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Abstract. Schizophrenia is a severe brain disorder character‑
ized by certain types of delusion, hallucination and thought 
disorder. Studies have revealed impaired synaptic plasticity 
and reduced gamma‑aminobutyric acid levels of the visual 
cortex in patients with schizophrenia. While previous work 
established a critical role for interneurons and cortical connec‑
tivity in the generation of hallucinations, the present study 
set out to examine the morphology of pyramidal cells and 
interneurons from layers 3 and 4 in the primary visual cortex 
from schizophrenic brains and to identify any dendritic and 
spinal alterations in comparison to normal control brains. The 
morphological and morphometric changes of the pyramidal 
cells and the interneurons of the visual cortices of 10 brains 
obtained from patients with schizophrenia, in comparison to 
10 age‑matched controls, were studied using the Golgi method 
and 3D neuronal reconstruction techniques. Analysis using 
the Golgi impregnation technique revealed a significant loss of 
distal dendritic segments, tortuous branches and varicosities 
and an overall restriction of the dendritic field in the brains 
of schizophrenic patients in both pyramidal cells and in 

aspiny interneurons. The present results may explain certain 
clinical phenomena associated with the visual cortex usually 
encountered in schizophrenia.

Introduction

Schizophrenia is a severe brain disorder characterized by certain 
types of delusion, hallucination and thought disorder  (1,2). 
In addition to these aforementioned symptoms that may be 
associated with enhanced brain activity, schizophrenic patients 
develop additional symptoms of inhibition, including avolition, 
alogia and affective flattening (2). Macroscopically, schizo‑
phrenic brains exhibited enlargement of the ventricles and an 
overall reduction in the temporal volume, while microscopical 
examination of the brain revealed synaptic and spinal alterations, 
as well as gliosis, in various brain areas, including hippocampal 
formation and the prefrontal and the entorhinal cortices (3‑9). 
Additional studies have revealed increasing neuronal packaging 
density, as well as decreased neuropil and smaller cell somata 
of the pyramidal neurons in layer 3 in different brain areas, 
including the primary and association auditory cortices, in 
schizophrenia (9‑12). Dendritic spines perform a crucial role in 
regulating neuronal excitability while receiving the vast majority 
of excitatory synapses in the cortex (13,14). Deficits in spines 
are related to impairments in the working memory, attention, 
sensory‑motor processing and sociability (15‑17). Spine density 
has been reported to be significantly reduced in neurons of the 
auditory cortex (12) and the basilar dendrites of deep layer 3 
pyramidal neurons (10), but did not differ for pyramidal neurons 
in the superficial layer 3 or layers 5 and 6 of area 46 (10,18). The 
spinal changes are thought to arise during development and are 
probably related to disturbances of the mechanisms underlying 
the formation and maintenance of spines. 
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Visual hallucinations are the second most common type 
of hallucinations in schizophrenia  (2). Previous studies 
demonstrated a critical role for interneurons and cortical 
connectivity in the generation of hallucinations (19,20). At 
the same time, studies on the visual cortex of schizophrenic 
brains have revealed impaired synaptic plasticity and reduced 
gamma‑aminobutyric acid (GABA) levels (21‑23).

In the present study, the morphology of the pyramidal 
cells and interneurons in the visual cortex from brains of 
schizophrenic patients were examined. It was attempted to 
describe any possible dendritic and spinal alterations compared 
to normal control brains.

Patients and methods

Subjects. Brain samples were obtained from 10 neurologically 
normal individuals with no history of neurological or psychi‑
atric illness, and 10  patients with schizophrenia, between 
January  2010 to December  2014 from the Department of 
Forensic Medicine and Toxicology, at the Aristotle University 
of Thessaloniki, Greece. All of the subjects were aged between 
40 and 58 years (Schizophrenia: Mean age, 48.6±5.7 years; 
6 males and 4 females; Controls: Mean age, 46.3±4.97 years; 
7 males and 3 females) and died from heart attack. The average 
autolysis time for all subjects was 12±4 h. After their excision 
from the skull, all brains were immersed in 10% neutral buffered 
formalin for at least 25 days. All possible information on each 
subject regarding their previous physical and illness history 
was obtained from autopsy reports and medical records. The 
mean duration of the disease was 21±7 years and they had all 
been prescribed antipsychotic medication. Written informed 
consent regarding the use of the tissue for research purposes was 
obtained from the relatives of each of the deceased. The present 
study was performed according to the legislation of the Greek 
Democracy (v.2,472/1997, 2,819/2000, 2,915/2001, 3,235/2004 
and 3,471/2006) and the Committee for Research Deontology 
Principles of the Aristotle University of Thessaloniki  (24). 
The ethical approval number was 23/4/4521/2018. The brains 
were macroscopically and microscopically examined by an 
independent neuropathologist and did not exhibit any trauma, 
oedema or other pathology. Independent psychiatrists based at 
the Psychiatric Hospital of Thessaloniki, made the diagnosis 
of schizophrenia based on the criteria of the Diagnostic and 
Statistical Manual of Mental Disorders Text Revision 5. All of the 
patients exhibited visual hallucinations in their disease history.

Tissue selection and processing. A tissue block measuring 
10x5x20 mm was excised from the primary visual cortex or 
V1 area (calcarine sulcus) (25) (Fig. 1A). The primary visual 
cortex may be easily recognized by a band of myelinated axons 
that run parallel to the surface (line of Gennari; Fig. 1B). The 
tissue blocks were coded to prevent experimental bias and 
were processed with the Golgi method and subjected to Nissl 
staining (26).

Cell selection criteria. Two neuronal types were selected for 
the present study; the first one corresponds to the third cortical 
layer's pyramidal neurons and the second to the inhibitory 
aspiny stellate interneurons of the visual cortex. All neurons 
chosen for the study were uniformly stained, there was no 

precipitated debris around them and a good contrast between 
them and background were present (27).

Golgi method. For silver impregnation, the specimens were 
immediately immersed in a dilution of potassium dichromate 
(7 g of potassium dichromate and 20 ml of formaldehyde 
solution 37% in 300 ml of tap water) at room temperature. 
They remained in that solution for one week and were then 
immersed in an aqueous solution of 1% silver nitrate, where 
they remained for one more week at a temperature of 15˚C.

After fixation, the specimens were immersed in paraffin 
and cut into thick sections ~120 µm thick, as neuronal fields 
can be seen at their whole thickness at ~120 µm (25), using 
a Reichert slicing microtome. A total of 5 randomly selected 
sections were obtained, with a 480 µm distance between each 
sample. All of the specimens were examined with an Axiostar 
Plus bright field microscope (Zeiss AG).

Nissl staining. Adjacent sections were cut at a thickness of 
20 µm and used for Nissl staining to evaluate the neuronal 
population and define the depth of cortical layers and measure 
the thickness of the cortex (25). 

Neuronal tracing and dendritic quantification. For each one 
of the 20 brains, 50 pyramidal cells and 50 interneurons were 
selected. The neurons were then analyzed based on the method 
described in a previous study by our group (26).

Dendritic measures and Sholl analysis. For the morphometric 
estimation, soma size, total dendritic length, cell contrac‑
tion, dendritic field asymmetry, the total number of dendritic 
segments and bifurcations, and the length and number of 
dendritic segments per order were measured. Furthermore, 
the tracings were quantitatively analyzed with Fiji software 
(version 2017; Fiji) and the Simple Neurite Tracer plugin based 
on Sholl's method of concentric spheres (28,29). Concentric 
spheres were drawn at intervals of 10 µm centred on the cell 
bodies and dendritic intersections within each sphere were 
counted (25).

Spine counts. The dendritic spine density was measured in 
360 images, which were taken at a magnification of x1,000. 
Two different investigators (FP and SC) independently counted 
visible spines on three random segments of the dendritic tree 
of 20‑30 µm in length, the first one being on a first‑order 
dendrite, the second on a second‑order dendrite and the third 
on a tertiary branch (30).

Statistical analysis. Statistical analysis was performed using 
Student's t‑test based on 320 cells in R Studio (v. 4.04). To make 
sure that the autolysis time did not affect dendritic measure‑
ments, two‑tailed Pearson product correlation analyses were 
performed between all dependent measures and autolysis 
time (31). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Dendritic changes of pyramidal neurons. Analysis with the 
Golgi impregnation technique revealed a significant loss 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  22:  669,  2021 3

of distal dendritic segments, tortuous branches and vari‑
cosities and an overall restriction of the dendritic field in 

the schizophrenic brains compared to the normal brains 
(Fig. 2A and B). 

In the brains of schizophrenic subjects, the dendritic field's 
total length was significantly decreased as compared with 
that of normal subjects (Figs. 3A‑D and 4A). A severe loss of 
distal dendritic branches (quaternary) (Fig. 4B), and a decrease 
in the number of terminal branches (Fig. 4C) and dendritic 
bifurcations were also noted (Fig. 4D). 

Compared to the normal controls, the branching ratio 
was reduced in the schizophrenic group, and the average 
branch length (Fig. 5A) and the maximum branching order 
were likewise affected (Fig. 5B). As presented in Fig. 6, Sholl 
analysis indicated a restriction of the dendritic field due to 
the loss of distal branches, although the proximal ones in the 
pyramidal cells remained intact (Fig. 6A). A small amount 
of degenerated pyramidal neurons was also noted in the 
schizophrenic brains, and none were identified in the control 
group (Fig. 7).

Interneurons. Aspiny stellate interneurons of the visual cortex 
from the schizophrenic brains exhibited a significant decrease 
of the total dendritic length (Figs. 8A and B and 9A), severe 
loss of dendritic branches (Fig. 9B) and a substantial reduction 
of the number of terminal dendritic branches (Fig. 9C). The 
branching ratio was grossly reduced, and the average branch 
length and the maximum branch order were significantly 

Figure 1. (A) The primary visual cortex is located in and around the calcarine fissure in the occipital lobe (arrow). Occipital lobe sagittal view demonstrating 
the calcarine fissure. (B) It may be easily recognized by a white band of myelinated axons that run parallel to the surface (line of Gennari; arrow). 

Figure 2. Representative images of pyramidal neurons impregnated with the Golgi method, from (A) a schizophrenic brain and (B) a normal control (Golgi 
method; magnification, x100).

Figure 3. Schematic representation based on neuronal tracings of (A) aspiny in 
normal controls, (B) aspiny in schizophrenic brains, (C) pyramidal neurons in 
normal controls and (D) pyramidal neurons in schizophrenic brains showing 
markedly decreased dendritic arborizations in each cell type in Schizophrenia.
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affected (Fig. 10A and B). Sholl analysis of interneurons 
indicated extensive loss of distal dendritic branches and 
decline of the dendritic field density at a distance >100 µm 
from the cell soma (Fig. 6B). The number of bifurcations 
was markedly lower in schizophrenic brains compared with 
controls (Fig. 9D).

Spinal changes. Pyramidal neurons exhibited a significant 
decrease in spinal density, affecting mainly the distal dendritic 
segments, while dystrophic and giant spines were also observed 
(Figs. 11 and 12).

Cortical thickness. The thickness of the primary visual 
cortex measured in Nissl preparations was significantly 
different between the groups of the study (Schizophrenia, 
1,956±105 µm; Controls, 2,124±96 µm; P=0.023; Fig. 13).

Discussion

There remains a lack of consensus or set of quantified patient 
characteristics in regards to Schizophrenia and it has remained 
an enigma to neuropathologists (32). Accumulating evidence 
from macroscopic and microscopic pathology has been provided 
in the last 20 years. The main macroscopic findings include a 
decrease in brain weight (33‑35), brain length (36) and volume 
of the cerebral hemispheres (37). An additional enlargement of 
the lateral ventricles (36,37), changes to limbic structures (38), 
reduced size of temporal lobe structures (39‑41), decreased 
thalamic volume (34,42) and enlarged basal ganglia (43) have 
also been described. Certain findings regarding synaptic and 
spinal pathology, cell orientation, neuronal density, neuronal 
size, protein expression and neurotransmitter deficits have also 
been consistently reported by numerous studies (6).

Figure 4. Comparison of (A) total dendritic length (P=0.0002), (B) number of dendritic branches (P=0.0032), (C) number of terminals (P=0.00001) and 
(D) bifurcations (P=0.0001) of the pyramidal cells from NC and schizophrenic brains. Boxplots represent skewness and error bars indicate the standard 
deviation. NC, normal controls; Sch, schizophrenia group.

Figure 5. Comparison of (A) average branch length (P=0.00049) and (B) branch order (P=0.0001) of the pyramidal cells from NC and schizophrenic brains. 
Boxplots represent skewness and error bars indicate the standard deviation. NC, normal controls; Sch, schizophrenia group.
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The majority of existing studies are focused on hippocampal 
formation, the temporal lobe, prefrontal cortex and basal 
ganglia. To the best of our knowledge, no previous study has 
reported on the morphological changes of the pyramidal and 
stellate neurons of the occipital lobe. In 1998, Garey et al (44) 
reported decreased spinal density on the pyramidal cells 
of lamina III from Brodmann areas 11 and 38 observed on 
Golgi staining, and in the same year, Woo et al  (45) indi‑
cated a selective decrease of terminal branches in brodmann 
areas 9 and 46 chandelier neurons.

In 1996, Roberts et al (46) revealed changes of the dendritic 
spines at the striatum, and in the same year, Uranova et al (47) 
described certain changes in the postsynaptic density of 
axo‑spinous synapses.

In addition, Dorph‑Petersen et al  (22) reported signifi‑
cantly decreased neuronal volume with no significant 
reduction of the neuronal density in the primary visual cortex 
of schizophrenic brains. These results were confirmed by 
neuroimaging studies using voxel‑based morphometry, which 
reported a significant reduction in the occipital lobe's overall 

volume with a decrease in grey matter in schizophrenic 
patients (48‑52).

In the present study, no significant changes in the neuronal 
density of the primary visual cortex were obtained, but the 
overall thickness of the primary visual cortex was substantially 
decreased in schizophrenic brains, corroborating the findings 
of the earlier study by Dorph‑Petersen et al (22). Golgi silver 
staining and 3D reconstruction of neurons revealed several 
morphological changes on both cortical aspiny interneurons 
and pyramidal cells. The total neuronal volume was decreased 
in both populations. The aspiny interneurons exhibited a 
severe restriction of their dendritic field areas, along with a 
loss of distal and terminal dendritic branches. Pyramidal 
neurons from lamina III similarly exhibited a significant loss 
of terminal branches and substantially lower dendritic spines, 
mainly on the distal branches.

Regarding the clinical significance of the present results, 
visual hallucinations are amongst the most common symp‑
toms associated with increased brain activity in patients with 
schizophrenia  (48). They have been correlated to GABA 
deficits and functional impairment of cortical interneurons, 
as well as a disturbance of cortico‑thalamic or intracortical 
connections (19). Furthermore, studies have revealed certain 
functional deficits of the visual cortex in schizophrenic 

Figure 6. Sholl analysis of (A) the pyramidal cells and (B) interneurons of the visual cortex from NC and schizophrenic brains (bold line). Statistical 
significance was identified for distances >120 µm for pyramidal neurons and >100 µm for stellate neurons *P<0.05 vs. the NC group. NC, normal controls; 
Sch, schizophrenia group.

Figure 7. In schizophrenic brains, certain degenerated pyramidal neurons 
were noted (red arrows). No degenerated neurons were identified in the 
controls (Golgi method; magnification, x100).

Figure 8. Representative examples of aspiny interneurons impregnated with 
the Golgi method from (A) normal controls and (B) schizophrenic brains 
(Golgi method; magnification, x100).
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patients, including early‑stage visual processing, contrast 
sensitivity abnormalities, surround suppression and motor 
processing disturbance (53,54). Lamina III pyramidal neurons 
contribute to reception, elaboration and transmission of the 
visual information to other cortical areas, while the aspiny 
interneurons provide inhibitory control and modulate the 
synchronized oscillations  (55). Both neuronal populations 
are critical for the integrity of the cortico‑thalamic and intra‑
cortical circuits. The loss of dendrites and dendritic spines of 
both pyramidal cells and interneurons leads to a substantial 
decrease of the synaptic contacts and a significant impair‑
ment of the pyramidal‑interneuronal connectivity, as well as 
of the connections of the cells of the visual cortex with the 
neurons of other cortical and subcortical areas, which may be 

Figure 10. Comparison of (A) average branch length in µm (P=0.001) and (B) branch order (P=0.001) of interneurons from NC and schizophrenic brains. 
Boxplots represent skewness and error bars indicate the standard deviation. NC, normal controls; Sch, schizophrenia group.

Figure 11. Spinal density of the pyramidal neurons of the visual cortex from 
NC and schizophrenic brains (P=0.0034). Boxplots represent skewness and 
error bars indicate the standard deviation. NC, normal controls; Sch, schizo‑
phrenia group.

Figure 9. Comparison of (A) total dendritic length (P=0.0049), (B) number of branches (P=0.003), (C) numbers of terminals (P=0.00021) and (D) bifurcations 
(P=0.0001) of interneurons from NC and schizophrenic brains. Boxplots represent skewness and error bars indicate the standard deviation. NC, normal 
controls; Sch, schizophrenia group.
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implicated in the modulation of the visual information (30,55). 
Although other cortical areas beyond the primary visual 
cortex are related to the production of visual hallucinations, 
the interruption of connectivity of the primary visual cortex 
with secondary visual, temporal and parietal areas may have a 
crucial role in the pathophysiology of visual hallucinations and 
other functional deficits of the visual cortex in schizophrenia.

To the best of our knowledge, the present study was the 
first to describe the morphological alterations in pyramidal 
and spinal stellate neurons on the primary visual cortex in 
patients with schizophrenia. The results may provide novel 
insights into the brain changes exhibited by patients with 
schizophrenia. It may be concluded that the present observa‑
tions may be related to certain clinical phenomena associated 
with the visual cortex usually encountered in schizophrenia.
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