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Abstract. Intestinal microbiota can indirectly modulate 
airway physiology and immunity through the gut‑lung 
axis. Recent microbiome studies indicate that patients 
with coronavirus disease 2019 (COVID‑19) exhibit a 
specific intestinal dysbiosis that is closely associated with 
the disease pathophysiology. Therefore, rebalancing the 
intestinal microbiome using probiotics may be effective for 
controlling COVID‑19. However, the rationale for using 
probiotics in COVID‑19 remains unclear. In the present 
study, an in vitro cytokine response assay was conducted, 
followed by a single‑arm, double‑blind, prospective trial to 
evaluate the immunological efficacy of probiotic lactic acid 
bacteria against COVID‑19. The present study focused on 
Lactobacillus plantarum (L. plantarum), Bifidobacterium 
longum and Lactococcus lactis ssp. lactis, which exhibit 

robust protective effects against infection with respiratory 
RNA viruses. Considering the feasibility of long‑term daily 
intake for prophylactic purposes, healthy uninfected indi‑
viduals were enrolled as subjects. Our previous pilot trial 
demonstrated that oral Qingfei Paidu decoction (QFPD), 
a Chinese herbal medicine formulated specifically against 
COVID‑19, upregulates plasma TNF‑α, IL‑1β, IL‑18 and IL‑8. 
Therefore, the present study utilized the cytokine changes 
induced by QFPD to define the innate cytokine index QICI 
[=(TNF‑α) x (IL‑1β) x (IL‑18) x (IL‑8)/(IL‑6)] as an indi‑
cator of the anti‑COVID‑19 immunomodulatory potential 
of the lactic acid bacteria. A total of 20 eligible volunteers 
were enrolled, 18 of whom completed the intervention. 
L. plantarum demonstrated a strikingly high innate cytokine 
index in all subjects in the in vitro cytokine response assay. 
In the subsequent trial, oral intake of L. plantarum signifi‑
cantly increased the innate cytokine index (mean fold change, 
17‑fold; P=0.0138) and decreased the plasma level of IL‑6 
(P=0.0128), a key driver of complex immune dysregulation 
in COVID‑19, as compared with the baseline. The cytokine 
index increased in 16 of 18 subjects (88.9%) with consider‑
able individual differences in the fold change (1‑ to 128‑fold). 
In line with these innate cytokine changes, L. plantarum 
ingestion significantly enhanced the activity of natural killer 
cells. By contrast, oral B. longum failed to induce a signifi‑
cant increase in the innate cytokine index (mean fold change, 
2‑fold; P=0.474) as compared with the baseline. In conclusion, 
L. plantarum demonstrated superior QFPD‑like immunomod‑
ulatory ability and mimicked the blood cytokine environment 
produced by early immune responses to viral infection. Daily 
consumption of L. plantarum as an anti‑COVID‑19 probiotic 
may be a possible option for preventing COVID‑19 during the 
pandemic. The present study was prospectively registered in 
the University Hospital Medical Information Network‑Clinical 
Trials Registry under the trial number UMIN000040479 on 
22 May 2020 (https://upload.umin.ac.jp/cgi‑open‑bin/ctr_e/ctr_
view.cgi?recptno=R000046202).
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Introduction

The coronavirus disease 2012 (COVID‑19) pandemic is 
becoming an increasingly serious threat to global public health. 
The causative coronavirus, severe acute respiratory syndrome 
coronavirus 2 (SARS‑CoV‑2), primarily infects a subpopula‑
tion of airway epithelial cells that co‑express the viral entry 
molecules angiotensin‑converting enzyme 2 (ACE2) and trans‑
membrane serine protease 2 (TMPRSS2) (1‑3). Notably, several 
lines of evidence suggest that SARS‑CoV‑2 can also infect 
human intestinal epithelial cells, as ACE2 and TMPRSS2 are 
co‑expressed in the lower gastrointestinal tract, particularly 
enterocytes and progenitor cells of the ileum and colon (2‑5). 
Targeted infection and active replication of SARS‑CoV‑2 
in ACE2‑expressing enterocytes have been demonstrated 
using human intestinal organoids (5‑8). SARS‑CoV‑2 RNA 
has been detected in stool specimens and anal/rectal swabs 
of patients with COVID‑19  (9‑11), and infectious viruses 
have been isolated from feces of patients (8). A considerable 
percentage of patients with COVID‑19 present with concurrent 
gastrointestinal symptoms, such as diarrhea and abdominal 
pain (12‑14). These findings raise the possibility that there are 
adverse effects between the enteric infection of SARS‑CoV‑2 
and the intestinal microbiome.

Gut microbiota serves key roles in the crosstalk between the 
intestinal and respiratory tracts, which is called the gut‑lung 
axis, via which gut microbe‑derived molecules (including 
structural components, metabolites and toxins, among others) 
modulate airway physiology and immunity (15‑17). Intestinal 
dysbiosis leads to aberrant immune tone in the airway mucosa, 
which can trigger dysregulated immune responses to respira‑
tory viral infection (15‑17). Recent microbiome studies have 
revealed that patients with COVID‑19 have compositional 
changes in the specific taxa of enteric bacteria  (18‑21). 
Notably, a subset of the changes correlate with the serum levels 
of proinflammatory cytokines, symptom severity and fecal 
SARS‑CoV‑2 virus load, suggesting that COVID‑19‑related 
intestinal dysbiosis is closely associated with the disease 
pathophysiology (19‑21).

Numerous animal and clinical studies have demonstrated 
that the oral intake of probiotic strains of various lactic acid 
bacteria (LAB) species exhibited prophylactic and therapeutic 
efficacy against infection by respiratory RNA viruses (22‑26). 
Life‑threatening symptoms and complications of COVID‑19 
are caused by hyperinflammation owing to complex immune 
dysregulation involving neutrophilia, lymphocytopenia, 
reduced T‑cell immunity and excessive production of inflam‑
matory mediators (27‑29). Specific probiotic LAB strains, such 
as L. plantarum strain DR7 and L. paracasei strain 8700:2, 
have superior immunomodulatory and anti‑inflammatory abil‑
ities against respiratory viral infection and may therefore be 
suitable for therapeutic use (30,31). On the other hand, certain 
proinflammatory LAB strains are known to induce innate cyto‑
kine changes that can trigger early antiviral immune responses 
and may therefore be employed prophylactically  (32,33). 
Notably, previous preclinical studies and randomized 
controlled trials have demonstrated that among probiotic 
LAB, Lactobacillus  plantarum (L.  plantarum)  (33‑39), 
Bif idobacterium  longum (B.  longum)  (40,41) and 
Lactococcus lactis ssp. Lactis (L. lactis ssp. lactis) (42) exhibit 

robust protective effects against influenza virus infection 
through enhancing host innate immunity. 

The genera Lactobacillus, Bif idobacterium and 
Lactococcus are the most representative LAB and have been 
recognized as having probiotic properties beneficial for the 
human health (43,44). L. plantarum is a Gram‑positive, facul‑
tatively anaerobic, rod‑shaped bacterium with a plant origin 
and is distributed in the human intestinal tract and oral cavity. 
It is a heterofermentative LAB closely associated with various 
fermented plant foods, such as pickles, sauerkraut and kimchi. 
B. longum is a Gram‑positive, obligatory anaerobic, hetero‑
fermentative bacterium with V‑ or Y‑shaped morphology and 
inhabits the human intestine predominantly from newborns to 
elderly people. L. lactis ssp. lactis is a Gram‑positive, faculta‑
tively anaerobic, spherical bacterium commonly present in raw 
milk and fermented dairy products.

Qingfei Paidu decoction (QFPD), the Chinese word for 
‘lung cleansing and detoxifying decoction’, is a Chinese herbal 
medicine newly formulated and specifically optimized against 
COVID‑19, and its therapeutic use has been encouraged in the 
Chinese official management guidelines (45). Clinical trials in 
China have demonstrated that QFPD accelerated recovery and 
prevented disease progression in mild to critical cases (46‑49). 
A retrospective clinical study has also indicated that QFPD 
decreased the blood levels of COVID‑19 biomarkers, such 
as C‑reactive protein, creatine kinase and lactate dehydro‑
genase (50). Our previous study has demonstrated that the 
pharmacological action of QFPD was associated with the 
upregulation of the plasma levels of TNF‑α, IL‑1β, IL‑18 
and IL‑8, which are key cytokines that mediate early innate 
immune responses to viral infection (51).

Therefore, rebalancing the gut microbiome using probi‑
otics may be effective for the control of COVID‑19. However, 
to the best of our knowledge, no studies have focused on the 
efficacy of probiotics in patients with COVID‑19, and the 
rationale for using probiotics against COVID‑19 remains 
unclear. In addition, there is a requirement for investigating 
diverse prophylactic options owing to the frequent emergence 
and rapid spread of novel SARS‑CoV‑2 variants carrying 
immune escape mutations. To explore the immunological 
efficacy of probiotics for preventing COVID‑19, a single‑arm, 
double‑blind, prospective trial combined with an in  vitro 
cytokine response assay was conducted using L. plantarum, 
B.  longum and L.  lactis ssp. lactis. The innate cytokine 
changes induced by QFPD were used as an indicator of the 
anti‑COVID‑19 immunomodulatory potential of the LAB. 
Furthermore, the effects of LAB ingestion on the activity of 
innate immune cells were examined.

Materials and methods

Subjects. Participants were recruited through the University 
Hospital Medical Information Network‑Clinical Trials 
Registry website, Takanawa Clinic (Tokyo, Japan) website, 
announcements in an e‑mail newsletter and personal contacts. 
Individuals who met all the following inclusion criteria were 
enrolled: i) Healthy adults between the ages of 20 and 70; 
and ii) having negative PCR and IgM/IgG antibodies tests 
for SARS‑CoV‑2 at study entry (no previous and current 
SARS‑CoV‑2 infection). Chest imaging tests were not used in 
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the present study. Individuals were excluded from this trial if 
they met any of the following exclusion criteria: i) Pregnant; 
ii) breastfeeding; iii) duplicate enrollment in other clinical 
trials; iv) history of infectious disease within 6 months before 
the enrollment; v) current or past history of chronic inflam‑
matory, immune‑related or neoplastic diseases; vi) history of 
medicinal drug use within 6 months before the enrollment; 
and vii) underlying conditions associated with higher risk of 
COVID‑19, including hypertension, cardiovascular disease, 
cerebrovascular disease, diabetes, obesity (body mass index 
≥30)  (52,53), chronic obstructive pulmonary disease and 
chronic kidney disease. Therefore, the enrolled subjects had 
no recorded and reported comorbidities.

Subject recruitment. In our previous study using QFPD on 
18 healthy subjects (51), the effect sizes r obtained were 0.816 
(TNF‑α), 0.881 (IL‑1β), 0.724 (IL‑18) and 0.796 (IL‑8). The 
average value of 0.804 was employed as an estimated effect 
size for the present trial. A priori two‑tailed power analysis 
was conducted with a level of significance α of 0.05, a desired 
power 1‑β of 0.8 and the estimated effect size of 0.804, which 
suggested a required total sample size of 15 individuals.

Participant recruitment took place between 27 May 2020 
and 2 June 2020 at Takanawa Clinic (Tokyo, Japan). A total 
of 20 volunteers were screened for eligibility, indicated to be 
eligible and enrolled in the present trial (Fig. 1). In vitro cytokine 
response assay was performed between 7 and 9 June 2020. LAB 
were administered to all the enrolled participants between 
25 June and 17 August 2020, 2 of whom were excluded from 
the main analysis due to no visit to Takanawa Clinic following 
the LAB prescription. Consequently, 18 subjects (1 male and 
17 females; age, 28‑66 years; mean age ± SD, 44.2±10.1 years) 
completed the intervention, and the data were subjected to 
statistical analysis.

Study design. The present study comprised two sequential 
experimental procedures: An in vitro cytokine response assay 
and a single‑arm, double‑blind, prospective trial.

The optimal LAB in each subject were determined 
using co‑culture of the peripheral blood with each LAB. 
QFPD‑induced innate cytokine changes were used as an 
indicator to evaluate the anti‑COVID‑19 immunomodulatory 
potential of LAB. The QFPD‑induced innate cytokine index 
(QICI) was defined as follows: QICI=(TNF‑α) x (IL‑1β) x 
(IL‑18) x (IL‑8)/(IL‑6), where brackets represent the plasma 
level of the cytokine in pg/ml. IL‑6 is a critical driver of 
complex immune dysregulation in patients with COVID‑19 
and was thus adopted as the denominator (54‑56).

The LAB with the highest and lowest QICI were used in 
a subsequent clinical trial to examine whether the ingested 
LAB could reproduce the in vitro cytokine responses (in vitro 
QICI). The trial consisted of three consecutive sessions: 
i) Validation (intervention using the LAB with the highest 
QICI); ii) washout; and iii) control (intervention using the LAB 
with the lowest QICI) sessions. The primary outcome measure 
was the changes in the plasma levels of TNF‑α, IL‑1β, IL‑18, 
IL‑8 and IL‑6 and the QICI after each 7‑day LAB session 
compared with those at baseline. The secondary outcome 
measure was the changes in hematological parameters after 
each 7‑day LAB session compared with those at baseline.

In vitro cytokine response assay. L. plantarum SNK12 [2x1012 
colony‑forming unit/g (cfu/g); Bio‑Lab Co., Ltd.] is a probiotic 
strain with potent immunomodulatory, anti‑inflammatory 
and antiviral abilities (57,58). A probiotic B. longum BB536 
strain (1.5x1011 cfu/g; Morinaga Milk Industry Co., Ltd.) has 
been reported to exhibit various clinical benefits, such as 
anti‑allergic effects  (59,60), protection against viral infec‑
tion (41,61) and modulation of gut microbiota (62‑64). L. lactis 
ssp. lactis demonstrates immunomodulatory and antiviral 
effects through activating plasmacytoid dendritic cells and 
increasing their ability to produce interferons (IFNs) (42). The 
commercially available probiotic strain LLL970 (1x1011 cfu/g; 
Synbio Tech, Inc.) was used in the present study.

Live LAB cells were disrupted by vibrating them twice at 
4,600 rpm (the number of the figure‑8‑shaped movement of 
sample tubes per minute) for 3 min at room temperature with 
0.5 g of 3.0‑mm zirconia beads in a commercial bead vibrator 
(PS‑2000; Kurabo Industries Ltd.) followed by heating at 60˚C 
for 20 min. Dead LAB were suspended at a 100 µg/ml concen‑
tration in Dulbecco's PBS (without Ca2+ and Mg2+).

The ability of the LAB to stimulate QFPD‑like cytokine 
production by peripheral blood immune cells was evaluated 
as described in previous studies (65‑67). Briefly, heparinized 
peripheral blood (0.4 ml) from each subject was co‑cultured 
with each killed LAB suspension (4 µg) in 1 ml RPMI‑1640 
medium (DS Pharma Biomedical Co., Ltd.) supplemented 
with 10% fetal bovine serum (FBS; Sigma‑Aldrich; Merck 
KGaA) in a humidified incubator with 5% CO2 at 37˚C for 
48  h. Concentrations of TNF‑α, IL‑1β, IL‑8 and IL‑6 in 
culture supernatants were measured using the V‑PLEX 
Proinflammatory Panel 1 Human kit (cat. no. K15049D‑1; 
Meso Scale Diagnostics, LLC) and the concentration of 
IL‑18 was measured using the Human IL‑18 ELISA kit 
(cat. no. ab215539; Abcam) according to the manufacturers' 
protocols. The data were used to calculate the QICI value for 
the characterization of the species with the highest or lowest 
QICI.

Clinical trial. The present trial was a single‑arm, double‑blind, 
prospective trial. Each subject was instructed to orally ingest 
the live LAB with the highest QICI (1x1011 cfu/day) in the 
in vitro cytokine response assay twice daily in the morning 
and evening between meals for 7 days (days 1‑7). After a 
7‑day washout period (days 8‑14), a negative control trial was 
conducted, in which the LAB with the lowest QICI in the 
in vitro cytokine response assay (1x1011 cfu/day) was orally 
administered twice daily in the morning and evening between 
meals for 7 days (days 15‑21). Peripheral blood samples were 
obtained from each subject on days 0, 8 and 22. Neither the 
subjects nor physicians in charge were aware of the results of 
the in vitro LAB assessment, prescribed LAB or their QICI 
properties until the final blood sampling was completed. 
Concentrations of plasma TNF‑α, IL‑1β, IL‑18, IL‑8 and IL‑6 
were quantified as aforementioned. Hematological and blood 
biochemical tests (parameters as listed in Table SII) were 
outsourced to SRL, Inc.

Innate immune cell activity assays. A total of ~9 months after 
the completion of the trial, 10 healthy subjects were randomly 
selected from the 18 trial participants and randomly assigned 
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to either the L. plantarum group (n=5) or the B. longum group 
(n=5) through simple randomization. Ingestion of L. plantarum 
and B.  longum and blood sampling were conducted with 
the same protocol as that of the trial (1x1011 cfu/day; twice 
daily for 7 days). After a 7‑day ingestion, innate immune cell 
activity was measured using standard methods as described 
below in detail.

Neutrophil activity. Measurement of the phagocytic activity of 
neutrophils was outsourced to BML, Inc. Briefly, heparinized 

peripheral blood (0.1 ml) from each subject was mixed with 
40 µl fluorescent microbeads (Fluoresbrite® YG Carboxylate 
Microspheres 1.75 µm; Polysciences, Inc.) diluted 4‑fold with 
Dulbecco's PBS [‑(without Ca2+ and Mg2+)] and incubated with 
gentle agitation at 37˚C for 30 min. The samples were treated 
with 2 ml 10X FACS lysing solution (BD Biosciences) at 4˚C for 
15 min to lyse erythrocytes under gentle hypotonic conditions, 
followed by flow cytometric analysis using FACSCalibur™ 
flow cytometer (BD Biosciences). Granulocytes were char‑
acterized as medium‑sized cells with high granularity and 

Figure 1. CONSORT flow diagram of participants in the present study. CONSORT; consolidated standards of reporting trials.
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separated by setting a medium forward scatter (FSC)/high side 
scatter (SSC) gating. The percentage of fluorescence‑positive 
granulocytes (granulocytes that phagocytosed the fluorescent 
microbeads) to the total count of granulocytes was calculated 
using the BD CellQuest™ Pro software version 6.0 (BD 
Biosciences).

Natural killer (NK) cell activity. Analysis of NK cell activity 
using chromium‑51 (51Cr) release assay was outsourced to 
SRL, Inc. Lymphocytes were isolated from 5 ml peripheral 
blood using density gradient centrifugation (Lymphosepar 
I; Immuno‑Biological Laboratories Co., Ltd.) according 
to the manufacturer's instructions. The lymphocytes were 
washed twice with Dulbecco's PBS (‑) and resuspended 
at 1x106 cells/ml in RPMI‑1640 supplemented with 10% FBS. 
A total of 200‑µl aliquots (effector cells; 2x105) were mixed 
with human chronic myelogenous leukemia K562 cells (target 
cells; 1x104 cells/10 µl; cat. no. CCL‑243; American Type 
Culture Collection) radiolabeled with 51Cr (PerkinElmer, Inc.) 
and incubated at 37˚C for 3.5 h in a 5% CO2 incubator. The 
cells were collected by centrifugation, and the remaining 
51Cr radioactivity was measured using WIZARD® Automatic 
Gamma Counter (PerkinElmer, Inc.). 51Cr‑loaded K562 cells 
treated with effector‑free culture medium (RPMI‑1640; 
10% FBS) were used for the quantification of spontaneously 
released 51Cr.

Macrophage activity. The serum level of neopterin, an 
activation marker produced primarily by IFN‑γ‑stimulated 
monocytes and macrophages  (68,69), was assessed for 
macrophage activity. Determination of serum neopterin 
was outsourced to SRL, Inc. Serum (0.3 ml) was analyzed 
by a reverse‑phase high‑performance liquid chromatog‑
raphy column‑switching method (LC‑2000Plus; JASCO 
Corporation) (70) using Wakosil GP‑N6 4.6x150 mm as a 
pretreatment column and Wakosil‑II 5C18 HG 4.6x250 mm 
as an analysis column (FUJIFILM Wako Pure Chemical 
Corporation). The neopterin level was determined by 
detecting its native fluorescence (excitation, 353 nm; emis‑
sion, 438 nm) with a fluorescence detector (FP‑2025; JASCO 
Corporation).

Statistical analysis. For the in vitro cytokine response assay, 
when IL‑1β was undetectable in negative control samples 
(14 of 20 enrolled subjects; Table SI), 0.5x lower limit of detec‑
tion (0.05 pg/ml) was used to calculate the QICI value.

In the analysis of the trial data, the interquartile range 
(IQR) method was used to identify outliers; any values that fell 
below Q1‑1.5x IQR or above Q3 + 1.5x IQR (Q1, first quartile; 
Q3, third quartile) were considered outliers and removed from 
the statistical analysis (71,72). In order to perform statistical 
tests of matched pairs, the paired values of the outliers were 
removed, even if they fell into the non‑outlier range. When 
calculating QICI scores, outliers and zero values were handled 
as follows: i) The outliers were replaced with mean values that 
were calculated from the non‑outliers to avoid unreasonable 
reduction of QICI scores by simple removal of the outliers; 
and ii) zero values in the measurement of IL‑1β and IL‑18 
were replaced with the values of 0.5x lower limit of detection 
(IL‑1β, 0.05 pg/ml; IL‑18, 8.30 pg/ml) (73,74).

The normality of the data was firstly examined using the 
normal quantile‑quantile plots and the Shapiro‑Wilk test. On 
the basis of the results from these normality tests, the Friedman 
test was used, followed by the Nemenyi post hoc test for the 
data from the clinical trial; a two‑tailed paired Student's t‑test 
was used for the data from the assays of innate immune cell 
activity.

All statistical analyses were performed with EZR 
v1.53 (Saitama Medical Center, Jichi Medical University), 
which is a graphical user interface for R (R Foundation 
for Stat ist ica l Computing; ht tps://www.R‑project.
org/)  (75). A priori sample size calculation and post hoc 
power analysis were performed using G*Power v3.1.9.2 
(Department of Experimental Psychology, Heinrich Heine 
University Düsseldorf; https://www.psychologie.hhu.
de/arbeitsgruppen/allgemeine‑psychologie‑und‑arbeitspsychol‑
ogie/gpower) (76). Spearman's rank correlation coefficients 
for the post hoc power analysis were calculated with EZR 
v1.53 (75). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Selection of LAB with the highest and lowest QICI. Firstly, 
the species with the highest and lowest QICI among the 
three probiotic LAB (L. plantarum, B. longum and L. lactis 
ssp. lactis) were determined in each of the 20 study subjects, 
using in vitro cytokine response assay. L. plantarum demon‑
strated the highest QICI in all subjects, whereas B. longum 
demonstrated the lowest QICI (Table SI). L. plantarum had 
a 52‑7,210‑fold (mean ± SD, 1,350±1,870; 95% CI, 458‑2,250) 
higher QICI than B. longum and a 3‑188‑fold (mean ± SD, 
33±44; 95% CI, 12‑54) higher QICI than L. lactis ssp. lactis. 
The present results indicated that L. plantarum had a superior 
QFPD‑like ability to stimulate innate cytokine production by 
blood immune cells. Therefore, L. plantarum and B. longum 
were selected in all subjects for the subsequent clinical trial.

L. plantarum ingestion induces QFPD‑like innate cytokine 
responses in vivo. To investigate whether L. plantarum could 
reproduce in vivo the QFPD‑like immunomodulatory activity 
observed in  vitro, a single‑arm, double‑blind, prospective 
trial that included three consecutive sessions was conducted: 
i) A validation session using L. plantarum in the first 7 days; 
ii) a 7‑day washout period; and iii) a control session using 
B. longum in the last 7 days. The peripheral blood samples that 
were obtained before (day 0) and after (day 8) L. plantarum 
ingestion and after B. longum ingestion (day 22) were evalu‑
ated for plasma TNF‑α, IL‑1β, IL‑18, IL‑8 and IL‑6, as well 
as the QICI.

As indicated in Table  I, oral intake of L.  plantarum 
significantly increased plasma IL‑1β [median (IQR), 0.000 
(0.000‑0.000) vs. 0.134 (0.092‑0.292) pg/ml; P=0.0000310 
after Friedman test; P=0.00284 after Nemenyi post hoc test] 
and decreased plasma IL‑6 [median (IQR), 1.180 (0.812‑2.130) 
vs. 0.495 (0.425‑0.775) pg/ml; P=0.0131 after Friedman test; 
P=0.0128 after Nemenyi post hoc test]. There were no signifi‑
cant differences in the plasma levels of TNF‑α, IL‑18 and 
IL‑8. The QICI value was significantly increased [mean fold 
change, 17‑fold; median (IQR), 1,760 (680‑3,550) vs. 12,300 
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(5,440‑42,200); P=0.0173 after Friedman test; P=0.0138 after 
Nemenyi post hoc test]. The QICI values were increased in 16 
of 18 subjects (88.9%) with considerable individual differences 
in the fold change (1‑128‑fold; mean fold change, 19‑fold; 
Fig. 2A), suggesting that there are large variations in respon‑
siveness to L. plantarum among individuals. 

By contrast, oral intake of B. longum induced a significant 
decrease in plasma IL‑1β [median (IQR), 0.134 (0.092‑0.292) 
vs. 0.000 (0.000‑0.000) pg/ml; P=0.0000310 after Friedman 
test; P=0.000706 after Nemenyi post hoc test]; however, the 
QICI value did not change significantly [mean fold change, 
2‑fold; median (IQR), 12,300 (5,440‑42,200) vs.  2,780 
(940‑9,820); P=0.0173 after Friedman test; P=0.474 after 
Nemenyi post hoc test]. The QICI values increased in 
8 of 18 subjects (44.4%), but the fold changes were markedly 
lower (1‑9‑fold; mean fold change, 3‑fold; Fig. 2B) than those 
obtained during the L. plantarum session. The present results 
suggested that orally administered L. plantarum induced an 
in vivo cytokine change similar to that induced by oral QFPD 
in a previous experiment (51).

L.  plantarum ingestion also caused a minor but 
significant change the mean corpuscular hemoglobin concen‑
tration [median (IQR), 33.3 (32.4‑33.9) vs. 32.6 (32.1‑33.1)%; 

P=0.00456 after Friedman test; P=0.00836 after Nemenyi 
post hoc test] (Table SII). No significant changes in the hema‑
tological parameters were observed during the B.  longum 
session (Table SII).

The post hoc two‑tailed power analysis revealed that 
satisfactory effect sizes were obtained [0.845 (QICI in the 
L. plantarum session)‑1.20 (IL‑1β in the B. longum session)], 
as well as statistical powers [0.908 (QICI in the L. plantarum 
session)‑0.996 (IL‑1β in the B. longum session)] after comple‑
tion of the trial (Table SIII).

Effects of L. plantarum ingestion on the innate immune cell 
activity. Subsequently, the present study examined whether the 
L. plantarum‑induced cytokine changes (increase in the QICI 
score) led to the increased activity of innate immune cells. 
L. plantarum ingestion significantly enhanced the activity of 
NK cells, which are key effectors of antiviral innate immu‑
nity that directly attack virus‑infected host cells (Table II; 
Fig. 3A) (77,78). By contrast, B. longum ingestion significantly 
promoted the phagocytic activity of neutrophils (Table  II; 
Fig. 3B). Neither L. plantarum nor B. longum ingestion acti‑
vated macrophages, as assessed by the serum neopterin levels 
(Table II; Fig. 3C). The present results further supported the 

Figure 2. Changes in plasma cytokine levels and QICI values before (pre) and after (post) oral intake of (A) Lactobacillus plantarum SNK12 and 
(B) Bifidobacterium longum BB536. QICI was defined as follows: QICI=(TNF‑α) x (IL‑1β) x (IL‑18) x (IL‑8)/(IL‑6), where brackets represent the plasma 
level of the cytokine in pg/ml. Cross marks denote outliers. Each red line represents the change of the medians. The data were statistically analyzed using the 
Friedman test followed by the Nemenyi post hoc test. QICI, Qingfei Paidu decoction‑induced innate cytokine index. 
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Figure 3. Effects of L. plantarum or B. longum ingestion on the innate immune cell activity. (A) NK cell activity before (pre) and after (post) the L. plantarum 
or B. longum ingestion. (B) Phagocytic activity of neutrophils. Representative flow cytometry plots are presented in the upper panels. The vertical and 
horizontal axes are SSC and FSC, respectively. Areas surrounded by black lines represent granulocyte populations characterized as medium FSC/high SSC 
(granulocyte gating). Histograms of fluorescence intensities of the granulocytes separated by the granulocyte gating are presented in the lower panels. The 
vertical and horizontal axes demonstrate cell count and fluorescence intensity, respectively. A black vertical line in each histogram indicates the threshold 
of fluorescence‑positive granulocytes (granulocytes that phagocytosed the fluorescent microbeads). The phagocytic activity was calculated as the ratio of 
fluorescence‑positive granulocytes to the total count of granulocytes and presented in the upper right corner of each histogram. (C) Macrophage activity. 
The serum levels of neopterin, an activation marker of monocytes and macrophages, were determined using reverse‑phase high‑performance liquid chroma‑
tography. Representative chromatograms are presented. The vertical and horizontal axes show the intensity of native fluorescence of neopterin and retention 
time, respectively. NK, natural killer; L. plantarum, Lactobacillus plantarum; B. longum, Bifidobacterium longum; FSC, forward scatter; SSC, side scatter.
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immunological benefits of L. plantarum and B. longum against 
viral infection.

Discussion

A large body of evidence has suggested that L. plantarum 
strengthens several aspects of the host defense mechanism 
against the infection by respiratory viruses, particularly 
seasonal and highly pathogenic influenza viruses. For example, 
oral administration of L. plantarum in mice significantly 
suppressed viral replication in the lungs and reduced airway 
inflammation, thereby increasing survival rates (33‑39). The 
underlying immunological effects are known to be diverse, 
including stimulation of type  I IFN production  (37,39), 
enhancement of NK cell activity  (36,39), promotion of T 
helper type 1 cell‑mediated immune responses (33,34,39) and 
activation of IgA‑dependent mucosal immunity in the small 
intestine and lung (34,35). Similarly, randomized controlled 
trials have demonstrated that oral intake of L. plantarum 
reduced the risk of upper/lower respiratory tract infec‑
tion and alleviated the respiratory symptoms of infected 
patients (30,79). The protective efficacy is associated with 
enhancement of the phagocytic activity of granulocytes, 
reduction of the plasma proinflammatory cytokines IFN‑γ and 
TNF‑α, elevation of the anti‑inflammatory cytokines IL‑4 and 
IL‑10, activation of CD8+ T cells and induction of the specific 
secretory IgA neutralizing antibodies in the bronchoalveolar 
lavage fluid (BALF) and sera (30,31).

In line with the wide variety of immunomodulatory 
abilities of L. plantarum, the SNK12 strain was indicated to 
exhibit protective effects against influenza A virus subtype 
H1N1 (57,58). The SNK12 strain has been isolated from tradi‑
tional non‑salted pickles of autochthonous red turnip that have 
been produced in the Kiso area of Nagano prefecture in Japan 
for >400 years (80). Recent animal studies demonstrated that 
oral administration of L. plantarum strain SNK12 to mice 
before influenza viral challenge suppressed the viral load in 
the BALF and lung, induced a higher titer of neutralizing 
antibodies in the BALF and sera and higher levels of specific 
IgA in BALF and feces compared with control mice and mice 
treated with the anti‑influenza drug oseltamivir (57,58).

The present study revealed that L. plantarum SNK12 
could also upregulate a subset of proinflammatory cytokines, 
as assessed both in vitro and in humans. This immunomodu‑
latory effect is likely contradictory to its potential for clinical 
benefits against the influenza virus, since the patients present 
with a broad range of inflammatory symptoms. However, it is 
notable that acute, low‑grade inflammation is a physiological 
basis for early stages of host defense mechanisms and has 
been demonstrated to serve a protective role against viral 
infection. Kechaou et al (32) demonstrated that a proinflam‑
matory L. plantarum strain with superior ability to stimulate 
the production of IL‑8 and IL‑12 markedly inhibited viral 
proliferation in the lung and alleviated clinical symptoms in 
mice when orally administered before or after influenza virus 
challenge. Furthermore, Park et al (33) revealed that inges‑
tion by mice of a probiotic L. plantarum strain conferred 
protection against influenza virus by elevating both IL‑12 
and IFN‑γ levels in the BALF and inducing low‑grade 
inflammation.
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QFPD consists of 21 traditional Chinese herbs optimized 
specifically against the symptoms of COVID‑19 (43). QFPD 
has demonstrated satisfactory therapeutic benefits in patients 
with mild‑to‑severe disease in clinical trials in China (46‑50) 
and has been recommended officially for the treatment of 
COVID‑19  (43). Our recent clinical study indicated that 
oral QFPD upregulated the blood levels of TNF‑α, IL‑1β, 
IL‑18 and IL‑8, which are key mediators of innate immune 
responses to viral infection  (51). TNF‑α, IL‑1β and IL‑18 
are induced directly by toll like receptor (TLR)7/TLR8 and 
NLR family pyrin domain containing 3 (NLRP3), foreign 
single‑stranded RNA (ssRNA) sensors in dendritic cells and 
macrophages  (81‑83). These ‘immediate‑early’ cytokines 
initiate and coordinate a broad spectrum of downstream anti‑
viral immune cascades (81‑83). Notably, recent metagenomics 
studies demonstrated that the TLR7/8‑ and NLRP3/inflamma‑
some‑mediated inflammatory pathways are strongly suppressed 
in the upper airway of patients with COVID‑19 and those 
non‑responsive to SARS‑CoV‑2 infection early in the course 
of the disease (84,85). These findings highlight the importance 
of the active TLR7/8‑ and NLRP3‑driven inflammatory path‑
ways in the early stages of anti‑SARS‑CoV‑2 immunity. We 
hypothesized that QFPD, which mimics the blood cytokine 
environment produced by TLR7/8‑ and NLRP3‑driven early 
innate immune responses to ssRNA viruses, may be effective 
in preventing SARS‑CoV‑2 infection (51). The present study 
suggested that L. plantarum, which can stimulate innate cyto‑
kine changes similar to those induced by oral QFPD, may also 
potentially provide a protective benefit against COVID‑19.

IL‑6 serves key roles in complex immune dysregulation 
and systemic hyperinflammation, which are hallmarks of 
severe COVID‑19, and IL‑6 blood level has been associated 
with COVID‑19 severity and mortality (54‑56). The produc‑
tion of IL‑6 and TNF‑α is stimulated directly by common 
TLR7/8‑driven intracellular signaling in response to ssRNA 
viruses (81‑83). However, L. plantarum ingestion significantly 
increased the plasma level of TNF‑α, whereas it downregulated 
IL‑6 plasma level in the present trial. Although the mecha‑
nism of this opposite effect remains unknown, the ability of 
L. plantarum to reduce blood IL‑6 may be indicative of its 
prophylactic administration to uninfected individuals.

Recent transcriptomic studies have demonstrated that 
exhausted NK cell responses determine severity and fatality 
of COVID‑19. Liu et al (86) have identified IL‑15‑mediated 
attenuated inflammation in NK cells as being primarily associ‑
ated with COVID‑19 severity. A study by Sahoo et al (87) has 
also highlighted that IL15‑mediated NK cell exhaustion, senes‑
cence and apoptosis are important determinants for severe/fatal 
COVID‑19. L. plantarum‑induced activation of NK cells may 
therefore be efficacious as an adjunctive therapy to improve NK 
cell exhaustion and dysfunction in severe or fatal COVID‑19.

The main limitations of the current study are the small 
number of participants, the selection of uninfected individuals 
as subjects and a female‑biased gender ratio in the subjects. 
Further clinical studies with larger cohorts are required to 
confirm the conclusions and determine generalizability. The 
uninfected subjects employed were healthy, in order to examine 
the feasibility of prophylactic, daily use of L. plantarum. As 
a result, no chest CT images of the subjects were obtained. 
Additional studies are essential to clarify whether L. plantarum 

can induce the similar cytokine changes and improve chest 
CT findings in patients with COVID‑19. Further studies are 
also required to identify probiotic strains with the ability to 
strengthen innate immunity by inducing moderate physi‑
ological inflammation. In addition, in the control session using 
B. longum (day 15‑21), blood samples were obtained at day 8 as 
baseline, not at day 14. Since the plasma IL‑1β and IL‑6 levels 
had been up‑ or down‑regulated by L. plantarum by day 8, it is 
not possible to exclude the possibility that the IL‑1β and IL‑6 
levels were spontaneously restored to the day 0 levels during 
days 8‑22 without the effects of B. longum. Similarly, there 
was a significant increase in the QICI in the L. plantarum 
session (Table  I, comparison between day  0 and day  8), 
whereas no significant change in the QICI was observed in 
the B. longum session (comparison between day 8 and day 22). 
B. longum sustained the QICI score that had been upregulated 
by L. plantarum. Therefore, it cannot be excluded either that 
B. longum also had positive effects on the QICI score in vivo.

Considering the recent emergence of novel SARS‑CoV‑2 
variants with relevant mutations that potentially affect the 
efficacy of vaccines and therapeutic antibodies, there is an 
increasing need to prepare diverse prophylactic and therapeutic 
options against COVID‑19. The present study indicated that 
L. plantarum exhibited a superior ability to mimic inflamma‑
tory innate cytokine responses essential for early stages of host 
defense mechanism against viral infection. Daily consumption 
of probiotic L. plantarum strains may be a reasonably safe, 
cost‑effective and viable option to protect uninfected indi‑
viduals against SARS‑CoV‑2 infection during the pandemic.
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