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Abstract. Heparinase (HPA) is a β‑D glucuronidase that 
belongs to the endoglycosidase enzyme family, and plays an 
important role in numerous pathological and physiological 
processes, including inflammation, angiogenesis and tumor 
metastasis. When the expression of HPA is abnormally high, 
the side chain of heparin sulfate proteoglycans degrades, 
destroying the cell barrier and leading to the occurrence and 
development of inflammation, with systemic inflammation 
occurring in severe cases. Sepsis is a major cause of mortality 
in critically ill patients. In sepsis, the gastrointestinal tract 
is the first and most frequently involved target organ, which 
often leads to gastrointestinal dysfunction. HPA overexpres‑
sion has been determined to accelerate sepsis progression and 
gastrointestinal dysfunction; thus, it was hypothesized that 
HPA may play an important role and may serve as an index 
for the diagnosis of gastrointestinal dysfunction in sepsis. HPA 
inhibitors may therefore become applicable as targeted drugs 
for the treatment of gastrointestinal dysfunction in patients 
with sepsis. The present review mainly discussed the role of 
HPA in gastrointestinal dysfunction of sepsis.
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1. Introduction

Heparinase (HPA) is the only enzyme in the eukaryotes 
that can degrade heparin (HP)/HP sulfate (HS). A search 
for terms such as ‘heparinase’, ‘inflammation’, ‘sepsis’ and 
‘gastrointestinal dysfunction’ in electronic databases such 
as PubMed and Web of Science reveals that HPA has been 
widely used in the field of medicine. For example, HPA has 
been utilized to antagonize the effect of HP. HPA is mostly 
used in cardiopulmonary bypass surgery and can also 
generate low molecular weight HP (LMWH) (1,2). HPA has 
also attracted attention due to its inflammatory effect, which 
destroys the cellular barrier, particularly at the basement 
membrane (BM), leading to gastrointestinal inflammation 
and dysfunction (3). Previous studies have demonstrated that 
HPA is closely associated with the occurrence and progres‑
sion of inflammation and sepsis  (3,4). HPA aggravates the 
progression of sepsis and gastrointestinal dysfunction (5,6); 
thus, the present review hypothesized that HPA may play an 
important role in the gastrointestinal dysfunction observed in 
sepsis. However, there are limited reports on the role of HPA 
in gastrointestinal dysfunction during the early stage of sepsis. 
Therefore, the present study mainly focused on HPA and its 
role in inflammation, gastrointestinal dysfunction and sepsis.

2. HPA

HPA is an endosaccharide nucleotide enzyme that breaks 
the glycosidic bond between amino sugars and uronic acids 
in HP, thereby degrading HP to produce disaccharides and 
oligosaccharides (7). HP is an important clinical drug that 
was identified ~100 years ago. It is a linear chain composed 
of 20‑100 D‑acetylglucosamine unsaturated units, in which 
D‑acetylglucosamine is linked with glucuronic acid through 
an α‑1,4 glycosidic bond (8). HP and its structural analogue, 
HS, are the most complex glycosaminoglycans  (GAGs), 
which are members of the multi‑anion, multi‑disperse, linear 
polysaccharide family (9).

HP has several important biological functions in numerous 
physiological and pathological processes and has been widely 
used in clinical treatment (10,11). For example, the interaction 
between HP and antithrombin demonstrated that HP exerted 
anticoagulant effects (12). Therefore, in clinical application, 
HP is mainly used for the prevention and treatment of deep 
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vein thrombosis and pulmonary embolism (13). In addition, 
LMWH is a more effective and safe anticoagulant than unfrac‑
tionated heparin (UFH) due to its predictable anticoagulative 
response, longer half‑life, lower bleeding risk and higher 
bioavailability (2). LMWH can also be used to treat sepsis, 
and there is medical evidence that LMWH can reduce the 
28‑day mortality rate and improve prognosis in patients with 
sepsis (14). Additional effects of HP, such as reducing cancer 
metastasis, have been previously explored and as a result, the 
range of its therapeutic application has increased (13).

HPA can be divided into two types according to its source: 
i) The HPA gene of eukaryotic origin, which expresses an 
enzymatic protein called eukaryotic HPA that degrades 
HP/HS by hydrolysis; and ii)  the HPA gene of prokaryotic 
origin that degrades HP/HS by pyrolysis (15). Of note, all the 
references to HPA in the present study correspond to that of 
eukaryotic origin. 

In 1999, the HPA gene of eukaryotic origin was purified 
and isolated for the first time (15). HPA is a single‑copy gene 
that can be divided into two highly conserved subtypes: HPA1 
and HPA2 (16). Linear analysis of the human HPA1 and HPA2 
has revealed that ~35% of their amino acid sequences are 
identical (16).

In vivo, HPA exists in lysosomes in the form of a precursor 
enzyme, which must be activated and modified into two 
active polypeptides with corresponding molecular weights 
of 50 and 8 kDa. These subsequently combine covalently to 
form a heterodimer, which finally becomes active HPA (15). 
In normal tissue cells, HPA is mainly distributed in the spleen, 
placenta, platelets, neutrophils, monocytes and activated T and 
B lymphocytes, but is not expressed in the heart, lung, brain, 
skeletal muscle, pancreas or kidney (15). However, HPA is 
commonly found in various metastatic malignant tumor cells, 
including lymphoma and breast, lung, stomach, liver, pancre‑
atic, bladder, skin and colon cancer (15,17‑20). In addition, HPA 
is expressed in hyperplastic lesions, inflammation, injury, the 
immune response and other pathological conditions (15,21,22).

HPA plays an important role in multiple physiological and 
pathological processes in the human body. HPA can hydro‑
lyze the side chains of HS on heparin sulfate proteoglycans 
(HSPGs), destroying the basic structures of the extracellular 
matrix (ECM) and BM, thereby releasing and activating the 
active substances attached to side chains (23). HSPGs contribute 
to the structural integrity, self‑assembly and insolubility of 
the ECM and BM, and are critical for regulating cell‑ECM 
interactions (24). Numerous growth factors are bound to the 
side chain of HS, including hepatocyte growth factor, fibro‑
blast growth factor and vascular endothelial growth factor 
(VEGF)  (25). When HS is cleaved by HPA, these growth 
factors bind to their growth factor receptors on the cell surface 
and participate in intracellular signal activation, thus markedly 
increasing urokinase‑type plasminogen activator and matrix 
metalloproteinase (MMP)9 levels. Upregulated MMP9 then 
goes on to cleave the core protein of HSPG from the cell 
surface, thus leading to the degradation of HSPGs (25).

A study has demonstrated that HPA induces HS‑independent 
signal activation, which involves enhanced Akt, p38 and 
Src phosphorylation (26). It also causes the transcription of 
VEGF‑A, VEGF‑C, tissue factor and cyclooxygenase‑2 (26). 
HPA promotes HSPG aggregation, which leads to a cascade 

of intracellular signal amplifications, as well as the activation 
of protein kinase C, Src and Ras‑related C3 botulinum toxin 
substrate 1. These activations contribute to cell adhesion and 
directional migration, which alters cell‑cell and cell‑ECM 
interactions (27‑30). In addition, the expression of HPA in 
non‑invasive and non‑immune tissues plays an important 
role in tissue formation, regeneration and repair during 
embryonic and adult development (31). Both proenzyme and 
active HPA are also important for the biological function 
of osteoblasts, nervous system development and nerve cell 
differentiation (31‑33).

It has been shown that HPA enhances exosmosis, and 
promotes the production and docking of exosomes between 
tumors and host cells, thus promoting tumor progression (34). 
HPA can promote autophagy, which when enhanced, partially 
mediates the HPA‑induced effects of increased tumor growth 
and chemical resistance  (35). The potential mechanism of 
HPA‑induced autophagy is incompletely understood, but it is 
likely to involve mTOR1, which plays a key role in the regula‑
tion of nutrient sensing and autophagy (36). Autophagy in turn 
plays an important role in sepsis, the mechanism of which is 
relatively complex and unclear. However, it may be associated 
with multiple signaling pathways, including NF‑κB, mTOR 
and PI3K/Akt (37). Therefore, it was hypothesized that the 
involvement of HPA in the process of sepsis may be closely 
associated with autophagy, exosomes and various signaling 
pathways, although the specific pathways require further 
elucidation.

3. HPA in inflammation

The close association between HPA and inflammation was 
demonstrated >20 years ago. Before the HPA gene was cloned, 
HS degrading activity was found in various immune cells, 
such as neutrophils and activated T lymphocytes (38). The 
anti‑inflammatory effects of substances that act as HPA inhibi‑
tors (such as HP) have been demonstrated (39), thus further 
supporting the important role of HPA in the inflammatory 
response.

Under normal physiological conditions, HPA levels are rela‑
tively low. The expression of HPA in normal tissues is limited 
to the placenta and activated immune cells (40). However, when 
physiological homeostasis is disrupted, in situations such as 
cancer, inflammation and thrombosis, the expression of HPA is 
increased and its secretion is upregulated (40). Usually, elevated 
HPA expression during inflammation has been reported to be 
associated with several mechanisms, including HS degrada‑
tion, ECM remodeling, increased inflammatory cell migration 
to the site of injury, and the release of chemokines anchored to 
the cell surface and ECM (41).

A classic example of inflammatory disease is inflamma‑
tory bowel disease (IBD), which is a chronic disease of the 
gastrointestinal tract that is caused by inappropriate mucosal 
immune responses. It has a variety of causes, including genetic 
alterations, intestinal epithelial defects and altered intestinal 
luminal flora composition (3,42). Ulcerative colitis (UC) and 
Crohn's disease (CD), which are the two main forms of IBD, 
are incurable and have a high incidence rate among young 
individuals  (43). UC is a severe ulcerative inflammatory 
disease that is limited to the colon and rectum, extending 
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only to the mucosa and submucosa (3). By contrast, CD, also 
known as regional enteritis due to frequent ileal involvement, 
may involve any region of the gastrointestinal tract and usually 
affects the bowel wall through to the muscular layer (3).

In patients with IBD, the balance between the immune 
response of the pathogen and the tolerance of normal flora 
is disrupted, resulting in the uncontrolled absorption of 
pro‑inflammatory substances (bacteria and bacterial products) 
in the intestinal tract. This activates the immune system, thus 
releasing cytokines and ultimately leading to structural and 
functional dysfunction of the epithelial barrier (3,44). In addi‑
tion, due to the importance of HS in maintaining the integrity 
of the intestinal wall  (4,45), the enzymatic degradation of 
HS is considered to markedly affect the permeability and 
inflammatory response of the colon.

Therefore, the effect of HPA on HS impacts numerous 
aspects of inflammation, and the role of HPA is crucial during 
the initial stages and progression of inflammation.

4. HPA in gastrointestinal dysfunction

In addition to IBD, the roles of HPA in other gastrointestinal 
disorders have also been reported. In colitis, the enzymatic 
activity of HPA greatly enhances the activation of macro‑
phages by lipopolysaccharide, leading to a significant increase 
in the expression of certain inflammatory factors, such as 
TNF‑α, IL‑6 and IL‑12, promoting the occurrence of inflam‑
mation (21). A previous study also demonstrated that intestinal 
barrier disruption occurred as a result of the excessive produc‑
tion of pro‑inflammatory cytokines (TNF‑α, IL‑1β and 
IFN‑γ) (46). During the process of intestinal inflammation, 
the inflammatory effect of HPA therefore plays a key role in 
early stages.

Among the aforementioned inflammatory factors, TNF‑α 
is a pro‑inflammatory cytokine that stimulates increased IL‑1 
production, leukocyte migration, angiogenesis (47) and poten‑
tially the development of septic shock (5). TNF‑α increases the 
levels of various MMPs, such as MMP9, MMP12 and MMP19, 
which disrupt the intestinal ECM (48). Furthermore, HPA 
expression in intestinal epithelial cells can be induced by acti‑
vated macrophages, most likely through the TNF‑α‑mediated 
stimulation of the transcription factor early growth response 
1, which is a powerful inducer of HPA transcription in colon 
cells  (21,49). Therefore, TNF‑α plays an important role in 
inflammation and sepsis.

Chronic inflammation can promote the progression of 
tumors by mobilizing tumor‑related immune cells to promote 
angiogenesis, cell invasion and metastasis  (50). Therefore, 
chronic gastric inflammation and chronic intestinal inflam‑
mation may predispose individuals to gastric and colorectal 
cancer, respectively (51,52). It is well known that the BM and 
ECM act as barriers to prevent tumor cell invasion and metas‑
tasis (23). Enzymatic hydrolysis of HPA disrupts this barrier 
function, and HPA is one of the key enzymes involved in the 
invasion and metastasis of malignant tumors (53). Furthermore, 
HPA overexpression has been observed to be significantly 
associated with reduced tumor survival (53). HPA is overex‑
pressed in gastric cancer, and a previous in vitro study (54) 
revealed that gene silencing via HPA can effectively inhibit the 
proliferation, invasion, metastasis and angiogenesis of gastric 

cancer cells (54). Similarly, HPA is overexpressed in colon 
cancer, which is closely associated with chronic inflammatory 
pathways (21). HPA is also emerging as a new target for the 
treatment of tumors, and novel therapeutic approaches derived 
from HPA are currently being developed. Thus, HPA plays an 
important role in gastrointestinal dysfunction, whether it is 
induced by inflammation or tumors (Table I).

5. HPA in sepsis

Sepsis is one of the main causes of mortality among critically 
ill patients (55). Sepsis is now defined as life‑threatening organ 
dysfunction caused by a dysfunctional response of the host to 
infection (56). Septic shock is part of sepsis and is accompa‑
nied by impaired circulatory and cellular metabolism, thus 
making it associated with a higher risk of mortality (56).

Despite advances in medicine, mortality due to septic shock 
remains high (35‑40%). The main causes of mortality include 
acute gastrointestinal injury (AGI), acute respiratory distress 
syndrome, acute kidney injury and multiple organ dysfunction 
syndrome (MODS) (56). Septic shock remains the leading 
cause of mortality among critically ill patients (56). Based on 
data from high‑income countries, it has been estimated that 
there are ~31.5 million cases of sepsis worldwide, 19.4 million 
cases of severe sepsis worldwide and possibly ≤5.3 million 
fatalities per year (57).

Sepsis is characterized by acute endothelial dysfunction, 
increased vascular permeability, the activation of clotting 
cascades and tissue edema, resulting in the compromised perfu‑
sion of vital organs (58). A previous study reported that an early 
event of sepsis can induce endothelial injury (59). Syndecan‑1 
is a biomarker of endothelial dysfunction. It is a transmem‑
brane HS proteoglycan that is mainly expressed by intestinal 
epithelial cells, and is closely associated with the inflamma‑
tory process and the integrity of the intestinal mucosa (60). In 
addition, the highly sulphated and heterotopic form of HS is 
the main functional component of syndecan‑1, which is struc‑
turally similar to HP (60,61). Syndecan‑1 levels are elevated 
during sepsis, which may be attributed to GAG shedding 
during endosaccharide calyx abscission. Furthermore, the 
plasma concentrations of syndecan‑1 correlate with sequential 
organ failure assessment scores (60,62).

A previous study revealed that the inflammatory activa‑
tion of endothelial cells in sepsis is associated with calyx 
loss (62). Another study demonstrated that circulating GAGs 
were elevated in patients with septic shock and, importantly, 
that GAG levels were associated with mortality  (63). The 
glycocalyx is composed of HS, other GAGs, proteoglycans 
and glycoproteins, and acts as a thin gel‑like endothelial layer 
that covers the surface of vascular lumens, thus constituting 
a barrier to circulating cells and controlling the utiliza‑
tion of circulating leukocytes by adhesion molecules on the 
endothelial surface (64). In addition, it has been elucidated 
that unisolated HP (an inhibitor of HPA) reduces calyx loss 
in animal models of sepsis, which is possibly related to the 
inhibition of inflammatory factors (65), thereby controlling the 
progression of sepsis.

In conclusion, syndecan‑1, calyx, GAGs and other 
substances are crucial for the integrity of the endothelial barrier 
and are structurally associated with HPA. The degradation of 
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these molecules leads to defects in the endothelial barrier and 
the aggravation of inflammation, which indicates that HPA is 
involved in the occurrence and development of sepsis.

A previous study revealed that HPA is closely associated 
with the occurrence and development of sepsis  (66). HPA 
expression was increased in animal models of septic lung 
and kidney injury, suggesting that HPA may be involved in 
the early onset of sepsis (66). An additional study demon‑
strated that expression of the gene coding for HPA (hepP) 
plays an important role in a mouse model of sepsis induced 
by Pseudomonas aeruginosa, and that mutations in the hepP 
gene enhance survival in infected mice (67‑69). A previous 
in vivo study determined that patients with sepsis induced by 
gram‑negative bacteria exhibited a pronounced increase in 
plasma HPA activity (70). It has also been clinically reported 
that HP can reduce the mortality of patients with sepsis and 
septic shock (71). Although its anticoagulant effect has been 
demonstrated, HP may also play an antagonistic role against 
HPA (71). The results of these studies suggest that the expres‑
sion of HPA accelerates the progression of sepsis, and that 
HPA inhibitors may serve to treat sepsis.

Overall, HPA plays an important role in sepsis and inflam‑
mation, contributes to the process of sepsis and is likely to be 
involved in the early process of sepsis. Thus, it was speculated 
that HPA may be a diagnostic indicator of early sepsis and that 
HPA inhibitors may serve as a form of targeted therapy.

6. HPA in the gastrointestinal dysfunction of sepsis

For decades, the gastrointestinal tract has been considered 
to be the driving force behind sepsis and MODS (46). The 
intestinal tract is one of the most metabolically active systems 
in the human body. It must constantly balance the entry of 
molecules such as water, electrolytes and nutrients, while also 
maintaining the presence of antigens in the inflammatory 
environment (46). A complete intestinal barrier is therefore 
essential to the health of an individual. In addition, the 
gastrointestinal barrier can prevent the invasion and transfer 
of bacteria in the lumen without overreacting to symbiotic 
microorganisms  (72), which is important, as an excessive 
response could easily lead to gastrointestinal dysfunction and 
a range of diseases.

In sepsis, the gastrointestinal tract is the first and most 
likely organ to be involved. Gastrointestinal dysfunction 
often occurs in patients with sepsis, and sepsis has been 
reported to cause AGI in >90% of patients (73). AGI causes 
intestinal bacteria translocation, endotoxin translocation and 
enterogenous infection, which can lead to the occurrence or 
aggravation of sepsis, and even septic shock and MODS (74). 
In addition, previous studies have reported that the AGI 
grading scheme is closely associated with the prognosis of 
patients with severe illness, and can be used to determine 
the severity of gastrointestinal dysfunction while serving 
as a robust predictor of mortality (75,76). Therefore, AGI is 
considered to represent an initial stage of sepsis; however, the 
diagnosis of AGI in sepsis is limited to clinical symptoms as 
there is still a lack of effective biomarkers (77). Furthermore, 
the effects of traditional treatments for the AGI of sepsis are 
suboptimal. Therefore, protecting the gastrointestinal tract is a 
key goal for the prevention and treatment of sepsis (77). Thus, 
it is necessary to identify biomarkers and effective interven‑
tion measures for the AGI of sepsis.

Although HPA was found to aggravate intestinal damage 
in septic rats, HPA inhibitors were revealed to reduce intestinal 
damage and inflammation (6) (Table I). In conclusion, HPA is 
likely to aggravate gastrointestinal dysfunction in sepsis, but 
the mechanism involved has yet to be determined. The current 
study hypothesized that this mechanism may be related to 
autophagy, exosomes and certain signaling pathways, which 
should be investigated in further studies.

7. Summary and perspective

Due to the increasing number of studies on HPA, its role in 
medicine is being explored and its application is expanding. 
The present review summarized the role of HPA in the enzy‑
matic and non‑enzymatic activity of HP, which destroys the 
cell barrier and leads to the enhancement of the inflamma‑
tory response (which, in severe cases, may result in systemic 
inflammatory response) (23). HPA may also aggravate sepsis 
and the progress of gastrointestinal dysfunction; thus, it was 
inferred that HPA aggravates gastrointestinal dysfunction in 
sepsis. The mechanisms involved are likely associated with 
autophagy, exosomes and certain signaling pathways; however, 

Table I. Role of HPA in various gastrointestinal diseases.

Author (year)	 Role of HPA	 (Refs.)

Lerner et al (2011)	 HPA greatly enhanced the activation of lipopolysaccharide, promoting the	 (21)
	 inflammatory response in colitis.
Bischoff et al (2014)	 HPA stimulated the excessive production of pro‑inflammatory cytokines in	 (46)
	 intestinal tissues.
Hermano et al (2012)	 The transcription factor, early growth response 1, induced the expression of	 (49)
	 HPA in intestinal epithelial cells.
Zheng et al (2010)	 HPA promoted cell proliferation, invasion, metastasis and angiogenesis in	 (54)
	 gastric cancer.
Chen et al (2017)	 HPA aggravated intestinal injury in septic rats.	 (6)

HPA, heparinase; Ref., reference.
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these assumptions require further elucidation. In future, HPA 
may be able to predict the early occurrence of sepsis and may 
serve as a biomarker, while HPA inhibitors may become novel 
target drugs for the treatment of gastrointestinal dysfunction 
in sepsis that are capable of reducing the mortality rate of this 
disease.
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