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Abstract. Schizandrin B exhibits prominent antioxidant 
and anti-inflammatory effects, and plays an important role 
in ameliorating myocardial ischemia/reperfusion injury. 
However, the underlying protective mechanisms remain to 
be elucidated. The aim of the present study was to explore 
the cardioprotective effects of schizandrin B against 
hypoxia/reoxygenation (H/R)-induced H9c2 cell injury, 
focusing on the role of the adenosine monophosphate-activated 
protein kinase (AMPK)/nuclear factor erythroid 2-related 
factor 2 (Nrf2) pathway in this process. The results showed 
that schizandrin B attenuated the H/R-induced decrease in cell 
viability and the increase in lactate dehydrogenase release, as 
well as the apoptosis rate in H9c2 cells. Schizandrin B also 
mitigated H/R-induced oxidative stress, as illustrated by the 
decrease in intracellular reactive oxygen species generation, 
malondialdehyde content and NADPH oxidase 2 expression, 
and the increase in antioxidant enzyme superoxide dismutase 
and glutathione peroxidase activities. In addition, schizandrin 
B reversed the H/R-induced upregulation of pro-inflammatory 
cytokines [interleukin (IL)-1β (IL-1β) tumor necrosis factor-α, 
IL-6 and IL-8] and the downregulation of anti-inflammatory 
cytokines (transforming growth factor-β and IL-10) in the 
culture supernatant. Notably, schizandrin B increased the 
expression of Nrf2, NAD(P)H: Quinone oxidoreductase 
(NQO-1) and heme oxygenase-1 (HO-1) in H/R-treated H9c2 
cells, activating the Nrf2 signaling pathway. The cardioprotec-
tion of schizandrin B against H/R injury was inhibited by Nrf2 
knockdown induced byNrf-2-specific small interfering RNA 

(siRNA; si-Nrf2) transfection. Furthermore, schizandrin B 
enhanced phosphorylated (p)-AMPK expression, while AMPK 
knockdown induced by AMPK-specific siRNA(si-AMPK) 
transfection remarkably eliminated schizandrin B-induced 
cardioprotection and reduced Nrf2 expression in H/R-treated 
H9c2 cells. Taken together, these results suggested that 
schizandrin B exerts cardioprotection on H/R injury in H9c2 
cells due to its antioxidant and anti-inflammatory activities via 
activation of the AMPK/Nrf2 pathway.

Introduction

Myocardial ischemia-reperfusion injury (MIRI) is one of the 
major diseases threatening human health with a high morbidity 
and mortality rate worldwide (1,2). A number of pathological 
processes and mediators, including cell apoptosis, oxidative 
stress injury, intracellular calcium overload and inflammatory 
response activation have been proposed to be crucial in isch-
emia-reperfusion (I/R)-related myocardial cell injury (3,4). 
Among them, oxidative stress and inflammation are consid-
ered important mechanisms implicated in the pathogenesis of 
MIRI (5,6). During the phase of MIRI, oxidative stress occurs 
when there are imbalances between reactive oxygen species 
(ROS) generation and antioxidant defense systems, leading 
to the activation of signal transduction cascades and the 
production of various inflammatory mediators, which results 
in damage of the viable tissue surrounding the infarct and 
accelerated cell death programs (7-9). Despite the advances 
in the understanding of MIRI mechanisms (1), novel effective 
strategies for MIRI remain to be explored.

Numerous traditional Chinese herbs have been proven to 
exert cardioprotective effects, and their role in ameliorating 
MIRI has been investigated (10-12). Schizandrin B, the most 
abundant active dibenzocyclooctadiene derivative isolated 
from a traditional Chinese herb [Schisandra  chinensis 
(Turcz) Baill], possesses diverse pharmacological activities 
such as anti-apoptosis, antioxidative, anti-inflammatory and 
cardioprotective properties (13-15). A previous in vivo study 
demonstrated that schizandrin B might protect myocardial 
tissue from I/R injury via the phosphoinositide 3-kinase/Akt 
signaling pathway in rats (15). In addition, a previous study 
demonstrated that schizandrin B has a high antioxidative 
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activity and protects against MIRI (16). However, the potential 
mechanism of schizandrin B-induced cardioprotection against 
MIRI remains elusive.

Adenosine monophosphate-activated protein kinase 
(AMPK) is a major regulator of cellular homeostasis, and its 
activation can reduce oxidative stress injury and the inflam-
matory response (17,18). Increasing evidence indicated that 
AMPK regulates a variety of biological processes and is 
a highly effective therapeutic target for protecting against 
MIRI  (19-21). Nuclear factor erythroid 2-related factor 2 
(Nrf2) is essential for the transcription and expression of key 
antioxidant enzymes, including heme oxygenase-1 (HO-1) 
and NAD(P)H dehydrogenase quinone 1 (NQO-1)  (22,23). 
Under normal conditions, the transcriptional activity of the 
Nrf2 protein is inhibited by the negative regulator Kelch-like 
ECH-associated protein 1 (Keap1); however, upon excess 
oxidative stress, Nrf2 translocates to the nucleus, where it 
binds to the antioxidant responsive element (24,25). Numerous 
studies revealed that Nrf2 served as an important downstream 
target of AMPK signaling by increasing resistance to oxidative 
damage and inflammatory reaction (11,26). The AMPK/Nrf2 
signaling pathway plays an important role in cellular defense 
against oxidative stress and inflammatory injury by acti-
vating antioxidant cascades (27,28). Notably, previous studies 
confirmed that the mechanisms of these antioxidative and 
anti-inflammatory activities of schizandrin B are mediated, 
at least in part, via activation of Nrf2 and Nrf2-driven anti-
oxidant responses (29,30). However, the potential roles of the 
AMPK/Nrf2 signaling pathway in the cardioprotection of 
schizandrin B in MIRI remain to be elucidated.

Hence, in the present study, a cell model of MIRI was 
established to investigate whether schizandrin B attenu-
ates oxidative stress and inflammatory response via the 
AMPK/Nrf2 signaling pathway, resulting in cardioprotection 
against MIRI, and provide a theoretical foundation for its 
clinical application.

Materials and methods

Materials and reagents. Dulbecco's modified Eagle's medium 
(DMEM; cat. no. 11965118) and fetal bovine serum (FBS; 
cat. no. 16140071) were supplied by Gibco; Thermo Fisher 
Scientific, Inc. Annexin V/fluorescein isothiocyanate (FITC) 
apoptosis detection kit (cat. no. 556547) was purchased from 
BD Biosciences. Cell counting kit-8 (CCK-8; cat. no. C0038), 
JC-1 mitochondrial membrane potential detection kit 
(cat. no. C2006) and lactate dehydrogenase (LDH) cytotox-
icity assay kit (cat. no. C0016) were purchased from Beyotime 
Institute of Biotechnology. 2', 7'-dichlorofluorescein acetyl 
acetate (DCFH-DA; cat. no.  D6883) kit was supplied by 
Sigma-Aldrich; Merck KGaA. Rabbit polyclonal antibodies 
against B-cell lymphoma 2 (Bcl-2; cat. no. ab32124) and Bcl-2-
associated X protein (Bax; cat. no. ab32503) were purchased 
from Abcam. Rabbit monoclonal antibody against NAPDH 
oxidase 2 (NOX2; cat. no. ALX-350-100-C050) was purchased 
from Enzo Life Sciences, Inc. Rabbit monoclonal antibodies 
against histone H3 (cat. no. 7631), Keap 1 (cat. no. 8047), 
AMPKα (cat. no. 5832), phospho (p)-AMPKα (Ser485; cat. 
no. 2537), Nrf2 (cat. no. 12721) and GAPDH (cat. no. 5174) 
were obtained from Cell Signaling Technology, Inc.

Cell culture and hypoxia/reoxygenation (H/R) injury model 
establishment. The H9c2 cardiomyocyte cell line (rat embry-
onic cardiomyoblasts) was purchased from Shanghai Institutes 
for Biological Sciences, and was maintained in DMEM 
supplemented with 10% (v/v) FBS and 1% (v/v) penicillin-
streptomycin solution in a humidified atmosphere containing 
95% air and 5% CO2 at 37˚C. The medium was replaced every 
2 days. To induce H/R injury, H9c2 cells were cultured with 
serum-free medium in an anaerobic chamber containing 1% 
O2, 5% CO2 and 94% N2 at 37˚C for 6 h to establish hypoxia. 
Subsequently, the cells were cultured with normoxic medium 
in the presence of 95% air and 5% CO2 at 37˚C for 12 h in a 
humidified atmosphere to establish reoxygenation (31).

Cell viability assay. Cell viability was determined using a 
CCK-8 assay kit according to the manufacturer's instructions. 
Briefly, H9c2 cells were seeded in a 96-well plate at a density 
of 3x104 cells/well. After treatment as described above, CCK-8 
solution (10 µl) was added to each well and further incubated 
at 37˚C for 3 h. Subsequently, the optical density was measured 
at a wavelength of 450 nm using a PerkinElmer microplate 
reader (PerkinElmer, Inc.).

Small interfering RNA (siRNA) transfection. H9c2 cells were 
transfected with Nrf2-specific siRNA (si-Nrf2; 100  nM; 
cat.  no.  sc-37030), AMPK-specific siRNA (si-AMPK; 
100 nM; cat. no. sc-29673) or scrambled siRNA (100 nM; 
cat. no.  sc-37007) as the negative control (Santa Cruz 
Biotechnology, Inc.) using Lipofectamine 2000 (Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
protocols. The sequences of the siRNA were as follows: Nrf2 
siRNA sense, 5'-GAG​GAU​GGG​AAA​CCU​UAC​UTT​-3' and 
antisense, 5'-AGU​AAG​GUU​UCC​CAU​CCU​CTT​-3'; AMPK 
siRNA sense, 5'-CCC​AUA​UUA​UUU​GCG​UGU​ADT​DT-3' 
and antisense, 5'-UAC​ACG​CCA​AAU​AAU​AUG​GGC​TCT​-3' 
and scramble siRNA sense, 5'-UUC​UCC​GAA​CGU​GUC​ACG​
UTT​-3' and antisense, 5'-ACG​UGA​CAC​GUU​CGG​AGA​ATT​
-3'. Briefly, cells were plated in six-well plates prior to transfec-
tion. After growing to 60-70% confluence, siRNA (100 nM) 
was prepared in Opti-MEM™ I (100 ml; Invitrogen; Thermo 
Fisher Scientific, Inc.; cat. no. 51985091) and then added to 
Opti-MEM™ I (100 ml) containing Lipofectamine™ Stem 
Transfection Reagent (14 ml), and the mixture was incubated 
for 10 min at room temperature. The mixture was then added 
to the cells and incubated for 48 h prior to experimentation. 
Knockdown efficacy was determined by reverse transcription-
quantitative PCR (RT-qPCR).

RNA isolation and RT-qPCR assay. Total RNA from cells of the 
control, H/R, Sch B + H/R + si-Scram and Sch B + H/R + si-Nrf2 
groups was isolated using TRIzol® reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) following the manufacturer's 
protocol. RT of RNA (1 µg) to cDNA was performed using the 
M-MLV Reverse Transcriptase system (Promega Corporation) 
according to the manufacturer's instructions. The mRNA 
levels of AMPK and Nrf2 were detected by RT-qPCR using 
the SYBR Green PCR master mix (Applied Biosystems; 
Thermo Fisher Scientific, Inc.) on an ABI PRISM 7900 
Sequence Detection system (Applied Biosystems; Thermo 
Fisher Scientific, Inc.). The following primer pairs were used 
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for the qPCR: Nrf2 forward, 5'-ACT​GTC​CCC​AGC​CCA​GAG​
GC-3'and reverse, 5'-CCA​GGC​GGT​GGG​TCT​CCG​TA-3'; 
HO-1 forward, 5'-GCT​GGT​GAT​GGC​TTC​CTT​GTA​-3' and 
reverse, 5'-ACC​TCG​TGG​AGA​CGC​TTT​ACA​T-3'; NOQ1 
forward, 5'-ACG​ACA​ACG​GTC​CTT​TCC​AGA​-3' and reverse, 
5'-CAG​AAA​CGC​AGG​ATG​​CCA​CT-3'; GAPDH forward, 
5'-GGA​CCT​GAC​CTG​CCG​TCT​AG-3' and reverse, 5'-GTA​
GCC​CAG​GAT​GCC​CTT​GA-3'. The following thermocycling 
conditions were used for the qPCR: Initial denaturation at 
95˚C for 5 min; 40 cycles of denaturation at 95˚C for 10 sec, 
annealing at 58˚C for 45 sec and elongation at 72˚C for 1 min; 
and a final extension at 72˚C for 5 min. The relative expressions 
of Nrf2, HO-1 and NOQ1 mRNA were quantified using the 
2-ΔΔCq method and normalized to GAPDH (32). Each sample 
was measured in triplicate.

Flow cytometric analysis of cell apoptosis. H9c2 cells were 
seeded at 5x105 cells/well into a 6-well plate and treated as 
described above for 24 h prior to digestion with 0.05% trypsin-
EDTA to harvest the cells. In total, 1x105 treated cells were 
resuspended in binding buffer (500 µl), and incubated with 
Annexin V-FITC (5 µl) and propidium iodide (PI; 5 µl) for 
15 min at room temperature according to the manufacturer's 
instructions (BD Pharmingen; BD Biosciences). Subsequently, 
apoptosis was analyzed by flow cytometry (BD FACSCalibur; 
BD Biosciences) with CellQuest software (version 3.3; 
BD Biosciences). Apoptotic cells were counted and repre-
sented as a percentage of the total cell count.

ROS generation analysis. The measurement of intracellular ROS 
production was dependent on the ROS-mediated conversion 
of non-fluorescent DCFH-DA to DCFH. Following treatment, 
H9c2 cells were harvested and co-incubated with serum-free 
medium containing DCFH-DA (50 µmol/l) for 20 min at 37˚C. 
Subsequently, the cells were rinsed three times with PBS, and 
the fluorescence intensity in each group was measured by flow 
cytometry (BD FACSCalibur; BD Biosciences) with CellQuest 
software (version 3.3;BD Biosciences).

LDH release, malondialdehyde (MDA) content, superoxide 
dismutase (SOD) and glutathione peroxidase (GSH-Px) 
activity measurement. LDH release and MDA content were 
measured using LDH activity assay kit (cat. no. C0017) and lipid 
peroxidation MDA assay kit (cat. no. S0131M; each, Beyotime 
Institute of Biotechnology), respectively, according to manu-
facturer's protocol. SOD and GSH-Px activities were detected 
by SOD (cat. no. A001-3-2) and GSH-Px (cat. no. A005-1-2) 
assay kits purchased from Nanjing Jiancheng Bioengineering 
Institute Co., Ltd. according to the manufacturer's instruc-
tions. MDA content was determined using the thiobarbituric 
acid method, SOD activity was measured using the xanthine 
oxidase method and GSH-Px activity was determined using 
the dithio-dinitrotoluidine method.

Western blot analysis. Cells were rinsed twice with cold 
PBS and nuclear and total proteins were extracted using 
a Cell Nuclear and Cytoplasmic Protein Extraction kit 
(cat.  no.  P0027) and cell lysis buffer (cat.  no.  P0013) for 
western blots containing protease inhibitors (phenylmethylsul-
fonyl fluoride; cat. no. ST505) and a protease inhibitor cocktail 

(cat. no P1009) all from Beyotime Institute of Biotechnology. 
Protein concentration was measured using the bicinchoninic 
acid method (Beyotime Institute of Biotechnology). Equal 
amounts of protein lysate (30 µg) were separated by 12% 
SDS-PAGE and then transferred to polyvinylidene fluoride 
membranes [Roche Diagnostics (Shanghai) Co., Ltd.]. Upon 
blocking in 5% non-fat milk for 2 h at room temperature, the 
membranes were incubated overnight with primary antibodies 
against AMPK, p-AMPK, Nrf2, Bax, Bcl-2, NOX2 and 
GAPDH (all dilutions were 1:1,000) at 4˚C. After washing with 
TBS-Tween 20 solution, the membranes were then incubated 
with secondary antibodies (cat. no. 7074) for 2 h at 37˚C (horse-
radish peroxidase-conjugated AffiniPure Goat Anti-Rabbit 
IgG; 1:5,000; Cell Signaling Technology, Inc.). Protein bands 
were visualized using an enhanced chemiluminescent agent 
(Beyotime Institute of Biotechnology). The results were deter-
mined by GraphPad Prism 5.0 software (GraphPad Software, 
Inc.), and the expression of total protein was expressed relative 
to that of GAPDH. The expression of Nrf2 in the nucleus was 
expressed relative to that of histone H3.

Statistical analysis. All data are represented as the mean ± SD. 
Differences between groups were determined by one-way 
ANOVA followed by Tukey's post hoc test. P<0.05 was consid-
ered to indicate a statistically significant difference.

Results

Schizandrin B inhibits myocardial injury following myocar-
dial H/R in H9c2 cells. To investigate the cardioprotective 
effects of schizandrin B against MIRI in vitro, cytotoxicity 
and apoptosis after H/R injury in the presence or absence 
of schizandrin B were examined. The CCK-8 assay results 
showed that schizandrin B pretreatment significantly 
increased cell viability compared with H/R treatment 
(Fig. 1A). The LDH release results revealed that H/R induced 
the upregulation of LDH release, which was reversed by 
schizandrin B pretreatment (Fig. 1B). Additionally, annexin 
V-FITC/PI double staining results indicated that H/R resulted 
in a significant increase in the apoptosis rate compared with 
controls, which was reversed by schizandrin B treatment 
(Fig. 1C). Schizandrin B treatment alone had no effects on 
cell survival or apoptosis compared with controls. These 
results indicated that schizandrin B protects H9c2 cells 
against H/R injury.

Schizandrin B attenuates oxidative stress in H9c2 cells 
subjected to H/R. Evidence has shown the contribution of 
oxidative stress to MIRI (8). Thus, the present study investi-
gated the effects of schizandrin B on oxidative stress-related 
biomarkers and the antioxidant defense system in H/R-treated 
H9c2 cells. As illustrated in Fig. 2, compared with the control 
groups, H/R treatment increased intracellular ROS genera-
tion (Fig. 2A), MDA content (Fig. 2B) and NOX2 expression 
(Fig. 2C and D) in H9c2 cells. However, these effects were 
reversed by schizandrin B pretreatment. In addition, compared 
with the control groups, H/R led to a decrease in the enzymatic 
activities of SOD (Fig. 2E) and GSH-Px (Fig. 2F), which was 
prevented by schizandrin B pretreatment. Schizandrin B treat-
ment alone had no effect on oxidative stress. Taken together, 
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these data indicated that the cardioprotection of schizandrin B 
is antioxidant-dependent.

Schizandrin B reduces the inflammatory response in H9c2 
cells after H/R injury. Eliminating ROS production is impor-
tant for controlling inflammatory response (33). To assess the 
anti-inflammatory effects of schizandrin B in MIRI, the levels 
of pro-inflammatory and anti-inflammatory cytokines in H9c2 
cells were evaluated. As shown in Fig. 3, compared with the 
control groups, H/R treatment significantly increased the 
levels of pro-inflammatory IL-1β (Fig. 3A), TNF-α (Fig. 3B), 
IL-6 (Fig. 3C) and IL-8 (Fig. 3D), while these effects were 
all reversed by schizandrin B. In addition, the release of anti-
inflammatory cytokines TGF-β and IL-10 was also detected. 

H/R significantly reduced the levels of TGF-β (Fig. 3E) and 
IL-10 (Fig. 3F) compared with the control groups. However, 
these effects were also effectively reversed by schizandrin B. 
Schizandrin B treatment alone did not affect the inflamma-
tory response. Taken together, these results demonstrated 
that schizandrin B inhibits the inflammatory response in 
H/R-treated H9c2 cells.

Schizandrin B activates the Nrf2 signaling pathway in 
H/R-treated H9c2 cells. Nrf2, a basic leucine zipper transcrip-
tion factor, modulates the levels of numerous ROS detoxifying 
and antioxidant genes such as NQO-1 and HO-1 (20,21). To 
investigate whether schizandrin B protects H9c2 cells from 
H/R injury by activating the Nrf2 signaling pathway, Nrf2 

Figure 1. Cardioprotective effects of schizandrin B in H9c2 cells with H/R injury H9c2 cells were treated with schizandrin B (20 µM) prior to H (6 h)/R (12 h). 
(A) Cell viability was determined using a Cell Counting Kit-8 assay. The results were expressed as the percentage of untreated control. (B) LDH release was 
measured using an LDH cytotoxicity assay kit. The results were expressed as the fold-change of the untreated control. (C) The apoptosis rate was determined 
by Annexin V-FITC/PI double staining followed by flow cytometry. Values are expressed as the mean ± standard deviation from three independent experi-
ments. **P<0.01 vs. control group; ##P<0.01 vs. H/R group. H/R, hypoxia/reperfusion; LDH, lactate dehydrogenase; PI, propidium iodide. 
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Figure 2. Antioxidative effects of schizandrin B in H/R-treated H9c2 cells. H9c2 cells were treated with schizandrin B (20 µM) prior to H (6 h)/R (12 h). 
(A) Intracellular ROS generation was evaluated using a 2',7'-dichlorofluorescein acetyl acetate kit followed by flow cytometry analysis. (B) MDA content was 
determined using a lipid peroxidation MDA assay kit. (C) The expression of NOX2 was measured by western blotting. (D) Densitometric analysis for NOX2 
expression normalized to GAPDH. (E) SOD activity was detected using SOD assay kits. (F) GSH-Px activity was measured using GSH-Px assay kits. Values 
are expressed as the mean ± standard deviation from three independent experiments. *P<0.05 and **P<0.01 vs. control group; #P<0.05 and ##P<0.01 vs. H/R 
group. H/R, hypoxia/reperfusion; ROS, reactive oxygen species; MDA, malondialdehyde; NOX2,NADPH oxidase 2; SOD, superoxide dismutase; GSH-Px, 
glutathione peroxidase. 

Figure 3. Anti-inflammatory effect of schizandrin B in H/R-treated H9c2 cells. H9c2 cells were treated with schizandrin B (20 µM) prior to H (6 h)/R (12 h). 
The levels of (A) IL-1β, (B) TNF-α, (C) IL-6, (D) IL-8, (E) TGF-β and (F) IL-10 were measured by ELISA. Values are expressed as the mean±standard 
deviation from three independent experiments. *P<0.05 and **P<0.01 vs. control group; #P<0.05 and ##P<0.01 vs. H/R group. H/R, hypoxia/reperfusion; IL, 
interleukin; TNF-α, tumor necrosis factor-α; TGF-β, transforming growth factor-β. 
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expression and transcription efficiency of Nrf2 were assessed. 
Western blot analysis results (Fig. 4A) indicated that H/R 
significantly reduced the expression of Nrf2 (Fig. 4B) in the 
nucleus compared with controls, while schizandrin B pretreat-
ment reversed this effect. The present study further evaluated 
HO-1 and NQO-1 expression to investigate the activation of 
Nrf2 signaling. The results showed that H/R significantly 
decreased the expression of HO-1 (Fig. 4A and C) and NQO-1 
(Fig. 4A and D) in H9c2 cells compared with the control 
groups. However, these effects were reversed by schizandrin 
B pretreatment. In addition, H/R-induced upregulation of 
Keap1, an Nrf2 repressor that leads to Nrf2 ubiquitination and 
degradation, was significantly attenuated by schizandrin B 
(Fig. 4E and F). Schizandrin B treatment alone had no impact 
on the Nrf2 signaling pathway. Taken together, these results 
indicated that schizandrin B might exert beneficial effects in 
H/R injury by activating the Nrf2 signaling pathway.

Schizandrin B exhibits cardioprotective effects in an Nrf2-
dependent manner in H/R-treated H9c2 cells. si-Nrf2 was 
used to knockdown Nrf2 expression and further verify the role 
of Nrf2 signaling in schizandrin B-induced cardioprotection. 
Knockdown efficiency was first determined by RT-qPCR, 
and the results showed that si-Nrf2 transfection significantly 
reduced the levels of Nrf2 mRNA compared with scramble 
siRNA transfection (Fig.  5A). The mRNA levels of the 
Nrf2-dependent antioxidant genes HO-1 and NQO-1 were 
also significantly reduced by si-Nrf2 transfection compared 
with scramble siRNA transfection in schizandrin B-treated 

cells (Fig. 5B). These results indicated that inhibition of the 
Nrf2 signaling pathway was induced by si-Nrf2 transfec-
tion. In addition, si-Nrf2 transfection inhibited schizandrin 
B-induced upregulation of cell viability in H/R compared 
with scramble siRNA transfection (Fig. 5C). Si-Nrf2 trans-
fection also reversed the schizandrin B-induced decrease in 
apoptosis rate compared with scrambled siRNA transfection 
(Fig. 5D and E). Furthermore, si-Nrf2 transfection blocked 
the anti-inflammatory effect of schizandrin B in H/R injury, 
as evidenced by the fact that si-Nrf2 transfection reversed 
schizandrin B-induced downregulation of pro-inflammatory 
cytokines (IL-1β, TNF-α and IL-8) and the upregulation of 
the anti-inflammatory cytokine IL-10 (Fig. 5F). Furthermore, 
si-Nrf2 transfection blocked the decrease in ROS generation 
(Fig. 5G) and the increase in SOD and GSH-Px (Fig. 5H) 
activities induced by schizandrin B in H/R-treated H9c2 cells 
compared with scramble siRNA transfection. Taken together, 
these data indicated that schizandrin B protects H9c2 cells 
against H/R injury via enhancing Nrf2 signaling pathway 
activation.

Nrf2-dependent cardioprotective effects of schizandrin B are 
mediated by the AMPK pathway. Previous studies demon-
strated that AMPK regulates a variety of biological processes 
and is a highly effective therapeutic target for protecting against 
MIRI  (21,34). Notably, AMPK can stimulate the nuclear 
accumulation of Nrf2 (26,27). The present study further inves-
tigated whether AMPK may be responsible for the activation 
of Nrf2 in the protective effect of schizandrin B. The results 

Figure 4. Schizandrin B activates the Nrf2 signaling pathway in H/R-treated H9c2 cells. H9c2 cells were treated with schizandrin B (20 µM) prior to H (6 h)/R 
(12 h). (A) The expression of Nrf2, NQO-1 and HO-1 was measured by western blotting. (B) Densitometric analysis for Nrf2 expression normalized to histone 
H3. (C) Densitometry for HO-1expression normalized to GAPDH. (D) Densitometry for NQO-1expression normalized to GAPDH. (E) The expression of 
Keap1 was measured by western blotting. (F) Densitometric analysis for Keap1 expression normalized to GAPDH. Values are expressed as the mean ± standard 
deviation from three independent experiments. *P<0.05 and **P<0.01 vs. control group; #P<0.05 and ##P<0.01 vs. H/R group. H/R, hypoxia/reperfusion; Nrf2, 
nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase-1; NQO-1, NAD(P)H: Quinone oxidoreductase; Keap1, Kelch-like ECH-associated protein 1. 
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Figure 5. Nrf2 signaling pathway mediates the cardioprotection of schizandrin B in H/R-treated H9c2 cells. H9c2 cells were transfected with si-Nrf2 or si-Scram 
for 48 h, followed by treatment with schizandrin B (20 µM) prior to H (6 h)/R (12 h). (A) The levels of Nrf2 mRNA were in si-Nrf2- and si-Scram-transfected 
cells. NSP>0.05 vs. control group; ***P<0.001 vs. si-Scram group.  (B) The levels of Nrf2, HO-1 and NQO-1 mRNA were measured by reverse transcription-quanti-
tative PCR. (C) Cell viability was determined by performing a Cell Counting Kit-8 assay. The results were expressed as a percentage of the untreated control. (D) The 
apoptosis rate was determined by Annexin V-FITC/PI double staining followed by flow cytometry. (E) Quantitative analysis of apoptosis rates. (F) The levels of pro-
inflammatory cytokines were detected by ELISA. (G) Intracellular ROS generation was assessed using a 2', 7'-dichlorofluorescein acetyl acetate kit followed by flow 
cytometry. (H) SOD and GSH-Px activities were detected with SOD and GSH-Px assay kits, respectively. Values are expressed as the mean±standard deviation from 
three independent experiments. *P<0.05 and **P<0.01 vs. control group; #P<0.05 and ##P<0.01 vs. H/R group; &P<0.05 and &&P<0.01 vs. schizandrin B + H/R + si-Nrf2 
group. H/R, hypoxia/reperfusion; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase-1; NQO-1, NAD(P)H: Quinone oxidoreductase; 
si-Nrf2, Nrf2-specific small interfering RNA; si-Scram, scrambled siRNA; Sch B, schizandrin B; IL, interleukin; TNF-α, tumor necrosis factor-α; SOD, 
superoxide dismutase; GSH-Px, glutathione peroxidase; PI, propidium iodide. 
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showed that schizandrin B pretreatment increased the phos-
phorylation of AMPK in H/R-treated H9c2 cells compared 
with the H/R group (Fig. 6A and B). Cells were transfected 

with si-AMPK, and the western blot results revealed that 
si-AMPK transfection significantly reduced the expression 
of AMPK compared with scrambled siRNA transfection 

Figure 6. AMPK pathway contributes to Nrf2-dependent cardioprotective effects of schizandrin B in H/R-treated H9c2 cells. H9c2 cells were treated with 
schizandrin B (20 µM) prior to H (6 h)/R (12 h). (A) The expression of P-AMPK and AMPK were measured by western blotting. (B) Densitometric analysis 
for P-AMPK expression normalized to total AMPK. Values are expressed as the mean±standard deviation from three independent experiments. **P<0.01 vs. 
control group; #P<0.05vs. H/R group. H9c2 cells weretransfected with si-AMPK or si-Scram for 48 h. (C) The expression of AMPK and Nrf2 was analyzed 
by western blot analysis. (D) Densitometric analysis of AMPK and Nrf2 expression. **P<0.01 vs.si-Scram groups. H9c2 cells were transfected with si-AMPK 
or si-Scram for 48 h, followed by treatment with schizandrin B (20 µM) prior to H (6 h)/R (12 h). (E) Cell viability in the different groups was evaluated 
by a Cell Counting Kit-8 assay. (F) LDH release was measured using an LDH cytotoxicity assay kit. Values are expressed as the mean±standard deviation 
from three independent experiments. **P<0.01 vs. control group; ##P<0.01 vs. H/R group; &P<0.05 and &&P<0.01 vs. schizandrin B + H/R + si-AMPK group. 
AMPK, adenosine monophosphate-activated protein kinase; p-AMPK, phospho-AMPK; H/R, hypoxia/reperfusion; Nrf2, nuclear factor erythroid 2-related 
factor 2; si-AMPK, AMPK-specific small interfering RNA; si-Nrf2, Nrf2-specific siRNA; si-Scram, scrambled siRNA; Sch B, schizandrin B; LDH, lactate 
dehydrogenase. 
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(Fig.  6C  and  D). si-AMPK transfection also significantly 
decreased the expression of Nrf2 (Fig. 6C and D) compared 
with scrambled siRNA transfection, indicating that inhibition 
of the AMPK/Nfr2 signaling pathway was induced by AMPK 
knockdown. Schizandrin B-mediated increased cell viability 
(Fig. 6E) and decreased LDH release (Fig. 6F) were reversed 
by si-AMPK transfection. These results demonstrated that the 
cardioprotection of schizandrin B in MIRI is dependent on the 
AMPK/Nfr2 signaling pathway.

Discussion

The cytoprotective function of schizandrin B in MIRI, in which 
a decrease in oxidation and ER stress-induced apoptosis has 
been reported (14,15). The beneficial effects of schizandrin B 
on ameliorating MIRI are dependent on its anti-apoptotic (14) 
and antioxidative activities (35), and mitochondrial functional 
enhancement (36). Despite significant advances in the under-
standing of the mechanisms accounting for the myocardial 
protective mechanism of schizandrin B (2,37), the protective 
mechanism of schizandrin B on MIRI remains to be elucidated. 
The present study aimed to investigate whether schizandrin 
B protected H9c2 cells against H/R injury via regulating the 
AMPK/Nrf2 signaling pathway.

Schizandrin B is an active dibenzocyclooctadiene lignan 
isolated from the fruit of Schisandra chinensis (a traditional 
Chinese herb), and was found to possess antioxidant, anti-
apoptotic, anti-inflammatory and cardioprotective activities 
in vitro and in vivo (38,39). Studies indicated that schizandrin 
B could improve cardiac function and mitigate myocardial 
infarct size in a MIRI model via inhibiting cell apoptosis and 
attenuating oxidative stress  (15,36). Consistent with these 
studies, our findings also revealed that schizandrin B pretreat-
ment mitigated H/R-induced cytotoxicity and apoptosis.

There are several mechanisms involved in the development 
of MIRI, including increased oxidative stress and inflamma-
tory response (40,41). Oxidative stress, which is an imbalance 
between endogenous ROS generation and antioxidant systems, 
is involved in the etiology of I/R-induced myocardial 
injury (8,42) and inflammatory response (33). The participa-
tion of oxidative stress and inflammation in the pathologies 
of MIRI has been reported  (43,44). Recent evidence has 
suggested that certain drugs, such as lipopolysaccharide 
and myeloperoxidase, that serve anti-oxidative and anti-
inflammatory functions are considered a therapeutic strategy 
for limiting MIRI (39,44). The present results showed that 
schizandrin B pretreatment significantly reduced oxidative 
stress in H/R-treated H9c2 cells, as evidenced by the decrease 
in intracellular ROS generation, lipid peroxide (MDA) levels 
and NOX2 expression, and the increase in antioxidant enzy-
matic activities, including SOD and GSH-Px, in H9c2 cells. 
Inflammation is a hallmark of MIRI (45). Previous studies 
have confirmed that the imbalance between pro-inflammatory 
(IL-1β, TNF- α, IL-6 and IL-18) and anti-inflammatory 
cytokines (TGF-β, IL-10 and IL-13) contribute to the develop-
ment of MIRI (46,47). The results of the present study found 
that schizandrin B attenuated H/R-induced upregulation of 
pro-inflammatory cytokines, including IL-1β, TNF-α, IL-6 
and IL-8, and the downregulation of anti-inflammatory cyto-
kines, including TGF-β and IL-10, in H9c2 cells, indicating 

the inhibition of schizandrin B on inflammatory response. 
These above results are consistent with the anti-oxidant and 
anti-inflammatory activities of schizandrin B reported in 
previous studies (1,29). Taken together, these results indicated 
that schizandrin B protects H9c2 cells against H/R injury via 
inhibiting oxidative stress and inflammation.

Nrf2 is known to play a central role in cellular defense 
against oxidative stress via regulating the transcriptional 
expression of downstream antioxidant enzymes such as HO-1 
and NOQ1  (22,48). Researches confirm that inhibition of 
the Nrf2 axis exacerbates oxidative stress, inflammation and 
induced cell apoptosis  (11,49,50). Numerous studies have 
shown that Nrf2 is one of the essential signaling pathways 
that can mitigate myocardial infarct size and preserve 
cardiac function following MIRI, which is dependent on the 
coordinated upregulation of antioxidant, anti-inflammatory 
and autophagic mechanisms (25,51). Oxidative stressors and 
several anti-inflammatory traditional Chinese medicines, 
such as Arctigenin, Nardochinoid C and azafrin, promote the 
nuclear translocation of Nrf2 and activate the transcription 
of antioxidant genes, including HO-1 and NOQ1, leading to 
beneficial protection on various diseases (40,52-54). Notably, 
schizandrin B was also shown to reduce oxidative stress 
and possess strong anti-inflammatory properties, at least in 
part via the induction of Nrf2 and Nrf2-driven antioxidant 
responses (55). In the present study, schizandrin B pretreat-
ment also enhanced Nrf2 expression in the nucleus, and HO-1 
and NOQ1 expression in H9c2 cells. Notably, Nfr2 knock-
down induced by si-Nrf2 remarkably attenuated schizandrin 
B-induced inhibition against cytotoxicity, apoptosis, oxidative 
stress and inflammation in H/R-treated H9c2 cells. These 
results showed that the Nfr2 signaling pathway contributed to 
the cardioprotection of schizandrin B in MIRI.

AMPK activation was verified to confer cardioprotection 
against MIRI by regulating processes such as survival and 
cellular longevity, apoptosis, inflammation, ROS reduction and 
mitochondrial function (17,56,57). AMPK activation is known 
to promote myocardial resistance to I/R and oxidative stress of 
different magnitudes by upregulating Nrf2 (58,59). However, 
the role of the AMPK pathway in the beneficial function of 
schizandrin B remains to be elucidated. In the present study, 
the results showed that schizandrin B enhanced AMPK activa-
tion in H/R-treated H9c2 cells. In addition, AMPK knockdown 
induced by si-AMPK transfection reduced the expression 
of Nfr2, HO-1 and NOQ1, which is consistent with previous 
studies where inhibition of AMPK by relative inhibitor or 
specific siRNA decreased Nrf2 expression in MIRI (59,60). 
Meanwhile, si-AMPK transfection reversed schizandrin 
B-induced protection on H/R injury. Taken together, these 
results showed that the Nrf2-dependent cardioprotective 
effects of schizandrin B are mediated by the AMPK pathway.

In conclusion, the present results demonstrated that schizan-
drin B protects H9c2 cells against H/R injury by suppressing 
oxidative stress and inflammation. The present results 
supported the notion that the AMPK/Nrf2 signaling pathway 
may play a role in the cardioprotection of schizandrin  B 
against MIRI. These results provide a better understanding of 
the molecular mechanisms associated with the cardioprotec-
tion of schizandrin B and may provide a new insight into a 
better design of myocardial protective agents against MIRI.
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However, since the present experiments were only 
performed in vitro, in vivo animal experiments and clinical 
trials with human subjects should be performed in further 
studies. In addition, the endogenous hydrogen sulfide-regulated 
Nrf2 signaling pathway was involved in myocardial protection 
against I/R injury (61,62). It was also confirmed that Nrf2 
regulates hundreds of genes, of which many are either directly 
or indirectly involved in modulating ferroptosis, which serves 
as a cardioprotective strategy for cardiomyopathy preven-
tion (63,64). Hence, the role of these above related signaling 
pathways in the cardioprotection of schizandrin B warrants 
further study. Additionally, since the method of the present 
study of checking IRI is a two-step process but presented as a 
final step, it is also worth checking ischemia and reperfusion 
as two distinct paths in subsequent experiments.
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