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Abstract. Chemoresistance is the primary cause of the 
poor outcome of glioblastoma multiforme (GBM) therapy. 
Leucine‑rich repeat‑containing G‑protein coupled receptor 6 
(LGR6) is involved in the growth and proliferation of several 
types of cancer, including gastric cancer and ovarian cancer. 
Therefore, the aim of the present study was to investigate the 
role of LGR6 in GBM malignancy and chemoresistance. Cell 
counting kit‑8 and Matrigel®‑Transwell assays were conducted 
to assess GBM cell viability and invasion. The effect of LGR6 
on cell cycle progression and activation of Akt signaling 
was analyzed by performing propidium iodide staining and 
western blotting, respectively. The results demonstrated that 
LGR6, a microRNA‑1236‑3p target candidate, promoted 
GBM cell viability and invasion, and mediated temozolomide 
sensitivity in SHG‑44 and U251 GBM cells. In addition, LGR6 
triggered the activation of the Akt signaling pathway during 
GBM progression. Collectively, the results of the present study 
suggested that LGR6 promoted GBM malignancy and chemo‑
resistance, at least in part, by activating the Akt signaling 
pathway. The results may aid with the identification of a novel 
therapeutic target and strategy for GBM.

Introduction

Glioblastoma multiforme (GBM) is the most lethal primary 
brain tumor  (1) worldwide, with a mean survival time of 
~8‑12  months  (2). The current clinical strategy for GBM 
consists of surgical resection, radiation therapy and treat‑
ment with adjuvant temozolomide (TMZ) chemotherapy (3). 

Although TMZ exhibits antitumor effects against high‑grade 
glioma (4), previous studies have suggested that its efficacy 
is affected by the development of drug resistance in tumor 
cells (5‑7). Therefore, identifying the mechanism underlying 
TMZ resistance and developing a new adjuvant chemotherapy 
drug against GBM is important.

Leucine‑rich repeat‑containing G‑protein coupled 
receptor 6 (LGR6) is involved in the growth and proliferation 
of multiple types of cancer, including colon cancer and gastric 
cancer (8‑10), and high levels of LGR6 have been correlated 
with colorectal metastasis (8). LGR6 was initially identified 
as a cognate receptor of R‑spondin ligands, which serve as 
enhancers of WNT signaling (11‑13) and was later identified 
as a stem cell marker (14‑17). Functioning as an oncogene or 
tumor suppressor, LGR6 modulates the activation of signaling 
pathways, such as the zinc transporter ZIP10‑p63 (18) and 
WNT (19) signaling pathways.

In addition, several signaling pathways, including the STAT5 
and PI3K/Akt signaling pathways, serve a vital role during the 
progression of GBM (20‑22). Cytokine‑induced Janus kinases 
initiate the STAT family or activate mitogen‑activated protein 
kinases PI3K and mTOR (23), which are all associated with 
the progression of GBM (24‑27); therefore, assessing whether 
LGR6 can activate these signaling pathways and serve as a 
potent therapeutic target for GBM requires investigation.

Materials and methods

Cell culture. Human GBM cell lines T98G (accession 
no. CVCL_0556) and U87 (glioblastoma of unknown origin; 
accession no. CVCL_0022) were purchased from American 
Type Culture Collection. GBM cell lines SHG‑44, U251 and 
human normal glial HEB cells and human embryonic kidney 
293T cells were purchased from The Cell Bank of Type 
Culture Collection of the Chinese Academy of Sciences. T98G 
and U87 cells were maintained in modified Eagle's medium 
(MEM; Hyclone; Cytiva), SHG‑44 cells were maintained in 
RPMI‑1640 medium (Hyclone; Cytiva) and U251, HEB and 
293T cells were maintained in DMEM (Hyclone; Cytiva). 
All culture mediums were supplemented with 10% FBS 
(Hyclone; Cytiva). Cells were maintained at 37˚C in 5% CO2 
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incubators. To establish TMZ‑resistant cell lines, SHG‑44 and 
U251 cells were cultured and passaged over 8 weeks in the 
presence of increasing concentrations of TMZ (30 to 300 µM; 
Selleck Chemicals) to generate TMZ resistant lines at 37˚C in 
5% CO2 incubator, which were denoted as SHG‑44TMZ+ and 
U251TMZ+ as per a previous study (28) and the parental cells 
were denoted ad SHG‑44TMZ‑ and U251TMZ‑.

Plasmid construction and cell transfection. overexpres‑
sion plasmids (LGR6) were constructed by inserting the 
LGR6 coding sequence into a pcDNA3.1 plasmid (General 
Biosystems, Inc.). An empty pcDNA3.1 vector was used as 
the negative control (Vector). The small interfering (si)RNA 
targeting LGR6 (siRNA‑LGR6) and the control (siRNA‑Ctrl) 
were purchased from Shanghai GenePharma Co., Ltd. The 
microRNA (miR)‑1236‑3p mimic (miR‑1236‑3p) and scrambled 
oligonucleotides (miR‑Ctrl) were purchased from Guangzhou 
RiboBio Co., Ltd. Sequences are presented in Table I. The day 
prior to transfection, ~2x105 cells were plated in growth medium 
without antibiotics at a density of 30‑50%. Both siRNAs and 
miRNAs were transfected into cells at a final concentration of 
100 nM using Lipofectamine® 2000 (Thermo Fisher Scientific, 
Inc.), according to the manufacturer's protocol. DNA fragments 
containing the wild‑type (WT) or mutated (Mut) miR‑1236‑3p 
3'‑untranslated region (3'‑UTR) and their complementary 
fragments were cloned from SHG‑44 cDNA. The annealed 
double‑stranded DNA was then cloned into the dual‑luciferase 
reporter gene vector psicheck‑2 (Promega Corporation). The 
recombinant WT and Mut reporter gene vectors were named 
LGR6‑3' UTR‑WT and LGR6‑3' UTR‑Mut, respectively.

Potential microRNAs prediction. To investigate whether 
microRNAs regulated the expression of LGR6, the avail‑
able complementary‑based algorisms were predicted using 
TargetScan (www.targetscan.org/vert_72) and miRTarBase 
(mirtarbase.mbc.nctu.edu.tw/php/index.php). miR‑1236‑3p 
displayed a low mirSVR score (‑2.69) and was selected as a 
prediction microRNA.

Luciferase activity analysis. 293T cells (~5x103 cells/well) 
were plated in 96‑well plates and co‑transfected with 25 ng 
luciferase reporter gene vector and 50 nM miR‑1236‑3p or 
miR‑Ctrl using Lipofectamine® 2000 reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufac‑
turer's instructions. Following culturing at 37˚C for 48  h 
in a 5%  CO2 incubator, luciferase activity were detected 
using the Dual‑Luciferase Reporter assay system (Promega 
Corporation). The results were normalized to Renilla lucif‑
erase and analyzed, according to the manufacturer's protocol.

Cell viability. Cells were plated in 96‑well plates (~5x103) 
and transfected with siRNA‑LGR6, siRNA‑Ctrl, LGR6 over‑
expression plasmids or empty pcDNA3.1 vector for 24 h at 
37˚C in 5% CO2 incubator, then TMZ was added to culture 
medium at final concentrations of 0, 100, 200, 300, 400 or 
500 µM. At 0, 24, 48 and 72 h post‑transfection, Cell Counting 
Kit‑8 reagent (10 µl; Beyotime Institute of Biotechnology) was 
added to each well for 4 h at 37˚C. The absorbance of each well 
was measured at a wavelength of 450 nm using the Multiskan 
GO plate reader (Thermo Fisher Scientific, Inc.).

Inhibitor treatment. Selective inhibitors of Akt1/2/3 
(MK‑2206) were purchased from Selleck Chemicals. Frozen 
aliquots (‑80˚C) were melted and dissolved in DMSO 
(Sigma‑Aldrich; Merck KgaA) and diluted in growth medium 
(RPMI‑1640 medium for SHG‑44 cells; DMEM medium for 
U251 cells). A total of 5 µM MK‑2206 was added to SHG‑44 
and U251 cells for 0, 24, 48 or 72 h following transfection with 
LGR6 overexpression plasmids. Cell Counting Kit‑8 reagent 
(10 µl; Beyotime Institute of Biotechnology) was added to 
each well for 4 h at 37˚C. The absorbance of each well was 
measured at a wavelength of 450 nm using a Multiskan GO 
plate reader (Thermo Fisher Scientific, Inc.).

Cell invasion. For cell invasion assays, Corning® Transwell® 
polycarbonate membrane cell culture inserts containing 
polycarbonate membranes with 8‑µm pores (Corning, Inc) 
were precoated with Matrigel® (BD Biosciences) for 30 min 
at 37˚C. Cells (~5x104 cells/well) were suspended in culture 
medium supplemented with 5% FBS and plated into the 
upper chambers. The lower chambers were filled with culture 
medium supplemented with 20% FBS. Following incubation 
for 24 h at 37˚C in 5% CO2 incubators, cells were washed with 
PBS and fixed with cold 99.9% methanol for 30 min at room 
temperature. After staining with 1% crystal violet for 30 min at 
room temperature, cells on the upper surface of the membrane 
were removed using cotton swabs. Stained cells were counted 
using a light microscope and analyzed using Image J software 
(v18.0; National Institutes of Health).

Cell cycle assay. At 48 h post‑transfection, cells were washed 
twice with cold PBS and harvested using trypsin. Cells were 
fixed with cold 75% (v/v) ethanol overnight at ‑20˚C. After 
washing twice with PBS, cells were suspended in staining 
buffer containing 5 µl PI and 5 µl RNAase A inhibitor for 
30 min in the dark at room temperature using a Cell Cycle 
Analysis kit (Shanghai Yeasen Biotechnology Co., Ltd.), 
according to the manufacture's protocol. Stained cells were 
analyzed via ACEA NovoCyte flow cytometry instrument 
(ACEA Bioscience, Inc.) and cell cycle distribution was 
assessed using Novo Express software (https://www.aceabio.
com.cn/support/software_download#edit‑group‑novocyte-
software‑download; ACEA Bioscience, Inc.).

Western blot analysis. Transfected cells were washed with 
cold PBS and total protein was extracted using RIPA lysis 
buffer (Beyotime Institute of Biotechnology) supplemented 
with phosphatase inhibitors (Roche Applied Science). Total 
protein was quantified using a bicinchoninic acid assay kit 
(Thermo Fisher Scientific, Inc.). Protein (30 µg per lane) was 
separated via 10% SDS‑PAGE and transferred onto PVDF 
membranes (Bio‑Rad Laboratories, Inc.), which were blocked 
with 5% non‑skimmed milk for 1 h at room temperature. The 
membranes were incubated overnight at 4˚C with primary 
antibodies targeted against: Phosphorylated (p)‑Akt (Ser473; 
dilution, 1:1,000; cat. no. 4060; Cell Signaling Technology, 
Inc.), Akt (dilution, 1:500; cat. no. OM238722; OmnimAbs), 
LGR6 (dilution, 1:1,000; cat. no. ab126747; Abcam) and β‑actin 
(dilution, 1:8,000; cat. no. 60008‑1; ProteinTech Group, Inc.). 
Following primary incubation, the membranes were incubated 
with goat anti‑rabbit (dilution, 1:6,000, cat. no. SA00001‑2; 
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ProteinTech Group, Inc.) or donkey anti‑mouse (dilution, 
1:8,000, cat. no. 715‑005‑150; Jackson ImmunoResearch) IgG 
horseradish peroxidase‑conjugated secondary antibodies for 
1 h at room temperature. Immunoreactive bands were visual‑
ized using a chemiluminescence kit (Thermo Fisher Scientific, 
Inc.). Protein expression was quantified using ImageJ software 
(National Institutes of Health) with β‑actin as the loading 
control.

RNA isolation and reverse transcription‑quantitative PCR. 
Total RNA was extracted from transfected cells using 
TRIzol® (Thermo Fisher Scientific, Inc.) according to the 
manufacturer's protocol. Total RNA was reverse transcribed 
into cDNA using the Hifair® II 1st Strand cDNA Synthesis 
kit (Shanghai Yeasen Biotechnology Co., Ltd.) or Hairpin‑it™ 
miRNA RT‑PCR Quantitation kit (Shanghai GenePharma Co., 
Ltd.). Subsequently, qPCR was performed using SYBR Green 
Select Master Mix (Thermo Fisher Scientific, Inc.) and an ABI 
7500 system (Applied Biosystems; Thermo Fisher Scientific, 
Inc.). The thermocycling conditions were as follows: 95˚C for 
5 min followed by 40 cycles at 95˚C for 10 sec, 58˚C for 20 sec, 
72˚C for 20 sec, followed by melting curve detection at 95˚C 
for 15 sec, 60˚C for 1 min and 95˚C for 15 sec. The sequences 
of the primers used for qPCR are listed in Table II. miRNA 
and mRNA expression levels were quantified using the 2‑∆∆Cq 
method (29) and normalized to the internal reference genes U6 
and β‑actin.

Statistical analysis. Data are presented as the mean ± SD. 
Experiments were performed in triplicate. One‑way ANOVA 
followed by Tukey's post hoc test was used to analyze 
comparisons among multiple groups. Comparisons between 
two groups were analyzed using the Student's t‑test. P<0.05 
was considered to indicate a statistically significant difference.

Results

LGR6 promotes GBM cell viability and invasion. The expres‑
sion of LGR6 was detected in GBM cells and normal glial 
HEB cells. The results indicated that LGR6 mRNA levels were 
significantly increased in U251 and SHG‑44 cells compared 

with HEB cells (Fig. 1A) and that LGR6 protein expression 
was increased in SHG‑44, U251 and T98G cells compared 
with HEB cells (Fig. 1B). Additionally, SHG‑44 and U251 
cells exhibited higher LGR6 mRNA and protein expression 
levels compared with U87 and T98G cells (Fig. 1A, C and D); 
therefore, SHG‑44 and U251 cells were selected for further 
experiments. In addition, siRNA‑LGR6 significantly reduced 
LGR6 mRNA and protein expression levels compared with 
siRNA‑Ctrl (Fig. 1B, E and F).

The effect of LGR6 knockdown on SHG‑44 and U251 
cell viability was investigated. The results indicated that 
LGR6 knockdown significantly reduced SHG‑44 and U251 
cell viability at 48 h compared with the siRNA‑Ctrl group 
(Fig. 2A and B). Additionally, due to the invasive capability 
of glioma cells that induce malignancy or intracranial metas‑
tasis (30), the effect of LGR6 on cell invasion was assessed. The 
results suggested that LGR6 knockdown significantly reduced 
the number of invasive cells compared with the siRNA‑Ctrl 
group (Fig. 2C‑E).

Conversely, LGR6 overexpression significantly increased 
the expression levels of LGR6 in SHG‑44 and U251 cells 
compared with the vector group (Fig. 3A‑C). Furthermore, 
LGR6 overexpression significantly increased cell viability 
compared with the vector group (Fig. 3H and I) and promoted 
cell cycle progression. By contrast, LGR6 knockdown arrested 
the cell cycle at the S phase (Fig. 3D‑G). The results suggested 
that LGR6 served a vital role in regulating GBM cell viability 
and invasion.

LGR6 mediates TMZ sensitivity in GBM cells. A TMZ‑resistant 
GBM cell model was successfully established and used to 
investigate TMZ sensitization. A total of 2 TMZ‑resistant 
human glioma cell sublines, SHG‑44TMZ+ and U251TMZ+, 
were generated by increasing TMZ concentrations for 
6  months. The IC50 of SHG‑44TMZ+ and U251TMZ+ 
exhibited a >2‑fold increase compared with parental 
TMZ‑sensitive cell lines (SHG‑44TMZ‑ and U251TMZ‑ cells; 
Fig. 4A and B). Moreover, TMZ‑resistant SHG‑44 and U251 
GBM cells displayed increased expression levels of LGR6 
compared with TMZ‑sensitive SHG‑44 and U251 GBM cells 
(Fig. 4C and D). TMZ‑resistant GBM cells displayed higher 

Table I. Sequences of siRNA‑LGR6, miR‑1236‑3p mimics 
and negative controls.

RNA	 Sequence (5' to 3')

siRNA‑LGR6	 Sense: CCUGGAACUGUCUCACAAUTT
	 Antisense: AUUGUGAGACAGUUCCAGGTT
siRNA‑Ctrl	 Sense: UUCUCCGAACGUGUCACGUTT
	 Antisense: ACGUGACACGUUCGGAGAATT
miR‑1236‑3p	 CCUCUUCCCCUUGUCUCUCCAG
mimics
miR‑Ctrl	 UUCUCCGAACGUGUCACGUTT

LGR6, leucine‑rich repeat‑containing G‑protein coupled receptor 6; 
siRNA‑LGR6, small interfering RNA targeting LGR6; miR, microRNA; 
Ctrl, control.
 

Table II. Sequences of primers used for reverse transcription-
quantitative PCR.

Gene	 Sequence (5'‑3')

LGR6	 F: ACCCCCTGACGGCTTACCT
	 R: GCTTGTCCTGGGATGTGTGAG
miR‑1236‑3p	 F: CCAATCAGCCTCTTCCCCTT
	 R: TATGGTTGTTCACGACTCCTTCAC
U6	 F: ATTGGAACGATACAGAGAAGATT
	 R: GGAACGCTTCACGAATTTG
β‑actin	 F: CTTAGTTGCGTTACACCCTTTCTTG
	 R: CTGTCACCTTCACCGTTCCAGTTT

LGR6, leucine‑rich repeat‑containing G‑protein coupled receptor 6; 
miR, microRNA.
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viability rates compared with TMZ‑sensitive cells following 
treatment with a series of TMZ concentrations (0, 100, 200, 
300, 400 and 500 µM; Fig. 4C and D). U251 and SHG‑44 

cell viability decreased in a time‑dependent manner, whereas 
LGR6 knockdown decreased U251 and SHG‑44 cell viability 
compared with the siRNA‑Ctrl group (Fig. 4E‑H). Based on 

Figure 1. LGR6 expression in GBM cells. Protein expression levels of LGR6 in (A) GBM cells and (B) LGR6‑knockdown SHG‑44 and U251 cells were 
determined by western blotting. LGR6 (C) mRNA and (D) protein expression levels in GBM cells. LGR6 (E) mRNA and (F) protein expression levels in 
LGR6‑knockdown SHG‑44 and U251 cells. *P<0.05, **P<0.01 vs. HEB cells or siRNA‑Ctrl; #P<0.05, ##P<0.01 vs. SHG‑44 cells; $P<0.05, $$P<0.01 vs. U251 
cells; LGR6, leucine‑rich repeat‑containing G‑protein coupled receptor 6; GBM, glioblastoma multiforme; siRNA, small interfering RNA; Ctrl, control.

Figure 2. LGR6 knockdown inhibits glioblastoma multiforme cell viability and invasion. Effect of LGR6 knockdown on (A) SHG‑44 and (B) U251 cell 
viability. (C) Effect of LGR6 knockdown on cell invasion in (D) SHG‑44 and (E) U251 cells. Scale bar, 200 µm. Magnification, x200. *P<0.05, **P<0.01 vs. 
siRNA‑Ctrl. LGR6, leucine‑rich repeat‑containing G‑protein coupled receptor 6; siRNA, small interfering RNA; Ctrl, control.
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the results, it was hypothesized that LGR6 participated in the 
failure of TMZ chemotherapy in GBM, which might indicate 
a new therapeutic target for the disease.

LGR6 promotes GBM viability and chemoresistance by acti‑
vating Akt signaling. The Akt signaling pathway is involved in 
numerous types of cancer, including GBM (31,32); therefore, 
the levels of p‑ and total Akt in transfected GBM cells were 
measured. The results indicated that LGR6 overexpression 

significantly increased the levels of p‑Akt compared with 
the vector group, but did not alter the total levels of Akt 
(Fig. 5A and B), which suggested that LGR6 might activate 
Akt signaling to mediate GBM malignancy. Therefore, it was 
hypothesized that as LGR6 induced the activation of Akt 
signaling during GBM progression, the loss of Akt activity 
may abolish the regulatory ability of LGR6.

Further experiments were conducted to investigate whether 
MK‑2206, a specific inhibitor of Akt signaling, reversed 

Figure 3. LGR6 promotes cell viability and cell cycle progression. LGR6 protein expression levels were (A)  determined by western blotting and 
(B) semi‑quantified following LGR6 overexpression. (C) LGR6 mRNA expression levels following LGR6 overexpression. *P<0.05, **P<0.01 vs. vector. Cell 
cycle distribution was determined via flow cytometry in (D) SHG‑44 and (E) U251 cells, and quantified for (F) SHG‑44 and (G) U251 cells. Cell viability in 
(H) SHG‑44 and (I) U251 cells following LGR6 overexpression. *P<0.05, **P<0.01 vs. vector. LGR6, leucine‑rich repeat‑containing G‑protein coupled receptor 6; 
siRNA, small interfering RNA; Ctrl, control.
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LGR6‑induced cell viability and reduced cell viability in 
response to TMZ treatment in SHG‑44 and U251 cells. The 
results were consistent with the hypothesis (Fig. 5C‑F), which 
suggested that LGR6 promoted GBM viability and chemore‑
sistance by activating Akt signaling.

LGR6 is a target of miR‑1236‑3p. miR‑1236‑3p serves as a 
tumor suppressor in various types of cancer (33‑35). To inves‑
tigate whether LGR6 was a potential target of miR‑1236‑3p, 
the available complementary‑based algorisms were predicted 
using TargetScan and miRTarBase. The results indicated that 
miR‑1236‑3p expression levels were significantly decreased in 
U251 and SHG‑44 cells compared with HEB cells and SHG‑44 
and U251 cells displayed lower miR‑1236‑3p levels compared 
with U87 and T98G cells (Fig. 6A). Additionally, miR‑1236‑3p 
mimic significantly increased the expression of miR‑1236‑3p 
and significantly decreased LGR6 expression levels at the 
mRNA and protein level compared with miR‑Ctrl (Fig. 6B‑D). 
Based on the predicted targeting sites of miR‑1236‑3p, LGR6 
3'‑UTR WT and Mut luciferase reporter plasmids were 
constructed. The results indicated that miR‑1236‑3p mimic 
significantly decreased the luciferase activity of LGR6 WT 
3'‑UTR compared with miR‑Ctrl, but did not alter the lucif‑
erase activity of LGR6 Mut 3'‑UTR (Fig. 6E and F). The results 
suggested that LGR6 was an miR‑1236‑3p target, which may 
mediate its effects during cancer development.

Discussion

As the most prevalent and malignant brain tumor in the 
adult central nervous system (36), glioma results in a high 

number of brain tumor‑related deaths each year  (37). 
Since the present curative efficiency on glioma is limited, 
developing novel therapeutic targets and understanding 
the molecular mechanism underlying glioma progression 
is important. Accumulating evidence has demonstrated 
that LGR6 is a contributing factor to cell proliferation in 
multiple types of human cancer, including gastric cancer 
and colon cancer (8,10); however, its role in glioma is not 
completely understood. In the present study, although the 
expression of LGR6 in glioma tissues was not investigated, 
in vitro experiments indicated that LGR6 expression was 
higher in GBM cell lines compared with the normal glial 
cell line and SHG‑44 and U251 cells displayed higher LGR6 
expression levels compared with U87 and T98G cells. In 
addition, LGR6 knockdown inhibited SHG‑44 and U251 cell 
viability compared with the siRNA‑Ctrl group. Additionally, 
TMZ‑resistant SHG‑44 and U251 cells displayed increased 
LGR6 expression levels compared with TMZ‑sensitive cells. 
To the best of our knowledge, the present study was the first 
to suggest that LGR6 may be associated with cell viability 
and TMZ resistance in GBM.

LGR4, LGR5 and LGR6 are receptors of the R‑spondin 
protein family  (38‑40). In vitro experiments have demon‑
strated that the three proteins could bind all types of 
R‑spondins (40). Lebensohn and Rohatgi (41) indicated that 
R‑spondin 1 binding to LGR4/5/6 is essential for WNT 
signaling. Chong et al (42) proposed that WNT can activate 
Akt directly or via WNT1‑induced secreted protein. Both 
Akt and WNT/β‑catenin signaling pathways may regulate 
cell proliferation and migration (42‑45), and serve important 
roles in GBM (46). In accordance with the finding that the 

Figure 4. LGR6 enhances glioblastoma multiforme cell chemoresistance. Cell viability in TMZ‑resistant (A) SHG‑44 and (B) U251 cells. LGR6 protein expres‑
sion was (C) determined by western blotting and (D) semi‑quantified in TMZ‑resistant and ‑sensitive cells. Cell viability in LGR6‑knockdown TMZ‑resistant 
(E) SHG‑44 and (F) U251 cells. Cell viability in LGR6‑knockdown (G) SHG‑44 and (H) U251 cells treated with 200 µM TMZ at different time points. 
**P<0.01 vs. TMZ‑sensitive cells. LGR6, leucine‑rich repeat‑containing G‑protein coupled receptor 6; TMZ, temozolomide; siRNA, small interfering RNA; 
Ctrl, control.
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Akt signaling pathway is activated in the TMZ‑resistant U87 
cell line (46), the present study indicated that overexpression 
of LGR6 also increased the levels of phosphorylated Akt in 
TMZ‑resistant cell lines. The results of the present study 
combined with the results of previous reports indicated that 

LGR6 may serve an important role in TMZ‑resistant GBM, 
which may be mediated via the Akt signaling pathway.

Previous studies have reported that miRs serve important 
roles in the majority of different types of cancer by modulating 
key processes during tumorigenesis (47,48). Through controlling 

Figure 5. LGR6 regulates glioblastoma multiforme cell chemoresistance via the Akt signaling pathway. Following LGR6 overexpression, protein expression 
levels were (A) determined by western blotting and (B) the ratio of p‑Akt/Akt was semi‑quantified. Cell viability of LGR6‑overexpression (C) SHG‑44 and 
(D) U251 cells in the absence or presence of MK2206. Cell viability of LGR6‑overexpression (E) SHG‑44 and (F) U251 cells in the absence or presence of 
MK2206 and different concentrations of TMZ. *P<0.05 vs. vector. LGR6, leucine‑rich repeat‑containing G‑protein coupled receptor 6; p, phosphorylated; 
TMZ, temozolomide.
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the gene expression of target mRNAs, miRs can serve as onco‑
genes or tumor suppressor genes (49). miR‑1236‑3p, an intronic 
miRNA, is involved in multiple types of cancer, such as 
gastric (50,51), ovarian (52), lung (34) and bladder (53) cancer. 
Wang et al  (54) indicated that miR‑1236‑3p is prominently 
downregulated in DDP‑resistant A549 cells, the role of which 
in lung cancer cells may be mediated by modulation of tumor 
protein, translationally‑controlled 1 and inhibition of the Pim‑3 
proto‑oncogene, serine/threonine kinase signaling pathway. In 
the present study, LGR6 was predicted as the potential target of 
miR‑1236‑3p by bioinformatics analysis. The luciferase reporter 
assays indicated that miR‑1236‑3p regulated LGR6 expression 
levels by targeting its 3'‑UTR sequence and miR‑1236‑3p 
was downregulated in GBM cells compared with HEB cells. 
Moreover, miR‑1236‑3p overexpression decreased LGR6 expres‑
sion levels compared with control cells, which suggested that 
LGR6 might be a downstream effect effector of miR‑1236‑3p. 
Similarly, a previous study indicated miR‑1236‑3p suppressed 
the progression of glioma by targeting homeobox B7 (HOXB7), 
a key factor for tumor‑associated angiogenic switch (55,56). 
Previous studies have indicated that HOXB7 is involved in 
cancer stem cell biology by regulating the expression of the stem 
cell‑related gene, such as lin‑28 homolog B (57) and run‑related 
transcription factor 2 (RUNX2) (58). By contrast, LGR6+ cancer 
cells display self‑renewal and differentiation capacities, along‑
side higher oncogenic potential in lung cancer (59). Therefore, 
whether the HOXB7/LGR6 axis is involved in regulating glioma 
stem cells requires further investigation.

In conclusion, to the best of our knowledge, the present 
study identified the essential roles of LGR6 in glioma for 
the first time. In addition, the results indicated a functional 
mechanism underlying LGR6 and suggested that the 
miR‑1236‑3p/LGR6/Akt signaling axis regulated the sensi‑
tivity of GBM cells to TMZ. The results of the present study 
indicated a potential mechanism underlying the recurrence 
and resistance to glioma therapies and suggested a potential 
cellular and molecular therapeutic target for GBM.
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