pathway was involved in the activation of 
inflammation in ox‑LDL‑induced VSMCs. The results of the 
present study indicated that the phosphorylation levels of p38 
and JNK were significantly increased in ox‑LDL‑induced 
VSMCs compared with the control group. Similarly, the 
mRNA expression levels of IL‑6 and TNF‑α were signifi‑
cantly increased in ox‑LDL‑induced VSMCs compared 

with control VSMCs. However, puerarin significantly down‑
regulated the expression levels of p‑p38 and p‑JNK and 
reduced the mRNA expression levels of IL‑6 and TNF‑α in 
ox‑LDL‑stimulated VSMCs. The effect of puerarin on IL‑6 
and TNF‑α did not display a concentration gradient trend, 
which indicated that the effect of puerarin was not closely 
related to the concentration. The effect of puerarin on other 
proinflammatory cytokines requires further investigation. 
The results of the present study suggested that alterations 
in proinflammatory cytokines were closely related to altera‑
tions in the expression levels of p‑p38 MAPK and p‑JNK, 
indicating that puerarin altered the expression of TNF‑α and 
IL‑6 by regulating the p38 MAPK and JNK signaling path‑
ways in ox‑LDL‑induced VSMCs. However, cell networks 
are complex, thus, whether puerarin exerts its function 
via other signaling pathways in ox‑LDL‑induced VSMCs 
requires further investigation.

In conclusion, the results of the present study suggest that 
puerarin inhibited ox‑LDL‑induced VSMC viability, and that 
the antiproliferative effects of puerarin were partly associated 
with inactivation of the p‑p38 MAPK and p‑JNK signaling 
pathways, which was mediated via suppression of the expres‑
sion levels of TNF‑α and IL‑6. Therefore, the results of the 
present study suggest that puerarin may inhibit the develop‑
ment of atherosclerosis.
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