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Abstract. Fibroblast growth factor 23 (FGF23) plays 
an important role in the development of chronic kidney 
disease‑mineral bone disorder (CKD‑MBD). Abnormally 
elevated levels of 1,25‑dihydroxyvitamin D cause osteocytes 
to secrete FGF23, which subsequently induces phosphaturia. 
Recent studies have reported that iron deficiency, 
erythropoietin (EPO) and hypoxia regulate the pathways 
responsible for FGF23 production. However, the molecular 
mechanisms underlying the interactions between FGF23 
and anemia‑related factors are not yet fully understood. The 
present review discusses the associations between FGF23, 
iron, EPO and hypoxia‑inducible factors (HIFs), and their 
impact on FGF23 bioactivity, focusing on recent studies. 
Collectively, these findings propose interactions between 
FGF23 gene expression and anemia‑related factors, including 
iron deficiency, EPO and HIFs. Taken together, these results 
suggest that FGF23 bioactivity is closely associated with the 
occurrence of CKD‑related anemia and CKD‑MBD.
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1. Introduction

Fibroblast growth factor 23 (FGF23) expression is elevated 
in early‑stage chronic kidney disease (CKD), and continues 
to increase as the glomerular filtration rate decreases (1‑4). 
FGF23 is a hormone derived from osteocytes that regulates 
the metabolism of phosphorus and 1,25‑dihydroxyvitamin D 
(1,25[OH]2D). 1,25(OH)2D and high dietary phosphate intake 
upregulate FGF23 expression, resulting in increased renal 
excretion of phosphate and decreased synthesis of 1,25(OH)2D, 
which decreases FGF23 expression, thus completing a 
negative feedback loop (5). Recent studies have reported that 
iron deficiency (6‑9) and erythropoietin (EPO) (10‑13) also 
affect FGF23 production. In addition, a study on mice reported 
that applying hypoxia inducible factor‑proline hydroxylase 
inhibitors (HIF‑PHIs) increases the serum level of FGF23 (8). 
Several clinical studies on patients with kidney disease have 
demonstrated that increased FGF23 expression is associated 
with poor patient outcomes (14‑17). High‑dose EPO treatment 
also contributes to the high mortality and morbidity rates of 
patients diagnosed with CKD (18,19). Thus, it is important to 
determine the associations among FGF23, 1,25(OH)2D, EPO 
and HIFs to identify novel therapeutic targets for the treatment 
of CKD‑mineral bone disorder (MBD) and renal anemia, and 
improve the prognosis of these patients. The present review 
aimed to discuss the associations among FGF23, iron, EPO 
and HIFs in CKD‑MBD.

2. Clinical perspective

Iron deficiency, induced by overproduction of EPO or activation 
of HIFs, upregulates FGF23 expression and is associated with 
adverse events in patients with CKD (8). Thus, it is important 
to identify interventions that downregulate FGF23 expression 
to correct iron deficiency and improve patient outcomes.

A total of 79 single nucleotide polymorphisms (SNPs) in 
29 genes are associated with CKD‑MBD (20). Among these, 
five SNPs (rs1126616, rs35068180, rs1800247, rs4236 and 
rs2248359) are in proteins involved in mineral metabolism 
(osteocalcin, osteopontin, Gla protein matrix metalloprotease 
3, and 24 hydroxylase), which may be responsible for 
upregulating FGF23 expression (20). A Previous study has 
demonstrated that FGF23 expression closely parallels plasma 
EPO expression, either from administration of exogenous 
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EPO or increased production of endogenous EPO, induced by 
HIF‑PHIs (12).

 The present review compares the induction of FGF23 
expression by EPO administration and HIF‑PHIs, and 
discusses optimal therapeutic regimens for CKD‑related 
anemia and MBD. EPO is associated with an increase in the 
inactive form of FGS23, C‑terminal (c)FGF23, which can 
result in adverse events (21). Thus, the biological activity of 
cFGF23 requires further investigation. 

3. FGF23 and iron deficiency

Regulation of FGF23 by iron def iciency. Iron func‑
tions as a cofactor in several enzymatic reactions and a 
critical component of hemoglobin, which is required for 
normal oxygen transport  (22). Several factors can cause 
iron deficiency and anemia, including pregnancy  (23), 
poor diet  (24‑26), inflammation  (27,28), iron malabsorp‑
tion (29,30) and CKD (31,32). A study on patients with CKD 
reported an association between low iron levels and high 
cFGF23 expression levels (33). Recently, Eisenga et al (34) 
confirmed that iron deficiency is associated with high 
serum FGF23 levels in patients with CKD and kidney 
transplant recipients (9,34). Molecular studies have reported 
that iron deficiency upregulates furin by stabilizing 
HIF1‑α, which subsequently cleaves FGF23 into cFGF23 
fragments (6,35,36). Furthermore, Eisenga et al (37) demon‑
strated that increased FGF23 levels mediate the association 
between iron deficiency and mortality. Iron deficiency, as 
a crucial determinant of FGF23 expression, can also occur 
during blood loss from trauma, surgery and bowel dysfunc‑
tion (38,39). Rabadi et al (11) observed that acute bleeding 
elevated cFGF23 expression in healthy mice, and that the 
number of transfusions was positively associated with 
cFGF23 expression in patients in intensive care. It has also 
been demonstrated that GalNac‑transferase 3 bone marrow 
mRNA expression decreases in mice following acute blood 
loss, which protects intact (i)FGF23 from proteolysis by 
furin, and thus enhances FGF23 cleavage (40). These find‑
ings regarding the regulation of FGF23 via iron deficiency 
are consistent with previous studies  (35,36). However, a 
recent study reported that iFGF23 expression has a signifi‑
cantly negative association with serum iron parameters in 
elderly men  (41). Presumably, certain age‑related factors 
may affect the cleavage of FGF23 in individuals with iron 
deficiency.

Previous studies have demonstrated that iron deficiency 
increases cFGF23 expression, and that iFGF23 expression 
may remain normal due to FGF23 cleavage (42). However, 
the factors that affect FGF23 cleavage remain unclear. In 
particular, the functions of cleaved fragments in patients with 
CKD, such as cFGF23, remain largely unknown.

Impact of iron supplementation on FGF23. The physiological 
mechanisms underlying the association between increased 
FGF23 expression and mortality are presented in Fig. 1. 
FGF23 can directly induce left ventricular hypertrophy 
and eventually lead to heart failure, during which time 
oxidative stress enhances, the level of nitric oxide decreases 
and vasodilatation is impaired. FGF23 can increase the 

extent of vascular calcification and risk of cardiovascular 
disease. Vascular calcification may promote dysregulation 
of bone mineral metabolism, aggravate anemia and 
inflammatory response, and contribute to the progression 
of CKD. In addition, FGF23 increases the likelihood of 
cancer and mortality risk, and these factors may interact 
with one another. For example, inflammation may affect 
vasodilatation by promoting vascular calcification directly 
or indirectly through bone and mineral metabolism 
disorder. Anemia aggravates heart failure by increasing left 
ventricular hypertrophy, and aggravates mineral metabolism 
disorder. Conversely, bone mineral metabolism disorder 
and inf lammation further promote the occurrence of 
anemia (43). Given the effect of elevated FGF23 expression 
on mortality and other pathophysiological outcomes (44‑51), 
it is important to understand the pathways and molecular 
mechanisms underlying elevated FGF23 expression. As 
a major determinant of FGF23, iron deficiency can be 
easily modified to decrease FGF23 expression. Thus, the 
potential therapeutic benefits of iron supplementation 
should be considered. A previous study reported the effect 
of iron supplementation on elevated iFGF23 expression in 
two patients with osteomalacia (52). Currently, two major 
iron formulations are used as supplements, oral iron and 
intravenous (IV) iron. Patients with early‑stage (non‑dialysis) 
CKD often receive oral iron supplementation as treatment for 
iron deficiency and mild anemia. Clinicians administer IV 
iron to circumvent gastrointestinal intolerance and improve 
treatment efficacy, particularly in patients with late‑stage 
CKD who are receiving hemodialysis (53). 

A prospective randomized study assessed the use of oral 
iron and IV iron for 10 weeks as treatment for patients with 
CKD who were receiving hemodialysis and had iron‑deficiency 
anemia. Serum cFGF23 levels decreased in both groups, while 
serum iFGF23 levels increased in the IV iron group (54). These 
findings suggest that oral iron is superior to IV iron in preventing 
high iFGF23 expression levels. However, the majority of patients 
with CKD also received EPO or EPO‑stimulating agents, the 
effects of which were not compared between both groups. 
Thus, whether EPO administration affects the iFGF23/cFGF23 
ratio remains unclear. 

Hyperphosphatemia, due to decreased phosphate secretion, 
is significantly associated with CKD progression. Thus, 
researchers have developed several novel phosphate binders as 
treatment (55). Sucroferric oxyhydroxide effectively decreases 
serum phosphorus levels (56) and simultaneously improves 
iron parameters (57). Notably, serum FGF23 levels markedly 
decrease following treatment with sucroferric oxyhydroxide 
in patients with CKD undergoing hemodialysis (58). Ferric 
citrate, another iron‑based phosphate binder, efficiently 
decreases serum phosphorus levels (59) and notably improves 
iron parameters  (60), while simultaneously decreasing 
serum FGF23 levels in patients with CKD undergoing 
hemodialysis  (61). Thus, concurrent reduction of serum 
phosphorus levels and correction of iron deficiency may be 
used to effectively decrease iFGF23 expression. 

Taken together, these findings suggest that elevated serum 
FGF23 levels contribute to high mortality in patients with 
CKD. The correction of iron deficiency, a major determinant 
of elevated FGF23 expression, can reverse high FGF23 
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expression levels. Clinical studies have indicated that oral 
iron is superior to IV iron. Iron‑based phosphate treatment, 
which simultaneously decreases phosphorus levels and 
corrects iron deficiency, may be used to decrease serum 
FGF23 levels and improve the long‑term outcomes of these 
patients. 

4. FGF23 and EPO

FGF23 and recombinant (rh)EPO administration. EPO is 
a hematopoietic hormone that is primarily produced by the 
kidneys as a physiological response to iron deficiency (62). 
Iron deficiency and anemia are co‑morbidities in CKD (63) 
that promote renal function decline (64). There are several 
causes of iron deficiency in CKD, but reduced EPO synthesis 
is the main factor (65). Thus, clinicians often administer 
rhEPO to correct iron deficiency and anemia in these 
patients (66). However, the effect of rhEPO administration 
on serum FGF23 levels remains unclear. Previous studies 
have reported that acute injections of rhEPO significantly 
increase the expression levels of cFGF23  (11) and 
iFGF23 (10,67) in mice. Conversely, it has been demonstrated 
that rhEPO injections only increase cFGF23 expression in 
mice with CKD (68). Notably, these observed effects were 
independent of iron status. Studies on patients with chronic 
heart failure and CKD have reported that exogenous EPO 

injections markedly increase cFGF23 expression  (69,70). 
The potential reasons for these differences may be attributed 
to the differences in renal functions of patients and/or 
the dose of rhEPO used. A previous study demonstrated 
that high cFGF23 expression competes with iFGF23 by 
binding to the FGF receptor, thereby decreasing iFGF23 
expression (71). Another study on adult rats reported that 
in vitro treatment with cFGF23 increases the surface area of 
ventricular myocytes (72). Thus, it is important to identify 
which specific fragments of FGF23 are responsible for its 
effect on mortality. Prospective studies are required to 
assess the biological activity of different FGF23 fragments, 
and the effects of rhEPO replacement treatment on FGF23 
expression in patients with CKD.

FGF23 and HIFs. HIFs are proteins that regulate 
transcription in response to low cellular oxygen levels. HIF 
prolyl‑hydroxylase (PHD) regulates HIFs in an oxygen-
dependent manner (73). HIFs are heterodimers composed of 
an α subunit and β subunit; HIF‑α is oxygen‑sensitive and 
stabilized due to decreased PHD‑dependent hydroxylation 
during hypoxia (74‑76). HIF‑PHI stabilizes HIFs by stimulating 
hypoxia, thereby activating HIF signaling, inducing the 
transcription of endogenous EPO  (77), promoting iron 
uptake and availability (78), and further influencing FGF23 
expression (8,79,80). The HIF‑PH inhibitor, roxadustat, has 

Figure 1. Physiological mechanisms underlying the association between increased FGF23 expression and high mortality risk. Solid lines indicate direct effects, 
while dashed lines indicate indirect effects. FGF23, fibroblast growth factor 23; CVD, cardiovascular disease; CKD, chronic kidney disease.
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been used as an oral drug for the treatment of anemia (81). This 
drug increases FGF23 production, suggesting that HIF‑PHI 
may affect FGF23 expression and cleavage by inducing the 
transcription of endogenous EPO  (80). Generally, FGF23 
produced by osteocytes is affected by the level of phosphate, 
parathyroid hormone and 1,25(OH)2D (82). However, a recent 
study reported that other factors may regulate FGF23 production 
and cleavage, including iron, HIF and EPO signaling (83). 
Recent data have demonstrated that FGF23 expression may 
be directly regulated by HIF signaling in osteogenic cells, or 
indirectly regulated by EPO (12,82). Another study reported 
that treatment with HIF‑PHI increases FGF23 expression (8). 
Examinations of the underlying molecular mechanism have 
demonstrated that inflammation or iron deficiency induce 
HIF‑1α (8), and that binding of HIF‑1α to the FGF23 promoter 
increases its synthesis in osteogenic cells (84). In addition, 
HIF‑1α may also indirectly increase FGF23 expression by 
inducing EPO, thus promoting FGF23 transcription and 
cleavage (10‑12,68,85). It has been reported that interleukin‑6 
and tumor necrosis factor‑α levels are induced during CKD, 
indicating a general microinflammatory state in patients with 
CKD (86). FGF23 bioactivity and anti‑inflammatory cytokine 
expression are abnormal in patients with CKD, which may be 
associated with the widespread microinflammatory state (87). 

Low 1,25(OH)2D expression is associated with nutritional 
deficiency or endogenous resistance of EPO in patients 
with CKD, and often contributes to anemia (88). However, 
these associations are not affected by inflammatory status 
or secondary hyperparathyroidism  (89). 1,25(OH)2D3 
upregulates HIF in PMA‑differentiated U937 cells, which is 
inhibited by rapamycin, suggesting that mTOR signaling is 
also involved in this process (90). 

Administrating an anti‑EPO antibody abrogates the effect of 
EPO on upregulation of FGF23 (91). This confirms that HIF‑PHI 
increases FGF23 expression by induction of EPO (8). Notably, 
the majority of FGF23 induced via endogenous EPO following 
treatment with HIF‑PHI is cFGF23, instead of iFGF23 (8,12). 
However, the pathological significance of increased expression 
levels of cFGF23 fragments remains unclear. Normal plasma 
iFGF23 levels are maintained in spite of increased FGF23 
expression due to increased cleavage of iFGF23 (35). HIF‑PHI 
efficiently induces erythropoiesis due to upregulation of 
endogenous EPO, but because the EPO level remains near the 
normal physiological range this treatment is superior to traditional 
rhEPO administration for treatment of renal anemia (92). Thus, 
clinicians should consider the use of HIF‑PHI as a novel treatment 
strategy for renal anemia. A recent study reported that iFGF23 
expression is not associated with rhEPO dose in hemodialysis 
patients (93). However, some unrecognized confounders may 
affect the measurement of FGF23 during CKD, which require 
further investigation in future studies.

5. Conclusions

In conclusion, iron deficiency, mediated by HIF1α and EPO, 
independently increases FGF23 expression and promotes 
the cleavage of FGF23, which is dependent on age and renal 
function. HIF‑PHI induces the transcription of endogenous 
EPO, although EPO remains within its normal physiological 
range, and it also affects FGF23 expression and cleavage (12). 

Further studies are required to determine how endogenous or 
exogenous EPO increases FGF23 expression and affects FGF23 
cleavage. Generally, endogenous EPO levels are elevated 
during early‑stage CKD (94), exogenous EPO is typically 
administered to patients with late‑stage CKD due to the 
presence of renal anemia, and FGF23 cleavage may decrease 
as renal function declines (95,96). iFGF23 is considered the 
bioactive form, and high cFGF23 expression is associated with 
poor prognosis in patients with CKD (17,69). Future studies 
are required to determine the biological activities of the 
C‑terminal fragments of FGF23. The compensatory increase 
in FGF23 expression during the early stages of CKD may 
enhance urinary phosphate excretion, which may be beneficial 
to patients with CKD. The induction of FGF23 expression by 
EPO administration or HIF‑PHIs may provide therapeutic 
regimens for the treatment of patients with CKD. In addition, 
the potential therapeutic benefits of iron supplementation 
should be considered, particularly in early‑stage CKD with 
iron deficiency and mild anemia. However, the continuous 
increase in FGF23 expression during late stages of CKD may 
aggravate CKD‑MBD and promote CKD‑related anemia (97). 
A recent study suggested that blockade of FGF23 signaling 
prevents renal anemia in a murine model of CKD (21). Future 
studies must consider the complex molecular and physiological 
interactions that occur during renal anemia and CKD‑MBD to 
develop novel therapeutic interventions. 
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