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Abstract. Osteosarcoma, which arises from bone tissue, is 
considered to be one of the most common types of cancer in 
children and teenagers. As the etiology of osteosarcoma has 
not been fully elucidated, the overall prognosis for patients 
is generally poor. In recent years, the development of bioin‑
formatical technology has allowed researchers to identify 
numerous molecular biological characteristics associated 
with the prognosis of osteosarcoma using online databases. In 
the present study, Gene Expression Omnibus (GEO) database 
was used and three microarray datasets were obtained. The 
GEO2R web tool was utilized and differentially expressed 
genes (DEGs) in osteosarcoma tissue were identified. Venn 
analysis was performed to determine the intersection of 
the DEG profiles. DEGs were analyzed by Gene Ontology 
function and Kyoto Encyclopedia of Genes and Genomes 
pathway enrichment analysis. Protein‑protein interactions 
(PPIs) between these DEGs were analyzed using the Search 
Tool for the Retrieval of Interacting Genes database, and the 
PPI network was then visualized using Cytoscape software. 
The top ten genes were identified based on measurement 
of degree, density of maximum neighborhood component, 
maximal clique centrality and mononuclear cell counts in 
the PPI network, and five overlapping genes [origin recog‑
nition complex subunit 6 (ORC6), IGF‑binding protein 5 
(IGFBP5), minichromosome maintenance 10 replication 
initiation factor (MCM10), MET proto‑oncogene, receptor 
tyrosine kinase (MET) and centromere protein F (CENPF)] 
were identified. Additionally, three module networks were 
analyzed by Molecular Complex Detection (MCODE), and 
six key genes [ORC6, MCM10, DEP domain containing 1 

(DEPDC1), CENPF, TIMELESS interacting protein (TIPIN) 
and shugoshin 1 (SGOL1)] were screened. Combined with 
the results from Cytoscape and MCODE, eight hub genes 
(ORC6, MCM10, DEPDC1, CENPF, TIPIN, SGOL1, MET 
and IGFBP5) were obtained. Furthermore, Kaplan‑Meier 
plotter survival analysis was used to evaluate the prognostic 
value of these eight hub genes in patients with osteosarcoma. 
Oncomine and GEPIA databases were applied to further 
confirm the expression levels of hub genes in tissue. Finally, 
the functional roles of the core gene CENPF were investigated 
using Cell Counting Kit‑8, wound healing and Transwell 
assays, which indicated that CENPF knockdown inhibited the 
proliferation, migration and invasion of osteosarcoma cells. 
These results provided potential prognostic markers, as well 
as a basis for further investigation of the mechanism under‑
lying osteosarcoma.

Introduction

Osteosarcoma is the most common tumor of bone and derives 
from primitive bone‑forming mesenchymal cells (1,2). 
Patients with advanced osteosarcoma fail to respond to 
conventional treatments, such as surgical resection, chemo‑
radiation followed by neoadjuvant chemotherapy and local 
radiotherapy (3,4). Therefore, the prognosis for the majority of 
patients with osteosarcoma is poor (5,6). Notably, researchers 
have discovered certain molecular targets associated with 
osteosarcoma (7‑12). Further promising tumor molecular 
targets remain to be investigated.

Gene Expression Omnibus (GEO) (13) is a public functional 
genomics data repository of high throughout gene expression 
data, chips and microarrays. Microarray and bioinformatics 
analyses have been widely used to screen genetic alterations 
in various types of tumor, such as breast cancer and follicular 
lymphoma (14‑16). In addition, gene expression level signa‑
tures and biological processes are identified using microarray 
and bioinformatics analyses (17,18). Moreover, promising 
targets for tumors have also been distinguished. For example, 
researchers identified the role of microRNA (miR)‑101‑3p 
and its functional role in hepatocellular carcinoma using 
bioinformatics (19); Zhou et al (20) screened 15 hub genes 
and pathways to identify potential prognostic markers for 
hepatocellular carcinoma treatment using bioinformatics 
analysis (20). Integrative bioinformatics have identified links 
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between HNF1 homeobox B with clear cell carcinoma and 
tumor‑associated thrombosis (21), and long non‑coding RNA 
HOXA11‑antisense RNA has been demonstrated to have clin‑
ical relevance and effects in non‑small cell lung cancer (22).

In the present study, bioinformatics analyses were 
performed to elucidate new targets to provide novel therapeutic 
targets for the treatment of osteosarcoma In order to select 
differentially expressed genes (DEGs) in osteosarcoma tissue, 
gene expression level profiling data was downloaded from 
the Gene Expression Omnibus (GEO) database. Secondly, 
Gene Ontology (GO) functional annotation analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis were performed for the screened DEGs. 
Subsequently, a protein‑protein interaction (PPI) network 
was established and Cytoscape software was applied to select 
hub genes associated with osteosarcoma. Survival analysis 
of these hub genes was performed using the online data‑
base Kaplan‑Meier plotter. Oncomine and Gene Expression 
Profiling Interactive Analysis (GEPIA) databases were used 
to further confirm the expression levels of hub genes. Notably, 
a series of functional experiments indicated that knockdown 
of the core gene centromere protein F (CENPF) suppressed 
proliferation, migration and invasion in osteosarcoma cell 
lines.

Materials and methods

Microarray data. Using the GEO database (ncbi.nlm.nih.
gov/geo/), three gene expression level profiles [GSE37552 (23), 
GSE9508 (24) and GSE19357] were selected based on the 
platforms GPL570 [(HG‑U133_Plus_2) Affymetrix Human 
Genome U133 Plus 2.0 Array], GPL6076 (Agilent‑Whole 
Human Genome Oligo Microarray G4112A condensed) and 
GPL6244 (HuGene‑1_0‑st) Affymetrix Human Gene 1.0 ST 
Array [transcript (gene) version], respectively.

DEGs profiles. Using the GEO2R (25) online analysis 
tool (ncbi.nlm.nih.gov/geo/geo2r/), DEGs were identified 
between osteosarcoma and normal tissue. The DEGs were 
calculated with thresholds of P<0.05 and |log fold‑change 
(FC)|>1.00. Intersections between each dataset were obtained 
using the Venn diagram tool (bioinformatics.psb.ugent.
be/webtools/Venn/).

Functional and pathway enrichment analysis. GO (26) 
annotations were downloaded from GO. KEGG (27) pathway 
enrichment analysis of DEGs was applied to determine 
enriched signaling pathways. Metascape tool (metascape.
org/gp/index.html) was used for annotation. P<0.01 and gene 
count >3 were considered to indicate a statistically significant 
result.

Hub genes selection. A PPI network was constructed using 
STRING (V11.5, Swiss) database (https:string‑db.org/).
Visualization of PPI networks was performed using Cytoscape 
software (V3.7.2, BioStar team; https://apps.cytoscape.
org/apps/mcode). Hub genes from DEGs were further defined 
according to module connectivity in the PPI network. Highly 
interconnected nodes indicated greater essential connectivity. 
CytoHubba (28) add‑on to the aforementioned Cytoscape was 

used to determine the connectivity of each node measured 
by degree, density of maximum neighborhood component 
(DMNC), maximal clique centrality (MCC) and mononuclear 
cell counts (MNC).

Molecular Complex Detection (MCODE) analysis. A 
Cytoscape plugin, MCODE (29), was used to identify signifi‑
cant molecular complexes in the PPI network. Corresponding 
networks of gene modules were annotated using the UniProt 
database (uniprot.org/).

Survival analysis of hub genes. Clinical and gene expres‑
sion level data were analyzed using the Kaplan‑Meier plotter 
(kmplot.com/analysis/) database. The prognostic values of 
hub genes were analyzed in patients with osteosarcoma. 
All cases were grouped according to the median value of 
mRNA expression levels. P<0.05 was considered to indicate a 
statistically significant difference.

GEPIA and Oncomine database for data validation. 
GEPIA (gepia.cancer‑pku.cn/), was applied to analyze RNA 
sequencing expression level data. The Oncomine (oncomine.
org/resource/main.html) database was used to confirm the 
expression levels of the eight hub genes.

Cell culture. Osteosarcoma cell lines MG‑63 and U‑2OS 
were obtained from Cell Resource Center, Shanghai 
Institutes for Biological Sciences at the Chinese Academy of 
Sciences. The MG‑63 cells and U‑2OS cells were cultured 
in minimal essential medium (MEM) and McCoy's 5A 
medium (Hyclone; Cytiva), respectively, supplemented with 
10% FBS (Gibco; Thermo Fisher Scientific, Inc.), 1% peni‑
cillin and streptomycin (Hyclone; Cytiva) under a controlled 
atmosphere with 5% CO2 at 37˚C and relative humidity of 
85‑95%.

Reverse transcription‑quantitative PCR (RT‑qPCR). 
Total RNA in cells was extracted using TRIzol® reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.). The concen‑
tration of RNA samples was then measured using a 
spectrophotometer. Total RNA was reverse‑transcribed into 
first‑strand complementary DNA using a Primescript RT 
reagent kit according to the manufacturer's protocol (Takara 
Bio, Inc.). For qPCR, 2X SYBR Green qPCR Master Mix 
(Suzhou Yuheng Biological Technology Co., Ltd.) was used 
on an ABI 7900 system (Applied Biosystems; Thermo Fisher 
Scientific, Inc.). The primer sequences used were as follows: 
CENPF forward, 5'‑CGT CCC CGA GAG CAA GTT TAT T‑3', 
and reverse, 5'‑ACT GCC TTT GCT GCT TTT CC‑3'; GAPDH 
forward, 5'‑GCT CTC TGC TCC TCC TGT TC‑3', and reverse, 
5'‑CGA CCA AAT CCG TTG ACT CC‑3'. Amplification condi‑
tions were as follows: 95˚C for 30 sec, followed by 40 cycles 
at 95˚C for 15 sec and 60˚C for 45 sec. The relative change 
in mRNA expression levels was calculated according to the 
2‑ΔΔCq method (30).

Transfection. Small interfering (si)RNA1 (si‑CENPF‑1), 
siRNA2 (si‑CENPF‑2) and negative control (NC) siRNA 
(non‑targeting sequence) were purchased from Sangon 
Biotech Co., Ltd. MG‑63 and U‑2OS cells were incubated 
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at 37˚C with 5% CO2 for 24 h, and subsequently plated and 
transfected with 3.125 nm of si‑NC, si‑CENPF‑1 or 
si‑CENPF‑2 at a density of 3,000 cells/well for use in the 
CCK‑8 assay. Moreover, a total of 1x105 cells/well were 
plated and transfected with 50 nm si‑NC, si‑CENPF‑1 or 
si‑CENPF‑2 for the wound healing and Transwell assays. All 
transfections were carried out using LipoHigh transfection 
reagent (Sangon Biotech Co., Ltd.) for 4 h after plated for 
16‑24 h. The cells were collected after 48 h for use in subse‑
quent experiments. The sequences were as follows: siRNA 
NC, 5'‑TTC TCC GAA CGT GTC ACG TdT dT‑3'; si‑CENPF‑1 
(Sense), 5'‑GCA GAA TCT TAG TAG TCA A‑3'; and si‑CENPF‑2 
(sense), 5'‑GCA ACC ATC TAC TTG AAG A‑3'. The level of 
transfection efficiency was higher for si‑CENPF‑2 compared 
with that of si‑CENPF‑1, and it was therefore selected for 
subsequent assays.

Western blotting. The protein expression levels of CENPF 
were detected by western blotting. The transfected MG‑63 
and U‑2OS cells were washed with pre‑cooled PBS on ice 
and then boiled for 10 min in SDS‑sample buffer (Beyotime 
Institute of Biotechnology). The concentration of protein 
was determined using a BCA assay according to the manu‑
facturer's instructions (Sangon Biotech Co., Ltd.), and the 
absorbance was read at 570 nm using Thermo Multiskan FC 
(version, US6111636; Thermo Fisher Scientific, Inc.). A total 
of 30 µg protein lysates/per lane were separated by electro‑
phoresis with 10% SDS‑PAGE. Afterwards, the samples were 
transferred to PVDF membranes. Membranes were blocked 
for 1 h with 5% skimmed milk at room temperature, and then 
incubated at 4˚C overnight with the following primary anti‑
bodies from ABclonal Biotech Co., Ltd.: GAPDH (1:1,000; 
cat. no. AC002) and CENPF (1:1,000; cat. no. A18644). 
Subsequently, membranes were incubated at 37˚C for 1 h 
with the GAPDH HRP goat anti‑mouse IgG (1:10,000; 
cat. no. AS003) and CENPF goat anti‑rabbit IgG (1:10,000; 
cat. no. AS014) secondary antibodies from ABclonal Biotech 
Co., Ltd. Bands were visualized using chemiluminescence 
HRP Substatet (MilliporeSigma). The Bio‑Rad gel Doc XR 
+ system (Bio‑Rad Laboratories, Inc.) was used to scan the 
gel images. ImageJ (version, 1.53e; National Institutes of 
Health) was used for grayscale analysis. GAPDH was used as 
an internal control.

Cell proliferation assay. Cell Counting Kit‑8 (CCK‑8) assays 
(Beyotime Institute of Biotechnology) were performed 
according to the manufacturer's protocol. MG‑63 and 
U‑2OS cells were seeded in 96‑well plates at a density of 
3,000 cells/well and transfected at 16‑24 h, and subsequently 
cultured at 37˚C in a 5% CO2 incubator. CCK‑8 was added to 
each well at 0, 24, 48 and 72 h after transfection. Following 
incubation for 1 h at 37˚C, the absorbance at 450 nm was read 
using Thermo Multiskan FC (version, US6111636; Thermo 
Fisher Scientific, Inc.). A total of three independent repeats 
were performed.

Wound healing assay. MG‑63 and U‑2OS cells were seeded 
in 6‑well plates at a density of 1x105 cells/well, cultured for 
~16‑24 h and transfected. Cells were used at ~80‑90% conflu‑
ence on the day of transfection. LipoHigh transfection reagent 

(5 µl/well; Sangon Biotech Co., Ltd.) and corresponding 
RNA (100 pmol/well) were added. After transfection for 
4‑6 h, cells were uniformly scratched using a sterile pipette, 
washed with PBS and then respectively cultured in MEM 
and McCoy's 5A medium (Hyclone; Cytiva) with 2% FBS 
for 72 h at 37˚C in a 5% CO2 incubator. The wound images 
were observed and captured using an optical microscope at 
(magnification, x40; version, CKX41; Olympus Corporation) 
at 0, 24, 48 and 72 h. The quantification data for wound 
closure assay was calculated using the following formula: 
Distance wound closed=initial wound width‑final wound 
width; wound closure rate=distance wound closed/initial 
wound width.

Transwell assays. Transwell migration assays were performed, 
and a total of 1x104 MG‑63 and U‑2OS cells were seeded 
into the top chamber in serum‑free medium, and medium 
containing 10% FBS was placed in the bottom chamber. 
Migrated cells were fixed in 4% polyformaldehyde for 
30 min at room temperature, and subsequently stained with 
0.1% crystal violet for 20 min at room temperature. Five 
views per group were selected and images were captured at 
x100 magnification using a light microscope. A total of three 
independent repeats was performed.

Transwell invasion assays were also performed using 
Millipore Transwell chambers. Transfected cells were resus‑
pended in serum‑free MEM or McCoy's 5A medium and 
placed in the upper chamber, previously coated with Matrigel 
(BD Biosciences) at 37˚C for 6 h, while MEM or McCoy's 5A 
medium containing 10% FBS was added to the lower chamber. 
Following incubation for 24 h at 37˚C in a 5% CO2 incubator, 
cells in the upper membrane were removed with cotton swabs, 
whereas invaded cells were fixed in 4% polyformaldehyde for 
30 min at room temperature and stained with 0.1% crystal 

Figure 1. Selection of three gene expression level profiles and identification 
of DEGs. A total of three gene expression level profiles were selected. In 
total, 52 DEGs were identified in accordance with the criteria of P<0.05 and 
|log fold‑change|≥1: Seven overlapping genes in GSE37552 and GSE19357; 
13 overlapping genes in GSE37552 and GSE9508; 31 overlapping genes in 
GSE19357 and GSE9508; and one overlapping gene in GSE37552, GSE9508 
and GSE19357. In addition, Venn diagram analysis presents the intersection 
of DEGs. DEG, differentially expressed gene.



MA et al:  IDENTIFICATION OF POTENTIAL CORE GENES AND FUNCTIONAL ROLES OF CENPF IN OSTEOSARCOMA4

violet for 20 min at room temperature. Five views per group 
were selected and images were captured at x100 magnification 
using an optical microscope. A total of three independent 
repeats was performed.

Statistical analysis. All data were analyzed with GraphPad 
Prism 7.0 software (GraphPad Software, Inc.) and are 
expressed as the mean ± standard deviation. Paired student's 
t‑test was used to analyze differences between two groups. 
One‑way ANOVA followed by Dunnett's post hoc multiple 
comparisons test were used to analyze differences between 
>2 groups. All experiments were performed in triplicate. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Selection of three gene expression level profiles and 
identification of DEGs. A total of three gene expression level 
profiles were selected. GSE37552 consisted of two metastatic 
samples and two non‑metastatic samples; GSE9508 included 
13 samples from non‑metastatic patients and 21 samples 
from metastatic patients; GSE19357 contained five frozen 
bone tumor biopsies (two osteochondromas, two cases of 
unusual parosteal osteochondromatous proliferation and one 
subungual exostosis). In total, 52 DEGs were identified in 
accordance with the criteria of P<0.05 and |logFC|>1: Seven 
overlapping genes in GSE37552 and GSE19357; 13 overlap‑
ping genes in GSE37552 and GSE9508; 31 overlapping genes 
in GSE19357 and GSE9508; and one overlapping gene in 
GSE37552, GSE9508 and GSE19357. Venn diagram analysis 
presents the intersection of DEGs (Fig. 1). Subsequently, seven 
overlapping DEGs were selected from three gene expression 
profiles.

GO term and KEGG enrichment analyses of DEGs. The 
online analysis tool Metascape was applied to identify GO 
categories and KEGG pathways for DEGs. The results indi‑
cated that the terms ‘regulation of muscle tissue development’, 
‘positive regulation of cell migration’, ‘bone development’ 

and ‘resolution of sister chromatid cohesion’ were primarily 
enriched with DEGs (Fig. 2).

Identification of hub genes. Protein interactions between 
DEGs were determined using STRING in the PPI network. A 
total of 52 nodes and 80 edges were included (Fig. 3A). Hub 
genes were identified based on the connectivity of degree, 
DMNC, MCC and MNC in the PPI network (Fig. 3B). Venn 
analysis was performed to determine the intersection of the 
DEG profiles, which indicated that five genes were overlap‑
ping in those four analysis methods (degree, DMNC, MCC 
and MNC; Fig. 3C). Additionally, three module networks were 
analyzed by MCODE. The most important module with six 
genes was selected (Fig. 3D). Collectively, the results of the 
union of set were calculated according to the methods of hub 
genes selection and eight genes [DEP domain containing 1 
(DEPDC1), TIMELESS interacting protein (TIPIN), 
shugoshin 1 (SGOL1), origin recognition complex subunit 6 
(ORC6), IGF‑binding protein 5 (IGFBP5), minichromosome 
maintenance 10 replication initiation factor (MCM10), MET 
proto‑oncogene, receptor tyrosine kinase (MET) and CENPF] 
were identified. Thus, eight hub genes were obtained using 
Cytohubba and MCODE analysis.

Survival analysis of hub genes. Kaplan‑Meier plotter online 
database provided the prognostic values of eight hub genes. 
Overall survival analysis of 259 cases indicated that with the 
exception of IGFBP5, high expression levels of the hub genes 
(DEPDC1, TIPIN, SGOL1, ORC6, MCM10, MET and CENPF) 
were significantly associated with unfavorable overall survival 
in patients with osteosarcoma (Fig. 4). The survival curve of 
eight hub genes exhibited significant differences between low 
and high expression levels.

Confirmation of differential expression level hub genes. In 
order to confirm the differential hub gene expression levels, 
expression level profiles were constructed based on GEPIA, 
which demonstrated that the hub genes ORC6 and CENPF were 
significantly upregulated in osteosarcoma (Fig. 5A). In order 
to verify the results, the expression levels of hub genes were 

Figure 2. GO term and KEGG enrichment analysis of DEGs. The online analysis tool Metascape was applied to identify GO categories and KEGG pathways 
for DEGs. The terms ‘muscle tissue development’, ‘cell migration’, ‘bone development’ and ‘resolution of sister chromatid cohesion’ were primarily enriched 
with DEGs. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene.
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Figure 3. Identification of hub genes. (A) Protein interactions between DEGs were determined using Search Tool for the Retrieval of Interacting Genes in the 
PPI network. The results demonstrated that 52 nodes and 80 edges were included. (B) Hub genes were identified based on the connectivity of degree, DMNC, 
MCC and MNC in the PPI network. (C) Venn analysis was performed to identify intersection of DEG profiles, which demonstrated that five genes were 
overlapping in those four analysis methods. (D) A total of three module networks were analyzed by MCODE, and the most important module with six genes 
was selected. PPI, protein‑protein interaction; DEG, differentially expressed gene; MCODE, Molecular Complex Detection; DMNC, density of maximum 
neighborhood component; MCC, maximal clique centrality; MNC, mononuclear cell counts.
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collected in Oncomine database, which indicated that IGFBP5 
and MET were downregulated in tumor tissues, whereas the 
other hub genes [DEPDC1, TIPIN, SGOL1(SGO1), ORC6, 
MCM10 and CENPF] were upregulated in tumor tissues, 
compared with the adjacent non‑tumorous tissues (Fig. 5B). 
The expression of eight hub genes exhibited a significant 
difference between tumors and adjacent tissues.

Identif ication of CENPF transfection ef f iciency in 
osteosarcoma cell lines. As aforementioned, ORC6 and 
CENPF were upregulated in osteosarcoma. Furthermore, 
Kaplan‑Meier plotter indicated that the P‑value of CENPF was 
smaller compared with that of ORC6. Therefore, CENPF was 
selected for further experiments analyses.

In order to select the most effective siRNA for CENPF, 
transfection efficiency was assessed using RT‑qPCR and 
western blotting. MG‑63 and U‑2OS cells were transfected 
with NC, si‑CENPF‑1 or si‑CENPF‑2. The results demon‑
strated that CENPF expression at both the mRNA and protein 
levels were significantly downregulated in both cell lines 
transfected with si‑CENPF‑2 compared with the NC (*P<0.05, 
**P<0.01; Fig. 6A‑D). Thus, si‑CENPF‑2 was selected for the 
following functional experiments.

Knockdown of CENPF suppresses proliferation in osteosarcoma 
cell lines. In order to analyze the functional role of CENPF 
in osteosarcoma, CCK‑8 assays were performed in MG‑63 
and U‑2OS cell lines. NC and si‑CENPF‑2 were separately 

transfected into osteosarcoma cell lines. Proliferation ability 
was significantly decreased in the si‑CENPF‑2 group compared 
with the corresponding NC group (*P<0.05; Fig. 7A and B). 
This indicated that CENPF knockdown inhibited the prolifera‑
tion ability of osteosarcoma cell lines.

Knockdown of CENPF decreases migration ability in 
osteosarcoma cell lines. Wound healing and Transwell 
migration assays were performed to investigate the effect of 
CENPF on migration in osteosarcoma cell lines. Cells were 
transfected with NC and si‑CENPF‑2 and migration ability 
was then investigated. In osteosarcoma cell lines, the wound 
healing rate was significantly decreased in the si‑CENPF‑2 
groups compared with the corresponding NC groups (*P<0.05, 
**P<0.01; Fig. 8B and D). The results demonstrated that CENPF 
knockdown decreased migration ability in osteosarcoma 
cell lines.

Knockdown of CENPF decreases invasion ability in osteosar‑
coma cell lines. In order to measure invasion ability, Transwell 
invasion assays were performed in osteosarcoma cell lines 
using Matrigel‑coated Transwell inserts. Cell lines were 
transfected with NC or si‑CENPF‑2. The results demonstrated 
that cells transfected with si‑CENPF‑2 exhibited significantly 
lower invasion abilities compared with the corresponding 
NC groups (**P<0.01, ***P<0.001; Fig. 9). This indicated that 
downregulated CENPF significantly decreased invasion 
ability in osteosarcoma cell lines.

Figure 4. Survival analysis of hub genes. Kaplan‑Meier plotter online database revealed the prognostic values of eight hub genes. Overall survival analysis of 
259 cases demonstrated that, with the exception of IGFBP5, high expression levels of hub genes (DEPDC1, TIPIN, SGOL1, ORC6, MCM10, MET and CENPF) 
were associated with an unfavorable overall survival of patients with osteosarcoma. IGFBP5, IGF‑binding protein 5; DEPDC1, DEP domain‑containing 1; 
TIPIN, TIMELESS interacting protein; SGOL1, shugoshin 1; ORC6, origin recognition complex subunit 6; MCM10, minichromosome maintenance 10 
replication initiation factor; MET, MET proto‑oncogene, receptor tyrosine kinase; CENPF, centromere protein F.
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Figure 5. Confirmation of differential expression hub genes. (A) Gene Expression Profiling Interactive Analysis demonstrated that the hub genes ORC6 and 
CENPF were upregulated in osteosarcoma (tumor=262; normal=2). *P<0.05. (B) Oncomine database verified that IGFBP5 and MET were downregulated, 
but the other hub genes (DEPDC1, TIPIN, SGOL1, ORC6, MCM10 and CENPF) were upregulated. SARC, osteosarcoma; T, tumor; N, normal; IGFBP5, 
IGF‑binding protein 5; DEPDC1, DEP domain‑containing 1; TIPIN, TIMELESS interacting protein; SGOL1, shugoshin 1; ORC6, origin recognition complex 
subunit 6; MCM10, minichromosome maintenance 10 replication initiation factor; MET, MET proto‑oncogene, receptor tyrosine kinase; CENPF, centromere 
protein F.
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Figure 6. Identification of CENPF transfection efficiency in osteosarcoma cell lines. In order to select the most effective siRNA for CENPF, transfection 
efficiency was assessed via qPCR and western blotting. Cells were transfected with NC, si‑CENPF‑1 and si‑CENPF‑2. mRNA expression levels of CENPF in 
(A) MG‑63 cells and in (B) U‑2OS cells transfected with si‑CENPF‑2 were downregulated. The protein expression levels of CENPF in (C) MG‑63 cells and 
in (D) U‑2OS cells transfected with si‑CENPF‑2 group were downregulated. *P<0.05, **P<0.01. qPCR, quantitative PCR; si, small interfering RNA; CENPF, 
centromere protein F; NC, negative control; ns, not significant.

Figure 7. Knockdown of CENPF suppresses proliferation in osteosarcoma cell lines. In order to analyze the functional role of CENPF in osteosarcoma, Cell 
Counting Kit‑8 assays were performed in (A) MG‑63 and (B) U‑2OS cell lines. NC and si‑CENPF‑2 were separately transfected into osteosarcoma cell lines. 
Proliferation ability was decreased in the si‑CENPF‑2 group compared with the corresponding NC group. *P<0.05. CENPF, centromere protein F; si, small 
interfering RNA; NC, negative control.
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Figure 8. Knockdown of CENPF decreases migration ability in osteosarcoma cell lines. Cells were transfected with NC and si‑CENPF‑2, and cell migration 
ability was investigated. (A) Wound healing assays were performed on MG‑63 and U‑2OS cell lines (magnification, x40), and (B) subsequent quantification 
revealed that the wound healing rate was decreased in si‑CENPF‑2 groups compared with their corresponding NC groups. CENPF‑knockdown decreased 
migration ability in osteosarcoma cell lines as detected by (C) Transwell migration assay (magnification, x40) and (D) subsequent quantification. *P<0.05, 
**P<0.01. CENPF, centromere protein F; si, small interfering RNA; NC, negative control.

Figure 9. Knockdown of CENPF decreases invasion ability in osteosarcoma cell lines. In order to assess invasion ability, Transwell assays were performed in 
osteosarcoma cell lines using Matrigel‑coated Transwell inserts. Cell lines were transfected with NC and si‑CENPF‑2. MG‑63 and U‑2OS cells transfected 
with si‑CENPF‑2 exhibited lower invasion ability compared with the NC group. Downregulation of CENPF significantly decreased invasion ability in osteo‑
sarcoma cell lines. **P<0.01, ***P<0.001. CENPF, centromere protein F; si, small interfering RNA; NC, negative control.



MA et al:  IDENTIFICATION OF POTENTIAL CORE GENES AND FUNCTIONAL ROLES OF CENPF IN OSTEOSARCOMA10

Discussion

The collection of genomic and clinical information has 
been commonly used to investigate disease progression and 
improve medical treatment (31,32). Genomic profiling enables 
more specific diagnosis and targeted treatment of a number 
of diseases, including numerous types of cancer (33,34). One 
method is to obtain bioinformatics information from micro‑
array datasets (35‑37). As microarray provides high‑throughput 
experimental data, it can be difficult to elucidate meaningful 
biological implications from large datasets (38,39). Therefore, 
the majority of data generated by microarrays are collected 
in public archives such as GEO (40), Oncomine (41) and The 
Cancer Genome Atlas (TCGA) (42).

The aforementioned powerful bioinformatics analysis 
online tools have been widely used for the identification 
of biomarkers to provide potential therapeutic targets in 
numerous types of cancer (43): Zhang et al (44) investigated 
miR‑146a‑5p and its potential targets in hepatocellular carci‑
noma using TCGA and GEO databases; a study combining 
data from TCGA, GEO and RT‑qPCR determined the clinical 
value of miR‑182‑5p in lung squamous cell carcinoma (45); 
and GEO and TCGA data have been used to investigate 
the clinical value of the underlying mechanism of ovarian 
cancer (46). Therefore, it is important to understand how 
knowledge of genomics can be translated from research into 
clinical practice, particularly in cancer treatment (47,48).

Osteosarcoma is one of the most common types 
of primary bone tumor (49) but its etiology is largely 
unknown (50), which limits understanding and treatment 
of different cases of osteosarcoma. A growing number of 
researchers are attempting to capitalize on microarray 
technology to identify disease‑specific molecular signatures 
and biomarkers for diagnosis, classification and prognosis 
prediction (51‑53). For example, research based on micro‑
array analysis has reported distinct gene expression level 
profiles associated with histological subtype in human 
osteosarcoma (54). Zou et al (55) identified the frequent 
expression levels of melanoma antigen protein A and other 
cancer‑testis antigens in osteosarcoma using microarray 
analysis. Furthermore, microarray analysis has also revealed 
48 common genes that are differentially expressed in meta‑
static cell lines compared with parental cells in metastatic 
osteosarcoma (56).

The present study used the GEO database to search for 
potential datasets in order to identify key genes and pathways 
associated with osteosarcoma. As presented in gene expres‑
sion level profiles, GSE37552, GSE9508 and GSE19357 
were identified. In order to further investigate the statistical 
significance of DEGs, GO and KEGG analysis indicated 
that the terms ‘regulation of muscle tissue development’, 
‘positive regulation of cell migration’, ‘bone development’ 
and ‘resolution of sister chromatid cohesion’ were primarily 
enriched with DEGs. Subsequently, the PPI network was 
constructed using the online software STRING. In order to 
predict the critical genes in osteosarcoma, the top ten genes 
were identified based on the connectivity of degree, DMNC, 
MCC and MNC in the PPI network. Venn analysis was 
performed to determine the intersection of the DEG profiles, 
which demonstrated that five genes were overlapping in 

those four analysis methods. In addition, MCODE analysis 
indicated that six key genes exhibited strong interactions. 
Combined with the results of PPI network construction 
and MCODE analyses, eight hub genes were obtained 
(DEPDC1, TIPIN, SGOL1, ORC6, IGFBP5, MCM10, MET 
and CENPF). Furthermore, Kaplan‑Meier survival analysis 
was performed to identify the prognostic value of these 
eight hub genes. The results indicated that overexpression 
of seven hub genes (DEPDC1, TIPIN, SGOL1, ORC6, 
MCM10, CENPF and MET) was associated with less favor‑
able overall survival in patients with osteosarcoma. GEPIA 
and Oncomine databases were used to confirm differential 
hub gene expression levels in tissue. The hub gene CENPF 
was selected for further experiments to determine its effects 
on the proliferative, migratory and invasive abilities of 
osteosarcoma cells. CCK‑8, wound healing and Transwell 
migration and invasion assays results indicated that CENPF 
knockdown inhibited the proliferation, migration and 
invasion of osteosarcoma cell lines. However, further inves‑
tigation is required to identify potential causes.

The present study screened three gene expression level 
profiles to select DEGs, and then performed functional 
enrichment analyses of DEGs using GO and KEGG. Potential 
associated factors involved in osteosarcoma were identified. 
Moreover, PPI network construction and MCODE analyses 
were conducted, and seven novel genes associated with osteo‑
sarcoma were identified. In order to determine the prognostic 
value of these genes, the Kaplan‑Meier method was used 
for overall survival analysis. GEPIA and Oncomine further 
confirmed expression levels of hub genes. The functional 
experiments demonstrated that knockdown of the hub gene 
CENPF inhibited proliferation, migration and invasion in 
osteosarcoma cell lines. These results may indicate targets for 
novel therapeutic strategies for osteosarcoma.
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