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Abstract. Histone modifier lysine‑specific demethylase 2B 
(KDM2B) has been previously reported to activate the inflam‑
matory response by transcription initiation of the IL‑6 gene. 
However, the effects of KDM2B on the inflammatory response 
during myocardial ischemia‑reperfusion (I/R) injury and corre‑
sponding mechanisms remain poorly understood. The present 
study aimed to investigate the role and mechanism of KDM2B 
in myocardial I/R injury. Therefore, a myocardial I/R injury 
model was established in rats through coronary artery ligation. 
Adeno‑associated virus‑encoding KDM2B and small inter‑
fering RNA‑KDM2B were designed to determine the effects 
of KDM2B on myocardial I/R injury using H&E staining and 
a TUNEL assay in the myocardial tissues. Reverse transcrip‑
tion‑quantitative PCR and western blotting were performed to 
detect the mRNA and protein expression levels of KDM2B, 
toll‑like receptor 4 (TLR4), NF‑κB p65 and NOD‑, LRR‑ and 
pyrin domain‑containing protein 3 (NLRP3). ELISA was used 
to detect the levels of TNF‑α, IL‑6 and IL‑1β in the peripheral 
blood samples. Pathological analysis demonstrated that the 
cells in the model group were disordered, with a large area of 
necrosis and neutrophil infiltration. Knocking down KDM2B 
expression significantly upregulated the mRNA and protein 
expression levels of TLR4, NLRP3, NF‑κB p65 and the ratio 
of phosphorylated (p)‑p65 to p65. KDM2B knockdown also 
significantly increased the levels of IL‑1β, IL‑6 and TNF‑α 
in the peripheral blood, which aggravated myocardial injury 
and promoted the apoptosis of myocardial cells. However, 
overexpression of KDM2B downregulated the mRNA and 

protein expression levels of TLR4, NLRP3, NF‑κB P65, the 
ratio of p‑p65 to p65 whilst reducing the levels of IL‑1β, IL‑6 
and TNF‑α in the peripheral blood, which markedly improved 
myocardial injury and significantly inhibited the apoptosis of 
cells in myocardial tissue. In conclusion, the results indicated 
that overexpression of KDM2B may prevent myocardial I/R 
injury in rats by reducing the inflammatory response through 
regulation of the TLR4/NF‑κB p65 axis.

Introduction

Acute myocardial infarction (AMI) is a disease that has a 30% 
mortality rate, where ~50% mortality occur prior to arrival at 
the hospital in the United States (1). AMI has been reported 
to be mainly caused by myocardial ischemia‑reperfusion 
(I/R) injury (1,2). The incidence rate of AMI in the younger 
population (aged <45 years) is rising annually in the United 
States (2,3). Therefore, strategies to reduce the damage caused 
by myocardial I/R injury have become a research focus. The 
pathogenesis of myocardial I/R injury refers to a series of 
complex pathophysiological processes, including the over‑
production of reactive oxygen species (4), an inflammatory 
response (5) and mitochondrial dysfunction (6). Furthermore, 
it has been demonstrated that the inflammatory response is 
the main pathological process leading to myocardial injury 
following reperfusion (7,8).

The histone modifier lysine‑specific demethylase 2B 
(KDM2B) is a member of the JmjC domain‑containing histone 
demethylase family and has been reported to serve a role in 
lymphomagenesis (9), adipogenesis (10) and the self‑renewal 
of hematopoietic stem cells (10,11). KDM2B is also associ‑
ated with the occurrence and development of tumors, 
such as colorectal cancer and T‑cell acute lymphoblastic 
leukemia (12‑15). Furthermore, KDM2B is also required for 
the regulation of choline kinase‑α during neuronal differ‑
entiation and in maintaining the undifferentiated stage of 
neuroblasts (16). KDM2B also promotes IL‑6 production 
and the inflammatory response via gene‑specific transcrip‑
tion initiation (17). However, to the best of our knowledge, 
the effects of KDM2B on the inflammatory response in 
myocardial I/R injury and the corresponding mechanisms are 
unknown.
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Toll‑like receptor 4 (TLR4) is a transmembrane protein, 
the activation of which promotes NF‑κB expression and the 
release of inflammatory factors, such as IL‑6, TNF‑α and 
IL‑1β (18,19). Therefore, it can be hypothesized that inhibition 
of the TLR4/NF‑кB signaling pathway could reduce myocar‑
dial I/R injury (20,21). Thus, it is of particular significance 
to identify the role of KDM2B in the inflammatory response 
in myocardial I/R injury. Therefore, in the present study, 
a myocardial I/R injury rat model was generated to further 
determine the potential function of KDM2B following over‑
expression and silencing of KDM2B. The involvement of the 
inflammatory mechanism was also investigated. The present 
study provided information on an important therapeutic target 
for the treatment of myocardial I/R injury.

Materials and methods

Ethics statement. The protocol for the use of animals in 
the present study was approved by the Ethics Committee of 
The First Affiliated Hospital of Gannan Medical University 
(Ganzhou, China).

Establishment of a myocardial I/R injury model in rats and 
viral transduction. A total of 30 male Sprague Dawley rats 
(age, 3 months; weight, ~250 g) were purchased from Sibeifu 
(Beijing) Biotechnology Co., Ltd. (license no. scxk 2019‑0010; 
https://www.spf‑tsinghua.com/) and housed under consistent 
conditions at 20˚C with 30% humidity in a 12‑h light/dark 
cycle with free access to food and water. The rats were anes‑
thetized by intravenous injection of 1% pentobarbital sodium 
(45 mg/kg). Following anesthesia, the skin was prepared 
at the neck and cut to separate the subcutaneous fat, after 
which the trachea was separated. A small hole was inserted 
into the trachea with a needle 5‑8 mm from the larynx. 
During surgery, the rats were ventilated with room air using 
a rodent respirator (Columbus Instruments International) set at 
110‑120 breaths/min. Left anterior descending coronary artery 
was ligated with a catheter to block the blood flow. After 50 min 
of ligation, the heart was reperfused for 4 h by removing the 
catheter. The electrocardiogram (ECG) was monitored. The 
catheter was removed after 30 min of successful modeling as 
confirmed by ECG detection based on the reduction of heart 
rate and elevation of ST segment. The injury of heart tissue 
was also confirmed by the HE staining, which indicated the 
heart infarction.

The rats were divided into the following six groups (n=5 
in each group): A sham group, a model group, an adeno‑
associated virus (AAV)‑small interfering RNA (si/siRNA)
KDM2B group, an AAV‑siRNA scrambled negative control 
(NC, pAdEasy‑U6‑CMV‑EGFP) group, an AAV‑KDM2B over‑
expression group and an AAV‑overexpression negative control 
(NC, pAdEasy‑EF1‑MCS‑3FLAG‑CMV‑EGFP) group. The 
AAV‑encoding siKDM2B (5'‑UGG AAG AGG AAG AAG GCA 
ATT UUG CCU UCU UCC UCU UCC ATT ‑3'), overexpression 
vectors and corresponding NC (5'‑UUC UCC GAA CGU GUC 
ACG UTT ACG UGA CAC GUU CGG AGA ATT ‑3') were 
provided by Jiangxi Zhonghong Boyuan Biotechnology Co., 
Ltd. During reperfusion as previously described (22), 4 µl 
adenovirus overexpressing KDM2B (1.58x1010 PFU/ml) or 
adenovirus silencing KDM2B (4.0x1010 PFU/ml) was locally 

injected into the margin of the infarcted myocardium. In the 
sham group, the animals received surgery without ligation 
and injection of saline. A small hole was also inserted into the 
trachea as the model group. After the injections, the thoracic 
cavity was sutured and penicillin (160,000 units/kg) was 
injected intramuscularly. The rats received 1% pentobarbital 
sodium (120 mg/kg) intraperitoneally 48 h after reperfusion 
and decapitated to collect the infarcted heart tissues and 2 ml 
blood samples, which were stored at ‑80˚C for further use.

H&E staining. Partial infarcted areas of the heart tissue from 
three animals were fixed in 4% paraformaldehyde at 4˚C over‑
night. Subsequently, the tissues were washed using water and 
dehydrated with 70, 80 and 90% ethanol solutions and added 
into ethanol absolute and xylene for 15 min. The tissue samples 
were added to a mixture of xylenes and paraffin for 15 min and 
then embedded in paraffin for 50‑60 min at room temperature. 
The tissues were sliced into 10‑µm sections. The paraffin 
sections were dried, dewaxed, hydrated and then stained in 
hematoxylin solution for 3 min at room temperature, differ‑
entiated in ethanol differentiation solution for 15 sec, washed 
with water for 15 sec and stained with eosin for 3 min at room 
temperature. The sections were sealed and observed under a 
light microscope (Olympus Corporation; magnification, x200).

TUNEL assay. Partial infarcted areas of the heart tissue from 
three animals were fixed in 4% paraformaldehyde at 4˚C over‑
night. The tissues were embedded in paraffin and sectioned 
into 5‑µm thickness. The sectioned tissue was placed into a 
wet box and incubated with 50 µg/ml proteinase K solution 
at 37˚C for 30 min. Each slide was incubated with TUNEL 
detection solution (cat. no. c1090; Beyotime Institute of 
Biotechnology) at 37˚C for 1 h in the dark and double‑stained 
with 5 µg/ml DAPI for 5 min at room temperature. Following 
rinsing with PBS, the sections were incubated with Antifade 
Mounting Medium solution (including glycerol; cat. no. P0126; 
Beyotime Institute of Biotechnology) and then observed under 
a fluorescence microscope (magnification, x200). A researcher 
(LHL) who was blinded to the groups quantified the number 
of TUNEL‑positive cells in five fields in each section and 
assessed any histological changes using the ImageJ 2x v2.0.0 
(National Institutes of Health).

Reverse transcription‑quantitative PCR (RT‑qPCR). 
Myocardial tissue was ground into powder in liquid nitrogen 
and was subsequently added to TRIzol reagent (Thermo 
Fisher Scientific, Inc.). The concentration and purity of RNA 
[optical density (OD) 260/OD280] were determined using a 
UV‑Vis spectrophotometer. cDNA was synthesized using 
the HiScript® II Q RT SuperMix for qPCR (cat. no. r223‑01; 
Vazyme Biotech Co., Ltd.) for 50˚C 15 min, then 85˚C for 5 sec. 
The products were used for qPCR, which was performed using 
the Applied Biosystems StepOnePlus PCR System (Thermo 
Fisher Scientific, Inc.). Each reaction contained the following: 
9.5 µl RNase‑free dH2O, 1 µl cDNA, 1 µl forward primer, 1 µl 
reverse primer and 12.5 µl 2X SYBR Green PCR Master Mix 
(cat. no. A4004M; Xiamen Life Internet Technology Co., Ltd.; 
http://www.lifeint.cn/show_373.htm). The following thermo‑
cycling conditions were used for qPCR: Initial denaturation 
at 95˚C for 10 min; followed by 40 cycles of denaturation at 
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95˚C for 10 sec, annealing at 58˚C for 30 sec and extension 
at 72˚C for 30 sec. The primer sequences were synthesized 
by General Biosystems (Anhui) Co., Ltd. (Table I). The rela‑
tive mRNA expression levels of KDM2B, TLR4, NF‑κB P65 
and NOD‑, LRR‑ and pyrin domain‑containing protein 3 
(NLRP3) were quantified and normalized to β‑actin using the 
2‑ΔΔCq method (23).

Western blotting. Total protein was isolated from myocardial 
tissue using a TriplePrep isolation kit (cat. no. 28‑9425‑44; 
Cytiva). After 30 min lysis incubation on ice, the homog‑
enates were centrifuged at 11,058 x g for 15 min at 4˚C 
and the supernatant was carefully extracted to obtain the 
total protein. Total protein concentration was determined 
using a BCA kit. The protein was denatured and total 
protein (25 µg) was separated using SDS‑PAGE on a 12% 
gel. The separated proteins were transferred onto nitrocel‑
lulose membranes. Membranes were blocked in 5% non‑fat 
milk for 1 h at room temperature and incubated with 
primary antibodies against KDM2B (cat. no. OM252731; 
OmnimAbs; 1:1,000; http://www.omnimabs.com/antibody_
FBXL10_antibody_C_term‑OM252731.html), TLR4 (cat. 
no. 19811‑1‑ap; Proteintech Group, Inc.; 1:1,000), NF‑κB p65 
(cat. no. 10745‑1‑ap; Proteintech Group, Inc.; 1:1,000), phos‑
phorylated (p)‑p65 (cat. no. AF2006; Affinity Biosciences; 
1:1,000), NLRP3 (cat. no. bs‑10021R; BIOSS; 1:1,000) and 
tubulin (cat. no. 10094‑1‑AP, Proteintech, 1:1,000) overnight 
at 4˚C. Subsequently, membranes were incubated with the 
HRP‑conjugated anti‑mouse IgG secondary antibody (dilu‑
tion, 1:100; cat. no. ab131368; Abcam) for 1‑2 h at room 
temperature. Amersham ECL Western Blotting Detection 
Reagent (cat. no. RPN2134; Cytiva) was added to the 
membrane. The membrane was imaged using a Bio‑Rad Gel 
Imaging System (Bio‑Rad Laboratories, Inc.). Gray density 
was analyzed using Quantity One Analysis Software version 
1.4.6 (Bio‑Rad Laboratories, Inc.).

ELISA. ELISAs were used to detect the levels of TNF‑α (cat. 
no. PT516; Beyotime Institute of Biotechnology), IL‑6 (cat. 
no. P I328; Beyotime Institute of Biotechnology) and IL‑1β 

(cat. no. PI303; Beyotime Institute of Biotechnology) in the 
peripheral blood according to the instructions of the kits.

Statistical analysis. Data are presented as the mean ± SD. 
There were five animals in each group. SPSS 21.0 (IBM 
Corp.) was used to analyze the differences among ≥ three 
groups using one‑way ANOVA. In cases where differences 
were found among groups, Bonferroni's post hoc test was 
further applied to analyze the difference between two groups. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Effects of KDM2B on pathological changes in myocardial I/R 
injury in rats. The cells in the control group were regularly and 
orderly arranged, with complete fibers. Cell edema or necrosis 
was also not observed in the control group. In the model 
group, siRNA NC group and overexpression NC group, the 
cell arrangement was disordered, with a large area of necrosis 
accompanied by neutrophil infiltration. In the si‑KDM2B 
group, the pathological changes were aggravated, whereas 
the pathological features were improved with no evidence of 
necrosis or neutrophil infiltration in the KDM2B overexpres‑
sion group (Fig. 1). These results suggested that KDM2B 
overexpression may prevent pathological changes in the heart 
tissue upon I/R injury.

Effects of KDM2B on myocardial apoptosis in myocardial I/R 
injury in rats. The effect of KDM2B on myocardial apoptosis 
in rats with myocardial I/R injury was investigated. Compared 
with the control group, the percentage of apoptotic cells in the 
heart tissue in the model group was significantly increased 
(P<0.05). si‑KDM2B further promoted this significant 
increase compared with that in the siRNA NC group, whereas 
KDM2B overexpression significantly reduced the extent of 
apoptosis compared with that in the overexpression NC group 
(P<0.05; Fig. 2). These results indicated that KDM2B may 
serve a protective role in the apoptosis of myocardial tissues 
upon myocardial I/R injury.

Table I. Sequences of primers used for reverse transcription‑quantitative PCR.

Gene Sequence (5'‑3') Primer length, nt Product length, bp

KDM2B F: TTCAAACGTCCCCCGGTTC 19 155
 R: CCAGGACCGCCGCTTT 16 
TLR4 F: CCAGAGCCGTTGGTGTATCT 20 137
 R: GGCGATACAATTCGACCTGC 20 
NF‑κB p65 F: GCAAAAGGACCTACGAGACC 20 103
 R: CGGGAAGGCACAGCAATA 18 
NLRP3 F: GACCTCAACAGACGCTACACC 21 102
 R: CCACATCTTAGTCCTGCCAAT 21 
β‑actin F: GCCATGTACGTAGCCATCCA 20 375
 R: GAACCGCTCATTGCCGATAG 20 

F, forward; KDM2B, lysine‑specific demethylase 2B; NLRP3, NOD‑, LRR‑ and pyrin domain‑containing protein 3; nt, nucleotide; R, reverse; 
TLR4, toll‑like receptor 4.
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Effects of KDM2B on the inf lammatory response in 
myocardial I/R injury in rats. Compared with those of the 
control group, the levels of IL‑1β, IL‑6 and TNF‑α in the 

peripheral blood of the model group were significantly 
increased (P<0.05; Fig. 3). Compared with the siRNA NC 
group, the si‑KDM2B group exhibited a further significant 

Figure 1. Effects of KDM2B on pathological changes in myocardial ischemia‑reperfusion injury in rats. In total, six groups, including the sham control 
group, model group, si‑KDM2B group, siRNA NC group, KDM2B overexpression group and overexpression NC group, were included in the present 
study. H&E staining was applied to determine the pathological changes. Arrows indicate sites of necrosis and neutrophil infliltration. Scale bars, 50 µm. 
AAV, adeno‑associated virus; KDM2B, lysine‑specific demethylase 2B; NC, negative control; si/siRNA, small interfering RNA; si‑KDM2B, AAV‑siKDM2B; 
siRNA NC, AAV‑siRNA scrambled negative control. 

Figure 2. Effects of KDM2B on myocardial apoptosis in myocardial I/R injury in rats. (A) Representative images. Scale bars, 100 µm. (B) Quantification data. 
*P<0.05 vs. control; #P<0.05 vs. siRNA NC; ^P<0.05 vs. overexpression NC. AAV, adeno‑associated virus; I/R, ischemia‑reperfusion; KDM2B, lysine‑specific 
demethylase 2B; NC, negative control; si/siRNA, small interfering RNA; si‑KDM2B, AAV‑siKDM2B; siRNA NC, AAV‑siRNA scrambled negative control. 
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increase in the levels of IL‑1β, IL‑6 and TNF‑α (P<0.05), 
whereas overexpression of KDM2B significantly reduced the 
levels of IL‑1β, IL‑6 and TNF‑α compared with those in the 
overexpression NC group (P<0.05). These results suggested 
that overexpression of KDM2B may inhibit the inflammatory 
response in myocardial I/R injury in rats.

Effects of KDM2B on TLR4, NF‑κB p65 and NLRP3 expression 
in myocardial I/R injury in rats. Western blotting demon‑
strated that KDM2B protein expression was significantly 
decreased in the model group compared with the control group 
(P<0.05). Compared with the corresponding siRNA NC group, 
si‑KDM2B significantly reduced KDM2B protein expression 
levels further (P<0.05), whereas KDM2B overexpression 
significantly promoted KDM2B protein expression compared 
with that in the overexpression NC group (P<0.05).

The protein expression levels of NLRP3, NF‑κB p65/p‑p65 
ratio and TLR4 in the model group were significantly 
higher compared with those of the control group (P<0.05). 
Compared with the corresponding siRNA NC group, the 
protein expression levels of NLRP3, NF‑κB p65/p‑p65 
ratio and TLR4 in the si‑KDM2B group were significantly 
increased further (P<0.05), whereas the protein expression 
levels in the overexpression group were significantly reduced 
compared with those in the overexpression NC group 
(P<0.05; Fig. 4A and B).

Compared with the control group, the mRNA expression 
levels of KDM2B were significantly decreased, whereas the 
mRNA expression levels of NLRP3, NF‑κB p65 and TLR4 
in the model group were significantly increased (P<0.05). 
Compared with the corresponding siRNA NC group, mRNA 
expression levels of KDM2B in the si‑KDM2B group were 
significantly reduced, and this was accompanied by a signifi‑
cant increase in the expression levels of NLRP3, NF‑κB p65 
and TLR4. Furthermore, the mRNA expression levels of 
KDM2B in the KDM2B overexpression group were signifi‑
cantly increased, whereas the mRNA expression levels of 
NLRP3, NF‑κB p65 and TLR4 were significantly decreased 

compared with compared with those in the overexpression NC 
group (P<0.05; Fig. 4C).

Discussion

In the present study, KDM2B was overexpressed or silenced 
in the I/R injury rat model. The results demonstrated that 
reducing KDM2B expression upregulated the protein and 
mRNA expression levels of TLR4, NLRP3 and NF‑κB p65 
and promoted the apoptosis of myocardial cells. However, 
KDM2B overexpression significantly downregulated the 
mRNA and protein expression levels of TLR4, NLRP3 and 
NF‑κB p65 and inhibited the apoptosis of myocardial tissues. 
Therefore, the present study suggest that KDM2B may be a 
treatment target for myocardial I/R injury.

Histone modification could affect the innate immune 
response by changing the transcription level of genes (24). 
KDM2B is a member of the histone lysine demethylase KDM 
family, which serves important regulatory roles in cell differen‑
tiation, development and tumorigenesis (25,26), as well as the 
inflammatory response (27,28). KDM2B promotes the produc‑
tion of IL‑6 and the inflammatory response via brahma‑related 
gene 1‑mediated chromatin remodeling (17). Additionally, 
KDM2B‑deficient mice exhibit stronger resistance to endo‑
toxic shock and colitis, a lighter inflammatory phenotype and 
reduced serum IL‑6 production (17). Furthermore, KDM2B 
expression is reduced in the nasal mucosa of patients with 
chronic atrophic rhinitis, where reduced KDM2B facilitates 
the development of nasal mucosa (29). Therefore, KDM2B 
serves a dual role in the regulation of inflammation in epithe‑
lial cells (29). The differential function of KDM2B may be 
explained by distinctive mechanisms of KDM2B in different 
cells or diseases. Therefore, the role of KDM2B in inflamma‑
tion will be a focus of future research. In the present study, 
KDM2B was silenced or overexpressed in myocardial I/R 
injury rat models. The results demonstrated that si‑KDM2B 
significantly increased the levels of inflammation in the model 
rats, which was indicated by the increased levels of IL‑1β, IL‑6 

Figure 3. Effects of KDM2B on the inflammatory response in myocardial ischemia‑reperfusion injury in rats. Five groups, including the sham control group, 
model group, si‑KDM2B group, siRNA NC group, AAV‑KDM2B overexpression group and AAV‑overexpression NC group, were included in the present 
study. The levels of (A) IL‑1β, (B) IL‑6 and (C) TNF‑α in peripheral blood were detected via ELISA. *P<0.05 vs. control; #P<0.05 vs. siRNA NC; ^P<0.05 
vs. overexpression NC. AAV, adeno‑associated virus; KDM2B, lysine‑specific demethylase 2B; NC, negative control; si/siRNA, small interfering RNA; 
si‑KDM2B, AAV‑siKDM2B; siRNA NC, AAV‑siRNA scrambled negative control. 
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and TNF‑α. However, overexpression of KDM2B inhibited 
the expression of these inflammatory genes. Pathological 
results also demonstrated that the overexpression of KDM2B 
improved myocardial tissue injury. The inflammatory response 
after initial ischemic injury is a key mechanism of secondary 
degeneration (30,31).

The key role of the NLRP3 inflammasome in regu‑
lating the inflammatory response has been demonstrated in 
numerous studies (32,33). The NLRP3 inflammasome can 
also increase brain injury and neuroinflammation in ischemic 
stroke (34,35). In the present study, NLRP3 expression levels 
were detected and the results demonstrated that myocardial 
I/R injury promoted the mRNA and protein expression of 
the NLRP3 inflammasome. si‑KDM2B further promoted 
NLRP3 expression. By contrast, overexpression of KDM2B 
reduced NLRP3 expression. Activation of the NLRP3 
inflammasome requires the TLR4/NF‑κB signaling pathway 
to promote the transcription of NLRP3 (36). TLR4 is highly 
expressed in myocardial cells and vascular endothelial cells, 
which is closely related to the occurrence and development 
of cardiovascular disease (37). TLR4 activates the immune 
and inflammatory response by regulating NF‑κB (32) and 
aggravates myocardial injury (38,39). The results of the 
present study demonstrated that silencing and overexpression 
of KDM2B promoted or inhibited the protein and mRNA 
expression levels of TLR4, NLRP3 and NF‑κB p65, respec‑
tively, which is opposite with the trend of KDM2B. These 
results suggested that KDM2B may regulate the expression 

levels of proteins associated with the TLR4/NF‑κB signaling 
pathway.

The present study demonstrated that KDM2B regulated the 
TLR4/NF‑κB p65 axis by potentially reducing the inflammatory 
response, inhibiting cardiomyocyte apoptosis and improving 
myocardial injury in rats with myocardial I/R injury. However, 
the regulatory mechanism of KDM2B on the TLR4/NF‑κB 
signaling pathway, whether it depends on the activity of demeth‑
ylase or directly regulates non‑histone proteins, is still unclear. 
A limitation of the present study was that there are numerous 
types of cells in myocardial tissues, and thus, the function of 
KDM2B in specific cell types should be further investigated. 
Furthermore, the potential of KDM2B as a therapeutic target 
for myocardial I/R injury will need to be further clarified. In 
conclusion, overexpression of KDM2B may prevent myocardial 
I/R injury in rats by reducing the inflammatory response via 
regulation of the KDM2B/TLR4/NF‑κB p65 axis.
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