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Abstract. Melatonin (MT; N‑acetyl‑5‑methoxy‑tryptamine), 
which has multiple effects and roles, is secreted from the 
pineal gland at night according to the daily rhythm. In addition 
to circadian regulation, MT has anti‑inflammatory, antioxi‑
dant and anticancer functions. Recent studies postulated that 
MT serves a critical role in apoptosis, anti‑ischemic reperfu‑
sion injury and anti‑proliferative effects on various cells. The 
current review reported on the underlying mechanism behind 
the protective effect of MT on lung diseases, such as acute 
lung injury, acute respiratory distress syndrome, chronic 
obstructive pulmonary disease, lung ischemia‑reperfusion 
injury, sepsis‑induced lung injury and ventilator‑induced lung 
injury. MT is considered an adjuvant with therapeutic drugs 
for preventing inflammation and is responsible for regulating 
patient sleep cycles in the intensive care unit. The current 
review described the anti‑inflammatory and antioxidant effi‑
ciency of MT with a focus on the molecular mechanisms of 
action in various lung injuries.
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1. Introduction

Lung diseases are major health issue and leading cause of 
death worldwide  (1). The lungs are an essential organ for 
exchanging blood and oxygen and are one of the most vulner‑
able organs in the human body. Lung diseases include various 
abnormalities that affect the pulmonary stroma and alveoli, 
including acute lung injury (ALI), asthma, chronic obstructive 
pulmonary disease (COPD), cancer, ventilator‑induced lung 
injury (VILI) and X‑ray radiation‑induced lung injury (2). For 
instance, ALI is a severe health problem in certain developing 
countries such as India, accounting for 30% of all deaths 
in children under 5 years of age  (3). Additionally, COPD 
frequently occurs in the elderly population due to infection, 
smoking, chemicals and air pollution and has high morbidity 
and mortality worldwide (4). Lung cancer is a malignancy with 
the fastest growth of morbidity and mortality and is one of 
the greatest threats to human health worldwide (5). Asthma is 
characterized by breathing difficulty and shortness of breath, 
wheezing, coughing and nocturnal activity and is a common 
airway inflammatory disorder. VILI is a common complica‑
tion induced by mechanical ventilation in the intensive care 
unit (ICU) and perioperative period (6).

Melatonin (MT) is a hormone produced by the pineal 
gland, which is superior to the third ventricle of the brain (7). 
MT has the ability to diffuse in and out of cells due to its 
chemical structure and low molecular weight  (8). MT is 
synthesized by the pineal gland, in the bone marrow, the eyes 
and the gastrointestinal tract. The synthesis of MT arises from 
5‑hydroxytryptamine and the rate‑limiting enzyme in this 
reaction is MT‑N‑acetyltransferase (9). Certain researchers 
have indicated that MT can lighten mottled skin by downregu‑
lating melanophores (10,11)

Moreover, MT regulates the human chronobiological func‑
tion known as the circadian rhythm (12). The suprachiasmatic 
nuclei (SCN) located in the hypothalamus are responsible for 
maintaining the circadian rhythm in mammals (13). Sleep 
state and metabolism are activated by MT, which is stimu‑
lated by the SCN (14). In the human 24‑h sleeping cycle, MT 
secretion changes periodically based on an internal biological 
clock (15). Apart from the central circadian clock, MT also 
modulates peripheral tissues and organs, making MT the best 
marker of the circadian rhythm (16). Generally, MT secretion 
is highest between 11:00 p.m. and 2:00 a.m., and the secretion 
decreases sharply after 7:00 a.m (17). Additionally, the level of 
MT is affected by light intensity, age and other factors (18,19). 
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Notably, light during the night can severely disrupt MT produc‑
tion and Circadian rhythms of patients in ICU in hospitals (20). 
MT administration and its receptor agonists have advantages 
in preventing delirium by promoting nocturnal sleep (21,22).

MT has three receptors: MT receptor‑1  (MT1), MT2 
and MT3. MT1 and MT2 are G  protein‑coupled recep‑
tors, which are involved in various cell signal transduction 
processes, such as the regulation of the immune system and 
photosensitivity (23). Additionally, MT1 receptors are located 
in the locus coeruleus and lateral hypothalamus (rapid eye 
movement area), while MT2 receptors are located in the 
reticular thalamus (non‑rapid eye movement area) in selective 
MT1/MT2 receptor ligands and MT1/MT2 receptor knockout 
mice (23). Thus, MT1 is considered to establish and maintain 
the circadian rhythm, mood, pain and sleep (24). Recently, 
certain researchers have demonstrated that the structure of 
MT2 allowed for accurate mapping of type 2 diabetes‑related 
single‑nucleotide polymorphisms  (23,25,26). MT1, rather 
than MT2, has been implicated in circadian rhythm regula‑
tion. It has been reported that MT1 receptors are involved 
in Alzheimer's and Huntington's diseases, and patients with 
depression (26). Moreover, the expression level of MT1 and 
MT2 decreased as the cancer stage increased and MT2 was an 
independent prognostic factor for survival rate in patients with 
NSCLC (27). Additionally, MT has an affinity for specific MT 
membrane receptors, including retinoic acid receptor‑related 
orphan nuclear receptors (RORs) (28). The MT‑RORα axis 
serves as a novel endogenous protective signalling pathway 
in the vasculature, regulates intraplaque inflammation and 
stabilizes rupture‑prone vulnerable plaques (29).

The summary was designed to critically review scientific 
studies that demonstrate the therapeutic actions of mela‑
tonin on lung injury. The molecular aspects of melatonin's 
therapeutic potential is also discussed with due reference to 
molecular targets and pharmacological effects.

2. Anti‑inflammatory effect of MT

The inflammation mechanism is a natural human response to 
bodily injury from injection or chemical and physical stimu‑
lation. Inflammatory cells (such as leukocytes, macrophages, 
mast cells and endothelial cells), which release TNF‑α, IL‑1β 
and IL‑6, are involved in the process of inflammatory tissue 
repair (30). Inhibition of the inflammatory process is one of the 
essential strategies in antagonizing chronic or acute inflamma‑
tory diseases, including pneumonia, asthma and COPD (30‑33). 
Anti‑inflammatory actions by MT are of particular clinical 
significance in high‑grade inflammation, such as sepsis‑induced 
lung injury, ischemia‑reperfusion lung injury and brain 
injury (34). Following tissue damage, MT activates pro‑inflam‑
matory cytokines and other mediators (35). Additionally, MT 
administration suppresses inflammatory processes, including 
nitric oxide  (NO) release, activation of cyclooxygenase‑2, 
nucleotide‑binding oligomerization domain‑like receptor 
protein  3  (NLRP3) inflammasome, toll‑like receptor  4 
(TLR‑4) and mTOR signalling, and amyloid‑β toxicity (36‑39). 
Additionally, previous studies proved that exogenous MT atten‑
uated the inflammatory response by increasing the expression 
of silent information regulator 1 (SIRT1) activity, which exerts 
anti‑inflammatory effects (34,40).

Furthermore, the mechanisms contributing to inflam‑
matory effects are oxidative stress and oxidative‑mediated 
processes such as oxygen free radical reaction and lipid 
peroxidation  (41). Inflammatory cells secrete numerous 
cytokines and chemokines including IL‑1β, TNF‑α, MCP‑1, 
which are responsible for the production of reactive oxygen 
species  (ROS) in phagocytic cells at the beginning of the 
inflammation phase (42). ROS adversely impact the action of 
neutrophils and macrophages, and decrease the activation of 
apoptotic signals (43).

Concerning anti‑inflammatory and molecular mechanisms, 
various novel perspectives focus on the immune‑pineal axis, 
which serves as a negative feedback mechanism to mediate 
the immune system (44). Moreover, these pro‑inflammatory 
cytokines including TNF‑α, IL‑1β and IL‑6 have several 
detrimental effects on individual tissues, including lung, liver 
and kidney, and manifest as endothelial cell damage, vascular 
permeability changes, tissue degeneration and edema (45,46).

3. Antioxidant effect of MT

MT serves as an antioxidant and rapidly disappears from 
the blood and in the systemic circulation of mammals, once 
they are under conditions of high oxidative stress (47). MT 
acts as an antioxidant either directly or indirectly via the MT 
receptors MT1 and MT2 (27). Novel research has indicated 
that MT depleted ROS and increased glutathione (GSH) levels 
to inhibit the development of lung cancer (48). This result 
indicates that the unique indole composition has a leading role 
in the antioxidant effect of MT due to its high stability and 
electroactivity (49).

Moreover, MT O‑methyl and N‑acetyl residues are the basis 
of its amphiphilicity, allowing the molecule to enter all organs 
and subcellular compartments, and are the primary facilitators 
of its antioxidant properties (50). A recent study reported that 
MT significantly improved the tolerance of apple seedlings to 
waterlogging stress as ROS are hypothesized to serve a critical 
role in the response of the plant to waterlogging pressure (51). 
MT administration increased ascorbic acid levels and the 
activity of antioxidants, including superoxide dismutase (SOD), 
catalase (CAT) and peroxidase in rats (52). Numerous in vitro 
and in vivo studies have demonstrated that exogenous MT 
suppresses oxidative stress (53,54). Another study reported 
that MT‑loaded lipid‑core nanocapsules (Mel‑LNC) increased 
the fluorescence intensity of Caenorhabditis  elegans that 
encodes the antioxidant enzyme SOD‑3 to inhibit lipid peroxi‑
dation (54). Treatment with MT following CCl4 exposure in 
rats resulted in a significant increase in the activity of lung 
tissue oxidized proteins, including myeloperoxidase (MPO) 
and malondialdehyde  (MDA)  (55). Additionally, the same 
author indicated that MT upregulated the levels of intracel‑
lular antioxidant enzymes, including SOD2 and glutathione 
peroxidase 1 (56).

There is a plethora of clinical treatments targeting the 
significant therapeutic role of MT against different diseases, 
including lung disease, liver disease, kidney disease, diabetes, 
Alzheimer's disease and Parkinson's disease  (46,57,58). A 
randomized, double‑blinded, placebo‑controlled trial indicated 
that MT supplementation (2x5 mg/day for 12 weeks) signifi‑
cantly reduces the sum of total antioxidant capacity, including 
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GSH and MDA, in patients with diabetic hemodialysis (59). 
MT administration substantially minimized oxidative stress 
and directly acted on its membrane receptors MT1 and MT2, 
which serve a vital role during the whole gestational period 
in humans and animals (60). A previous study indicated that 
cyclic 3‑hydroxy‑MT is a product that includes antioxidative 
effects of MT and mediates its metabolite interaction with 
ROS (61). Another study demonstrated that administering 
a subcutaneous implant containing 18 mg of MT with lamb 
model and ovine prepubertal cumulus cells, promoted antioxi‑
dant capacity (SOD1, Glutathione peroxidase 4 and CAT) via 
RORα in ovine prepubertal cumulus cells (62).

4. Immune system regulation of MT

The regulatory effect of MT in the immune system is not 
surprising, as a correlation has been demonstrated between 
melatonin production and circadian in immune function, 
pinealectomy has been shown to cause changes in the immune 
system, and in vivo and in vitro administration of melatonin 
has been shown to cause changes in immune functions 
(Fig. 1) (63). The immune system is notably complex, which 
becomes evident with the multitude of participating cell 
types and subtypes, as well as humoral factors, the flexible 
regulatory network, the participation of non‑immune cells 
in the classic sense and in the short‑ and long‑term temporal 
changes (64). With regard to acute inflammation, the immune 
system activates the required cellular and humoral processes, 
later actively terminating them and initiating healing (65).

Coronaviruses (CoVs) are RNA viruses that infect both 
humans and animals. Infection involves the respiratory, gastro‑
intestinal and central nervous systems. Since the outbreak of 
COVID‑19 at the end of 2019, thousands of people have been 
infected or succumbed to the disease (66). Unfortunately, there 
is a lack of a specific treatment for COVID‑19. In Severe Acute 
Respiratory Syndrome‑CoV‑ and Middle East Respiratory 

Syndrome‑CoV‑infected animal models, marked inflamma‑
tory and immune responses activate a ‘cytokine storm’ and 
the apoptosis of epithelial cells and endothelial cells; subse‑
quently, vascular leakage and abnormal T cell and macrophage 
responses ensue and induce ALI/acute respiratory distress 
syndrome (ARDS) or even death (67). Melatonin is effective in 
critical care patients by reducing vessel permeability, anxiety, 
sedation use, and improving sleeping quality, which might 
also be beneficial for better clinical outcomes for COVID‑19 
patients (66).

MT can be classified as an immune stimulatory agent. 
Notably, the effect of anti‑inflammatory actions has been 
observed in cells in the blood or other body fluids  (68). 
Previous tudies have indicated that MT administration had 
positive effects in alleviating ARDS‑induced by viruses, 
bacteria and radiation (37,69). MT exerts regulatory actions 
on the immune system and directly enhances the immune 
response by increasing the proliferation and maturation of 
natural killing cells, T and B lymphocytes, granulocytes and 
monocytes in the bone marrow and other tissues (70).

5. MT and ALI

ALI is a common clinical respiratory disease that often 
develops into a more complex syndrome termed ARDS (71). 
It has multiple etiologies and often results in severe respira‑
tory failure and death (72). According to the World Health 
Organization (WHO), ARDS was the leading cause of death in 
Intensive Care Units from 50 Countries in 2014 (73). Annually, 
~2 million days in ICU and 75,000 deaths occur in the USA due 
to ARDS (74). The ‘Berlin definition’ was developed in 2012 
based on the clinical standards for ALI/ARDS (75). Therefore, 
preventing ARDS and its complications is an urgent clinical 
problem for doctors. A high number of clinical and experi‑
mental studies were dedicated to prevention and diagnosis in 
order to improve the prognosis of ARDS.

Figure 1. Schematic representation of the mechanisms of action of MT in the treatment of respiratory disorders. MT, melatonin; NO, nitric oxide; SIRT1, silent 
information regulator 1; IL‑10, interleukin 10; GSH, glutathione; SOD, superoxide dismutase; C3HOM, cyclic 3‑hydroxyMT.
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Ozdinc et al (75) reported that MT improved the histopa‑
thology of pulmonary contusion and distant organs, including 
the liver and kidney, by diminishing oxidative stress, including 
decreasing the levels of ROS, MDA and total antioxidant 
capacity. Moreover, their findings demonstrated that MT 
has a significant antioxidant effect on contused lungs within 
24 h. Additionally, MT inhibited neutrophil movement and 
adhesion, and decreased edema and neutrophil infiltration 
in an experimental model of rat lung injury. Dong et al (45) 
examined the molecular mechanisms of the inhibitory effect 
of MT against lipopolysaccharide  (LPS)‑induced ALI in 
Sprague‑Dawley rats via examination of the inhibition of 
p38 MAPK overactivation. The results demonstrated that 
downstream receptors, as well as nuclear factor‑κβ (NF‑κB) 
and other pro‑inflammatory cytokines, were decreased due to 
the inhibition of the p38 MAPK signaling pathway activity. 
Additionally, Zhang et al  (76) indicated that MT exerts a 
protective effect on lung tissues during ALI, including the 
p38 MAPK signalling pathway, with decreased expression 
of P‑selectin, intercellular adhesion molecule‑1 and NF‑κB 
(Table I). Moreover, MT administration inhibited the activa‑
tion of the NLRP3 inflammasome via suppressing the release 
of extracellular histones and directly blocking histones to 
reduce pulmonary injury in an LPS‑induced ALI mouse 
model (35).

Taslidere  et  al  (77) revealed that fibrosis, interstitial 
hemorrhage, epithelial desquamation in bronchioles and 
alveoli, intra‑alveolar edema, and leukocyte and macrophage 
infiltration were reduced in the MT+CCL4 group compared 
with the CCL4 group. Furthermore, the results demonstrated 
that the MDA level of the control group was significantly 
higher compared with the treatment group. Nevertheless, 
antioxidant factors, including GSH and CAT levels, were 
markedly lower compared with the treatment group. 
Wu et al (78) studied the promising role of intravenous admin‑
istration of MT at 5 mg/kg in a murine heat stroke model. 
The results reported that MT significantly prolonged the 

survival time of rats in the heat stroke group and attenuated 
heat stroke‑induced hyperthermia and hypotension. In these 
studies, MT served as an antioxidant drug to protect lung 
tissue, which was damaged by various factors. Additionally, 
it has been reported that ALI is associated with an increase 
in the levels of different pro‑inflammatory cytokines and 
chemokines, including interleukin (IL)‑6, IL‑22 and TNFα, 
in lung tissues (79).

6. MT and LIRI

Lung ischaemia‑reperfusion injury (LIRI), known as a frequent 
and severe clinical complication, has a high mortality after 
lung transplantation worldwide (80,81). LIRI is a pathological 
process with the clinical feature of initial restriction of blood 
supply to lung organs followed by the restoration of perfusion, 
which involves oxidative stress (82). The primary cause of 
this may be the imbalance of excessive oxygen free radical 
production and insufficient antioxidant mechanisms  (83). 
Ischemia/reperfusion (IR) injury is a severe clinical event that 
may induce tissue injury, whose primary underlying mecha‑
nisms include an inflammatory immune response, the release 
of inflammatory mediators and the induction of apoptosis (84).

Chiu et al  (46) used MT pretreatment (15 mg/kg intra‑
peritoneally) 15 min prior to liver IR to compare the changes 
in inflammatory factors prior to and following the operation. 
The results demonstrated that MT pretreatment prior to 
liver IR significantly diminished pulmonary microvascular 
permeability and attenuated lipid peroxidation in the lungs. 
Additionally, another study reported that intravenous adminis‑
tration of MT (10 mg/kg) significantly inhibited the expression 
of NF‑κβ and downregulated nuclear factor erythroid‑2‑related 
factor  2 synthesis activity in hepatic IR‑induced lung 
injury (63). Furthermore, the results determined that the under‑
lying mechanism of the MT effect on IR‑induced lung injury 
was the inhibition of the activation of the JNK/p38 signalling 
pathway. Takhtfooladi et al (84) reported that MT pretreatment 

Table I. Studies investigating the effect of melatonin on lung injury.

First author (year)	 Studied model	 Disease	 Main findings	 Refs.

Campos (2004)	 Human	 Asthma	 Significantly improve sleep quality	 (98)
Ozdinc (2016)	 Rat	 Acute lung injury	 inhibits neutrophil movement and adhesion,	 (75)
			   decreases edema, neutrophil infiltration in 
			   experimental rats induced lung injury
Chiu (2012)	 Rat	 Lung ischemia‑	 Diminish the pulmonary microvascular	 (46)
		  reperfusion injury	 permeability and attenuate lipid peroxidation
Wang (2004)	 Rat	 Asthma	 Inhibits the expression of NF‑κβ and downregulates	 (93)
			   the inducible NO synthesis activity
He (2019)	 Rat	 Chronic obstructive	 Suppresses apoptosis and endoplasmic	 (102)
		  pulmonary disease	 reticulum stress and increases the expression
			   of silent information regulator 1
Pedreira (2008),	 Rat	 Ventilator‑induced	 Increasing the anti‑inflammatory (IL‑10)	 (6,112)
Gu (2015)		  lung injury	 response and stabilizing cytoskeleton structure
			   and the activation of target genes
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(10 mg/kg intravenously) significantly improved lung tissue 
injury of skeletal muscle IR in rats. These results indicate 
that lung tissues exhibit less severe histological abnormalities, 
including neutrophilic infiltration, intra‑alveolar hemorrhage 
and edema, compared with the IR group. Moreover, lung tissue 
MPO activity and NO levels were significantly decreased by 
IR following MT pretreatment.

7. MT and asthma

Asthma has a high occurrence and is the most common 
long‑term inflammatory syndrome (85). It affects the lower 
airway mucosa by producing IL‑4, IL‑13, IL‑5 and IL‑9 (86). 
The typical clinical manifestations including wheezing, 
breathlessness, coughing and difficulty breathing, particularly 
at night or in the early morning (65). Certain researchers have 
indicated that asthma, as a chronic inflammatory disorder of 
the airways, is associated with numerous cells and cellular 
elements, including mast cells, eosinophils, type 2 T helper 
cells, macrophages, neutrophils and epithelial cells (87,88). In 
asthma, type 2 T helper cells have a crucial role in producing 
inflammatory cytokines, such as IL‑4, IL‑9, IL‑10 and 
IL‑13 (89). Additionally, oxidative stress is another essential 
factor in stimulating inflammatory responses in asthma (90). 
According to WHO reports, in developed countries asthma 
affects 10% of the population and people with asthma have an 
increased risk of developing anxiety disorders (91). Although 
the treatment strategies of asthma are diverse in developing 
countries, its prevalence is still rapidly increasing yearly (92). 
Wang  et  al  (93) demonstrated that MT administration 
(10 mg/kg) significantly inhibited the expression of NF‑κβ and 
downregulated inducible NO synthase activity in lung tissues 
and substantially reduced NO production in bronchoalveolar 
lavage fluid (BALF) in a rat model of asthma.

Researchers have reported that TLR‑9 is one of the most 
extensively studied TLRs used to treat asthma. Wu et al (94) 
reported that, compared with wild‑type  (WT) mice, MT 
effectively inhibited airway inflammation in an asthmatic 
mouse model induced by ovalbumin (OVA). Additionally, the 
experimental results indicated that the protein expression of 
immunoglobulin E (IgE) and MT levels in serum and BALF 
were reduced in OVA‑induced WT mice; however, TLR9(‑/‑) 
mice significantly restored these decreases. SP600125, a 
JNK‑specific inhibitor, significantly deceased OVA‑induced 
expression of TLR9 and reset the level of MT in OVA‑treated 
WT mice. In summary, the JNK‑TLR9 signalling pathway 
mediated the airway inflammation process via inhibiting MT 
biosynthesis. Furthermore, Shin et al (95) reported that intra‑
peritoneal injection of MT (10 or 15 mg/kg daily) significantly 
decreased the numbers of inflammatory cells, airway inflam‑
mation, and IgE, IL‑4, IL‑5 and IL‑13 expression levels in an 
OVA‑induced allergic asthma rat model. In vitro experiments 
indicated that pro‑inflammatory cytokine expression and matrix 
metalloproteinase‑9 activity were significantly suppressed 
by MT administration in TNF‑α‑stimulated BEAS‑2B cells. 
Further research by the same authors revealed that MT notably 
suppressed chronic airway inflammation, accompanied by a 
reduction in the expression levels of mucin 5AC (MUC5AC) 
mRNA and protein (33). In an in vitro experiment, MT treat‑
ment suppressed IL‑6 production and MUC5AC expression 

in EGF‑stimulated H292 cells. The authors concluded that 
MT significantly inhibited the expression of MUC5AC via 
the downregulation of the MAPK signalling pathway in an 
OVA‑induced asthma murine model (96). A double‑blinded, 
randomized, placebo‑controlled clinical research trial 
included MT treatment (3 mg/day) or placebo for 4 weeks 
in 22 women with asthma and the Pittsburgh Sleep Quality 
Index, Epworth Sleepiness Scale (97) and pulmonary function 
were assessed (98). The results indicated that MT significantly 
improved sleep quality in patients with asthma in comparison 
with the placebo group.

8. MT and COPD

COPD is a devastating lung disease that affects alveolar 
structures and adversely impacts ventilation (99). Exposure to 
cigarette smoke is considered to be the leading risk factor for 
COPD, as well as air pollution and infection. Currently, COPD 
is a well‑known lung disease and an increasing global health 
problem (100). The main pathological feature of COPD is 
chronic airway inflammation and an abnormal response to the 
external environment, resulting in small airway and alveolar 
restructuring, as reflected by a lack of ventilation function and 
emphysema in COPD (101).

He et al  (102) observed the mechanism of MT in a rat 
model of COPD established using cigarette smoke with LPS. 
They reported that MT administration significantly suppressed 
apoptosis and endoplasmic reticulum stress, and significantly 
increased the expression of SIRT1 in lung tissues. Furthermore, 
the results demonstrated that inhibition of SIRT1 using EX527 
reversed the beneficial effects of MT administration against 
apoptosis. Additionally, another study indicated that MT 
reduced the inflammatory mediators in cigarette smoke (CS) 
exposed mice and CS condensate‑treated J774 macrophages, 
which were associated with enhanced SIRT1 expression 
induced by MT (103). These results indicated that MT serves 
as a SIRT1 enhancer and may be have potential as an active 
therapeutic agent to control CS‑induced airway inflammation.

9. MT and VILI

Mechanical ventilation is increasingly used in life support and 
routine anesthesia; however, VILI has always represented a 
challenging issue (104). Mechanical ventilation translates into 
prolonged hospital stays, increased burden on the health care 
system and increased treatment costs (105). The mechanisms 
responsible for VILI are complex. Increased tidal volumes 
cause the lung tissues to stretch, which is potentially prob‑
lematic, as it induces a local cytokine storm which is known 
to initiate VILI (106). A previous study reported that obese 
patients may suffer fatal emphysema with high airway pres‑
sure and postoperative pulmonary complications following 
intraoperative ventilation (107). However, a previous study 
revealed that obesity served a protective role in VILI by 
alleviating pulmonary endothelial barrier injury and the 
inflammatory response (108). A previous study reported that 
MT administration significantly decreased VILI by increasing 
the anti‑inflammatory response (IL‑10) despite an unexpected 
increase in oxidative stress (6). However, the specific mecha‑
nism underlying MT and VILI has not been elucidated.
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Although the therapeutic role of MT for the clinical 
treatment of VILI has not been assessed until now, it can be 
hypothesized. Recently, protective lung ventilation strategies 
have beneficial effects against VILI, including optimizing 
mechanical ventilation by setting suitable positive end‑expira‑
tory pressure, low tidal volume ventilation strategy, recruitment 
maneuvers and a lax hypercapnia strategy (109). Adherens 
and tight junctions are essential components in maintaining 
the integrity of the alveolar epithelial barrier. Rho belongs to 
the Ras superfamily of low molecular weight GTPases, which 
have a key role in the formation of the alveolar epithelial cell 
cytoskeleton, as well as Rho‑associated coiled‑coil forming 
protein kinase  (110). Sripathi et al  (111) reported that MT 
treatment could be beneficial in protecting mitochondria under 
oxidative stress and maintaining the structure of the cytoskel‑
eton in the retinal pigment epithelium. Moreover, p120 serves 
as an essential protein in the regulation of cell junctions and 
protects against VILI by regulating both adherens and tight 
junctions by reducing the degradation of occludin via the 
inhibition of RhoA activity (112). Finally, the effect of MT on 
stabilizing cytoskeleton structure and the activation of target 
genes may represent a novel way to alleviate VILI.

10. Conclusion

Treatment with MT has been demonstrated to exert positive 
effects on the alleviation of the aforementioned lung injuries, 
including ALI/ARDS, LIRI, asthma, COPD and VILI. At 
a molecular level, MT reduces lung injury via antioxidative 
effects and upregulation of anti‑inflammatory cytokines, profi‑
brotic cytokines and chemokines in lung tissues, which have a 
pivotal role in the pathophysiology of lung injury.

In ALI/ARDS, MT serves as a crucial antioxidant and 
anti‑inflammatory vehicle that has vital roles in the alle‑
viation of oxidative stress and the excessive production of 
pro‑inflammatory cytokines and chemokines in lung tissues. 
In LIRI, MT inhibits the activation of the JNK/p38 signal‑
ling pathway to protect against lung injury. Additionally, MT 
decreases the expression of MPO and NO in lung tissues. In 
asthma, MT improves lung function by alleviating airway 
inflammation and reducing the release of inflammatory cyto‑
kines via the downregulation of NF‑κB. Additionally, it can be 
hypothesized that MT reduces the severity of chronic asthma 
via the inhibition of the JNK‑TLR9 signalling pathway. It is 
well known that there is systemic oxidative stress in COPD 
and antioxidant therapeutic targets are required for the 
improvement of lung function in patients with COPD (113). 
Additionally, the critical role of SIRT1 in chronic inflamma‑
tion cannot be ignored. In VILI, MT reduces the severity of 
injury via its anti‑inflammatory and inhibitory actions on the 
expression levels of pro‑inflammatory cytokines. Notably, 
recent research has documented the positive effects of MT 
in treating COVID‑19‑induced pneumonia and ALI (66,114). 
Furthermore, the effects of MT on stabilizing cytoskeletal 
structure and inhibiting the expression of cytoskeletal proteins 
are areas of interests for the future research of VILI.
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