
EXPERIMENTAL AND THERAPEUTIC MEDICINE  23:  201,  2022

Abstract. Psoriasis is one of the most common immune-
mediated chronic inflammatory skin disorders, involving 
hyperproliferative keratinocytes and infiltration of T cells, 
dendritic cells, macrophages, and neutrophils. Multiple factors 
appear to play important roles in the pathogenesis of psoriasis. 
These environmental (e.g., infectious agents and trauma), 
genetic, and immunologic factors are reviewed in this article. 
Although the pathogenesis of psoriasis remains to be estab-
lished, data suggesting immune cell dysregulation in the skin 
are available. The involvement of the immune system, particu-
larly T cells, in the etiopathogenesis of psoriasis is discussed 
in this review, indicating a potential justification for innovative 
treatment intervention. Besides describing pathogenic T cells, 

the aim of the review was to assess the function of newly identi-
fied antimicrobial peptides (AMPs), interleukin (IL)‑23, IL‑17, 
and tissue resident memory cells (TRMs), and their role in 
psoriasis. Furthermore, new insights were presented regarding 
TRMs, a recently identified subset of memory T cells, and the 
role they play in the local memory of disease, making them a 
potential new therapeutic target in psoriasis. Finally, current 
developments in T‑cell research and cytokine‑targeted therapy 
for psoriasis treatment are reviewed.
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1. Introduction

Psoriasis is a chronic inflammatory cutaneous condition that 
causes the development of scaly, indurated, erythematous 
plaques on the skin. The three main histologic characteristics 
of psoriasis are epidermal hyperplasia, proliferation of dermal 
blood vessels, and an inflammatory infiltrate of leukocytes, 
primarily in the dermis (1).

Psoriasis is a papulosquamous skin disease that was once 
assumed to be mainly an epidermal keratinocyte issue, but is 
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now recognized among the most typical immune‑mediated 
disorders (2). Antimicrobial peptides (AMPs), dendritic cells 
(DCs), tumor necrosis factor (TNF), IL‑23, Th17, IL‑17, IL‑22, 
signal transducer and activator of transcription (STAT)3, and 
tissue resident memory cells (TRMs) contribute substantially 
to its pathogenesis (1). The identification of this additional 
subset of helper T cells (Th17) and Th22 cells, as well as their 
distinct sets of cytokines [interleukin (IL)‑23, and IL‑22], 
has paved the way for the development of more novel, more 
targeted treatments.

Although early hypotheses of the pathogenesis of psoriasis 
mainly aimed to examine keratinocyte hyperproliferation, 
dysregulation of the immune system is now acknowledged 
to be a crucial event in this disease. Increasing knowledge 
of the role played by the immune system in psoriasis has 
greatly affected the development of treatment. Many new 
and emerging therapeutic agents target specific immunologic 
aspects of psoriatic disease.

Subsequent findings have shown that interactions between 
DCs, T cells, keratinocytes, neutrophils, TRMs and the 
cytokines released from immune cells contribute to the initia-
tion and perpetuation of the cutaneous inflammation that is 
attributed to psoriasis (3). The development of psoriasis is the 
subject of this review.

2. Research methods

To collect reports of psoriasis etiopathogeny, a literature 
search was conducted using electronic databases Google 
Scholar, PubMed, Key Elsevier, UpToDate and Medscape for 
the terms ‘psoriasis’ in combination with ‘etiology’, ‘pathogen-
esis’, ‘skin immunity’, ‘T cells’, ‘tissue resident memory cells’, 
and ‘cytokines’. A search only for relevant published literature 
was conducted and the most recent papers and authoritative 
articles that emerged from 2015  to September 2021, were 
selected. Articles deemed irrelevant to the aim of this litera-
ture review or beyond the research scope were excluded. Thus, 
prospective, retrospective, literature review‑type articles and 
human observational and experimental studies, restricted to 
the English language were included. Based on 179 publications 
found in the literature, a concise report was compiled.

3. Epidemiology

Psoriasis is a relatively common disorder that occurs in chil-
dren and adults worldwide. There is no clear sex predilection 
for psoriasis (4,5). Both males and females are affected by 
psoriasis, with females and those with a family history having 
an earlier onset. It has a bimodal age of onset, with peaks in 
men at 30‑39 years and 60‑69 years, and 10 years earlier in 
women (6). Psoriasis can start at any age; however, it is more 
common in adults than in children.

Psoriasis prevalence ranges from 0.5 to 11.4% in adults 
and 0 to 1.4% in children, according to a systematic world-
wide review (7). Psoriasis affects an estimated 60 million 
individuals globally. It is more prevalent in high‑income areas 
and locations with an aging population (6). The variation in 
prevalence of psoriasis appears to depend on distance from 
the equator, with population located closer to the equator 
(Egypt, Tanzania, Sri Lanka, Taiwan) being less affected by 

the disease than those countries further away from it (Europe 
and Australia) (4).

4. Etiology

Psoriasis is a multifactorial disease in which both extrinsic 
and intrinsic factors play major roles. Genetic predisposition 
is considered a key contributor, especially in individuals with 
early onset of the disease (under 40 years) (8,9).

Behavioral and environmental factors may also be 
involved. Mild localized trauma (10), stress (11), drugs (12), 
infections (13), smoking and alcohol usage (14), obesity (15), 
are all known to cause or aggravate psoriasis. Climate change 
in general, and exposure to natural sunlight in particular, has 
been recognized as a possible psoriasis trigger or exacerbating 
factor (16).

Genetics is one of the most significant factors. The 
importance of genetic factors is demonstrated by the fact that 
approximately 40% of individuals with psoriasis or psoriatic 
arthritis have a family history of the disease (17). Additionally, 
monozygotic twins are more likely to have the disease than 
dizygotic twins (18). Using genome‑wide association studies, 
over 60 susceptibility loci have been identified, many of which 
contain genes involved in immune system regulation (8).

The psoriasis‑susceptibility (PSORS1) locus on chromo-
some 6p21 (location of the HLA genes) is thought to be a 
major genetic determinant of psoriasis  (19,20). HLA‑Cw6 
is the most important allele for susceptibility to early‑onset 
psoriasis and it has also been associated with guttate psoriasis, 
among other MHC genes linked to psoriasis (21). HLA‑B17 
has been linked to an increased risk of psoriasis and severe 
psoriatic arthritis (22).

Psoriasis susceptibility loci have been also found in 
genes that encode the common component of the IL‑12 and 
IL‑23 receptors (23,24). Psoriasis appears to be predisposed 
to or protected by certain receptor polymorphisms (24,25). 
Furthermore, highly associated to psoriasis are the IL12B gene, 
which encodes for the p40 subunit of IL‑12 and IL‑23 (26), as 
well as the IL23A gene, which encodes for the p19 subunit of 
IL‑23 and IL‑39 (23). Despite the lack of evidence, pustular 
psoriasis appears to be genetically unique, with different 
susceptibility genes implicated (IL36RN, AP1S3 in Europeans, 
and CARD14 in other ethnicities) (8,27).

Beta blockers, lithium, and antimalarial medicines are the 
most commonly employed pharmaceuticals that can induce 
psoriasis‑like eruptions or worsen the psoriasis. Notably, TNF 
inhibitors, which are commonly used to treat psoriasis, have 
also been associated with the development of psoriasis‑like 
eruptions (28‑31).

Infections, both bacterial and viral, have been linked 
to worsening of psoriasis. The initiation or exacerbation 
of psoriasis in correlation with HIV infection, as well as 
poststreptococcal flares of guttate psoriasis, are known 
contributors (13).

Low vitamin D levels have been observed in psoriasis 
patients, although the function of vitamin D in psoriasis is 
unknown (32). Even after adjusting for factors such as the 
Fitzpatrick skin phototype and estimated sun exposure, 
serum levels of 25‑hydroxyvitamin D were lower in the 
patients with psoriasis in a case‑control study that compared 
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43 patients with psoriasis and 43 matched controls with other 
non‑photosensitive dermatologic diseases (33).

For many psoriatic patients, psychological distress is a 
causal or sustaining component in disease manifestation (34). 
In a previous study comprising 400 patients with newly devel-
oped psoriasis, 46% of plaque psoriasis patients and 12% of 
guttate psoriasis patients associated the onset of their disease 
to a life crisis, such as divorce, severe or life‑threatening 
disease in the patient or a family member, death in the family, 
financial burden, dismissal, or harassment in school  (11). 
Further research is necessary to determine the effect of stress 
on the progression of psoriasis.

5. Pathogenesis

Psoriasis was essentially considered a disease of epidermal 
keratinocyte proliferation until the early 1980s, with the 
cutaneous inflammatory infiltration as a later occurrence. 
However, there is now compelling evidence that the cell-
mediated adaptive immune response is critical in the treatment 
of psoriasis (2).

The idea of psoriasis being simply a T helper (Th)1‑mediated 
disorder has been replaced by the hypothesis of an inflam-
matory disease that is mediated by Th1 and Th17 (35,36). In 
psoriatic lesions, decreased suppressive activity of regulatory 
T cells (Tregs) may lead to uncontrolled action of other effector 
cells (36). As a result, rather than being a disease caused by a 
single subset of T cells, psoriasis is more clearly understood 
as the result of intricate interactions among numerous subsets 
of T cells.

The immunologic events that are thought to occur in 
psoriasis are outlined in a simple sequence as follows (3). 
i) The activation of plasmacytoid dendritic cells (pDCs) and 
other innate immune cells in the skin is promoted by antigenic 
stimuli. ii)  Interferon (IFN)‑α and other proinflammatory 
cytokines generated by innate immune cells increase the acti-
vation and migration of various myeloid dendritic cells (mDCs) 
in the skin. iii) T lymphocytes are attracted to, differentiated, 
and activated by cytokines produced by mDCs, particularly 
IL‑23. iv) T cells that have been recruited generate cytokines, 
the most significant of which is IL‑17A, which acts in concert 
with other cytokines to stimulate keratinocyte proliferation 
and the production of proinflammatory AMPs and cytokines. 
v) Immune cells and keratinocytes produce cytokines, which 
participate in positive feedback loops to keep the inflammatory 
process in progress (35,37).

AMPs, DCs, TNF, IL‑23, Th17, IL‑17, IL‑22, and STAT3 
contribute substantially to the pathogenesis of psoriasis. 
The identification of an additional subset of helper T cells 
(Th17), Th1 and Th22 cells, as well as their distinct sets of 
cytokines (IL‑23, IL‑12, and IL‑22), has paved the way for the 
development of more novel and targeted treatments.

AMPs. AMPs are comprised of 12‑50 amino acids, have a 
positive charge, and have an amphipathic structure. They help 
protect the host by destroying harmful bacteria, protozoa, 
fungus, and viruses (38,39). AMPs act as chemotactic agents, 
angiogenic factors, and cell proliferation regulators, affecting 
host inflammatory responses (39). In psoriasis, certain AMPs, 

including S100 proteins, cathelicidins and beta‑defensins are 
overexpressed and secreted by keratinocytes, macrophages and 
neutrophils in response to injury and cytokine stimulation (40).

The S100 proteins are a group of low‑molecular‑weight 
proteins (9‑13 kDa) (41). Psoriasis patients have high levels 
of S100A7 (psoriasin), S100A8 (calgranulin A), S100A9 
(calgranulin B), S100A12 (calgranulin C), and S100A15 
(calgranulin  C)  (42). The expression of beta‑defensin 2, 
S100A9, S100A7, and S100A8 was enhanced synergistically 
by the combination of IL‑22, IL‑17A, IL‑17F, and keratino-
cytes (43). In psoriasis, S100A7 (psoriasin) has been found to 
be a strong and selective chemotactic inflammatory protein for 
T cells and neutrophils (44).

Defensins are cationic microbicidal peptides that are 
divided into three categories, i.e., α, β and γ  (42). The 
α‑defensins are also classified into six subtypes known as 
human neutrophil peptides (HNPs) 1‑6. HNPs 1‑3 are present 
in the scales of psoriatic lesions (45). The β‑defensins are 
divided into four subtypes identified as human β‑defensins 
(hBDs) 1‑4. TNF‑α and IFN‑γ induce hBD‑2 and ‑3, which 
are abundant in psoriatic scales, while IL1‑7A and IL‑22 also 
induce hBD‑2 in keratinocytes (39). The exact role of defensins 
in the pathophysiology of psoriasis is unknown (46).

Cathelicidin LL‑37 is the C‑terminal peptide fragment 
that originates from hCAP18 (47). Through Toll‑like receptor 
(TLR)9 pDCs recognize self‑DNA, and LL‑37 is the main 
component that causes pDC activation in psoriasis (48). In 
addition, keratinocytes are exposed to LL‑37 and self‑DNA 
generate type I IFN, which have been linked to the onset of 
psoriasis (49). pDCs are stimulated by LL‑37 bound to RNA 
through TLR7 and LL‑37‑RNA complexes act on myeloid 
DCs (mDCs) through TLR8 (40,46,49).

TNF, IL‑23, and IL‑12 are produced by activated mDCs 
when they move into draining lymph nodes. Slan+ monocytes 
also react to LL‑37‑RNA activation and release TNF, IL‑23, and 
IL‑12 (50). IL‑23 and IL‑12 activate Th17 and Th1 cell subsets 
from naive T cells, respectively (40). Mabuchi and Hirayama 
verified in a study that various 9‑mer peptides generated from 
LL‑37 have significant binding affinities for HLA‑C*06:02 
molecules, and they hypothesized a mechanism for the inter-
action of LL‑37 HLA‑C*06:02 complexes with T cells via 
T‑cell receptors (51).

ADAMTSL5, a protein produced from melanocytes, has 
been identified as an autoantigen (52). In association with 
HLA‑C*06:02, intra‑epidermal CD8 T lymphocytes identify 
ADAMTSL5 on melanocytes (52). With IL‑17 stimulation, 
keratinocytes generate ADAMTSL5, and CXCL1, a neutro-
phil chemoattractant and melanocyte growth factor, inducing 
ADAMTSL5 expression  (52). The number of melanocytes 
increases in psoriasis, and T cells, including cytotoxic T cells, 
co‑localize with them (53). However, as the number of mela-
nocytes increases and there are no indications of cell death in 
psoriasis, it is hypothesized that melanocytes are likely targets 
of the non‑cytotoxic CD8+ T cell‑mediated autoimmune 
response (54).

The pattern of T‑cell infiltration and DC aggregation 
in the superficial dermis in psoriasis, which is analogous to 
LL‑37 (55), is mirrored by the ADAMTSL5 expression pattern. 
After therapy with an IL‑17 or TNF blocker, the expression of 
ADAMTSL5 and LL‑37 with DCs, neutrophils, macrophages, 
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and T cells in psoriasis is markedly reduced (56,57). This 
decrease suggests that HLA‑class II molecules present 
ADAMTSL5 and LL‑37 to autoreactive CD4+ T cells, whereas 
HLA‑Cw6*02 molecules present ADAMTSL5 and LL‑37 to 
CD8+ T cells, both of which are expressed on the surface of 
antigen‑presenting cells inside dermal lymphoid tissue struc-
tures (52,57). In psoriasis patients, a synthetic ADAMTSL5 
peptide enhances the frequency of CD8 T cells expressing 
IL‑17A and IFN‑7 among peripheral blood mononuclear cells, 
but this effect is not observed in healthy subjects (52).

pDCs. pDCs are important cells involved in the early stages 
of psoriasis. pDCs can be stimulated by viral and bacterial 
particles by activating Toll‑like receptors (TLR)7 and TLR9, 
resulting in the production of type 1 interferon (IFN‑α) (58). 
IFN‑α is a key cytokine involved in the initiation phase of 
autoimmune responses and antiviral immunity, causing an 
inflammatory response, associated with psoriasis, through 
the activation of mDCs (59,60). IFN‑α upregulation has been 
found in early psoriatic lesions (61). Furthermore, in a mouse 
xenograft model of psoriasis, the formation of psoriatic lesions 
was found to depend on IFN‑α production by pDCs (60).

The mechanism by which pDCs generate a psoriasiform 
response is partly elucidated by observational experiments 
with imiquimod  (59,62,63), a synthetic imidazoquinoline 
recognized by TLR7 (64). pDCs are induced to produce type 
I IFN‑α (62,63) and interferon regulatory factor 7 (IRF7) (65) 
when imiquimod is applied to the non‑lesional skin of suscep-
tible patients (63). pDCs respond in a similar way when they 
detect bacterial and viral peptides (59,62,63).

In vivo, the antimicrobial peptide LL‑37 is found to be 
a major activator of pDCs. It has been postulated that the 
release of LL‑37 by activated keratinocytes and the subse-
quent binding of the molecule to self‑DNA in susceptible 
individuals causes conformational changes in the bound DNA 
molecule, transforming this otherwise harmless molecule into 
an aggregated, dense structure recognized by early ribosomal 
TLR9, resulting in IFN‑α production but not pDC maturation. 
As a result, LL‑37‑activated pDCs move into the epidermis, 
where they identify autoantigens produced by keratinocytes, 
potentially perpetuating the pathogenic process  (48,66). 
According to this theory, dysregulated LL‑37 may serve as a 
link between keratinocytes and pDCs in the pathogenesis of 
psoriasis (48). Through interactions with HLA‑DR and class‑I 
alleles, LL‑37 is related to the activation of both CD4+ and 
CD8+ LL37‑specific psoriatic T cells (66).

mDCs. In psoriatic skin, the number of mDCs is significantly 
increased. An inflammatory subset of mDCs [including TNF‑α 
and iNOS‑expressing dendritic cells (TIP‑DCs), 6‑sulfo 
LacNAc dendritic cells (slanDCs), and epidermal dendritic 
cells (eDCs)] has been detected in lesional psoriatic skin in 
response to the release of IFN‑α and other proinflammatory 
cytokines and chemokines (50,67‑71).

Once activated, mDCs orchestrate the inflammatory phases 
of psoriasis. Inflammatory mDCs also co‑express cytokines 
such as TNF‑α, iNOS, and IL‑12, which are all well‑known 
inflammatory mediators. TNF‑α (also released by keratino-
cytes) activates mDCs and Langerhans cells, and stimulates 
macrophages to convert into DCs (68).

TNF‑α is produced by mDCs, which are powerful APCs 
that generate a variety of inflammatory cytokines that impact 
T‑cell activity. IL‑23, a cytokine that promotes the differen-
tiation of precursor CD4+ cells into Th17 cells, and IL‑12, a 
cytokine that promotes the formation of Th1 cells and effector 
CD8+ T cells (50,71,72) are also produced by mDCs. mDCs 
influence keratinocytes and the skin vasculature by producing 
IL‑20 (a keratinocyte function modifier) and nitric oxide 
(a vasodilator) (73).

Cytokines. The hypothesis of a cytokine network in psoriasis 
suggests a major involvement of proinflammatory cytokines, 
including TNF‑α (74). In reflection, the clinical effective-
ness of anti‑TNF medication in the treatment of psoriasis has 
confirmed this theory (75). The major cytokines that appear to 
be involved in this disease, based on gene signature analysis, 
include type I interferons, IFN‑γ, and TNF‑α (76).

IFN‑α. In early psoriasis lesions, type I interferon pathways 
are upregulated (61). pDCs produce the majority of IFN‑α in 
psoriatic skin. The finding that systemic therapy with IFN‑α 
can aggravate psoriasis (77,78) provides evidence in favor of 
IFN‑α, playing a significant role in psoriasis. Furthermore, 
topical therapy with imiquimod, which causes local IFN‑α 
production in the skin, has been shown to promote the develop-
ment of psoriasis in individuals and a psoriasis‑like condition 
in mice (79,80). The psoriasis‑like condition develops in mice 
lacking a transcription factor that suppresses type I interferon 
signaling (81).

TNF‑α. TNF‑α is a proinflammatory cytokine that is 
common  in a variety of inflammatory diseases, including 
psoriasis (82). TNF‑α is produced and responded to by acti-
vated dendritic cells, Th17 and Th1 cells, and keratinocytes in 
psoriatic skin. TNF‑α also promotes disease development by 
interacting with other cytokines.

The evidence of elevated TNF‑α levels in the lesional skin 
of psoriatic individuals (83), marked clinical improvement in 
psoriasis with pharmacologic inhibitors of TNF‑α (infliximab, 
adalimumab, etanercept, and certolizumab pegol) (75,84‑87) 
and decreased numbers of dendritic and T cells, as well as a 
reduction in epidermal hyperplasia through removing circu-
lating TNF‑α with etanercept (a TNF‑α inhibitor) in psoriatic 
skin (69), suggests that TNF‑α plays an essential role in psori-
asis. TNF‑α is a prominent target for therapeutic inhibition 
because of its major involvement in both innate and adaptive 
immune responses.

IL‑23. IL‑23 produced by DCs and downstream prod-
ucts of helper T cells, such as IL‑17A and IL‑22, are also 
important (88,89).

In psoriasis, key cytokines function via a limited number 
of signaling and transcriptional pathways. Cytokine‑like 
type I interferons, IFN‑γ, IL‑23, IL‑12, IL‑22 function via 
Janus kinases and signal transducers and activators of tran-
scription (JAK‑STATs), while TNF‑α operates through the 
NF‑κB pathway (3).

The IL‑23p19 subunit (encoded by IL‑23A) and the 
IL‑12/IL‑23p40 subunit (shared with IL‑12 and encoded by 
IL‑12B) form a heterodimer. The subunit binds to the IL‑23R 
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receptor, which is linked to Jak2 and Tyk2. When the receptor 
is activated, a signaling cascade is triggered, which includes 
the activation of STAT3 (90).

Evidence of IL‑23 involvement in psoriatics is sustained 
by the fact that IL‑23 levels are higher in psoriasis lesions 
compared to unaffected skin, and it is found in dermal DCs 
and keratinocytes; IL‑23 levels decrease with effective 
psoriasis treatment (91‑93). In support of this, injection of 
IL‑23 into normal mouse skin causes clinical and histo-
logical alterations that are similar to psoriasis (92,94,95). 
This process is dependent on the downstream generation of 
IL‑22 and IL‑17A. Furthermore, results from a mouse model 
revealed that, blocking IL‑23 inhibited the development 
of psoriasis in human xenografted skin from patients with 
psoriasis (96).

IL‑12. IL‑12 is produced by activated mDCs, similar to IL‑23, 
and it stimulates Th1 cell development. Increased Th1 cells 
and IFN‑γ (a product of Th1 cells) in psoriatic skin provide 
indirect evidence for an IL‑12‑related role in psoriasis (97,98). 
The inability of a study to detect the overexpression of the IL‑12 
p35 subunit in psoriatic skin (88) casts doubt on the extent to 
which IL‑12 contributes to psoriasis. Preclinical mouse studies 
also suggest that IL‑12 has a regulatory or protective role in 
the IL‑23/Th17 immunologic pathway (99). It is probable that 
ustekinumab, a type of biological therapy for psoriasis that 
targets both IL‑12 and IL‑23 (96,100), may function primarily 
through the drug's effects on the IL‑23 pathway.

As a result, a complex and partly redundant set of psoriasis-
related cytokines converge on well‑known intracellular 
checkpoints that are common to many chronic inflammatory 
diseases. T cells, in particular, are the key protagonists in the 
disease's development among all the diverse immunological 
cellular elements. In fact, the IL‑23/Th17/IL‑17 axis now 
appears to have a determining effect on the beginning of 
psoriasis inflammation (101).

CD4+ T cells. CD4 helper T cells are detected in dermal 
inflammatory infiltrates of psoriatic skin (102). An injection 
of CD4 (but not CD8) T cells from psoriasis patients into graft 
sites on SCID mice transplanted with human skin‑generated 
psoriatic alterations in the grafted skin is evidence for a role 
for these cells (103). Furthermore, patients with psoriasis who 
were treated with monoclonal antibodies against the CD4 
molecule on T cells improved clinically (104).

Psoriasis has been linked to the Th17 subset of CD4 T cells, 
as well as Th1 and Th22 cells to a lesser extent. Th1 cells 
were thought to have a dominant role in early research, but 
Th17 cells are now thought to play a more important role. The 
impact of these cells, as well as other adaptive immune system 
components, on psoriasis are discussed below.

Th17. The identification of Th17 cells has resulted in new 
target‑specific therapy methods and critical insights into the 
pathogenesis of psoriasis. Th17 cells originate in psoriatic 
skin as a result of the polarizing effects of the inflamma-
tory DC production of IL‑1, IL‑6, TGF‑β, and IL‑23 (105). 
Th17 cells, that have been activated by IL‑23, generate IL‑17A 
and IL‑22, cytokines that promote keratinocyte activation and 
development (94,106,107).

The following study results highlight the role of these cells 
in psoriasis: IL‑17A is abundantly produced by Th17 cells 
that are observed in lesional skin and at higher levels in the 
circulation in psoriasis patients  (97,108,109). Th17 cells 
secrete a number of proinflammatory cytokines, including 
IL‑17A, IL‑17F, IL‑21, IL‑22, IL‑6, and TNF‑α (110), which 
have all been related to psoriasis. In fact, IL‑17 is a critical 
cytokine in the initiation and maintenance of inflammation, 
as it stimulates endothelial cells and macrophages to produce 
pro‑inflammatory cytokines (111).

Selective targeting of IL‑17A (the principal effector 
cytokine produced by Th17 cells) with secukinumab and 
ixekizumab, as well as bimekizumab's dual blocking of IL‑17A 
and IL‑17F, improves psoriasis (112‑114). Brodalumab, which 
blocks the IL‑17RA portion of the IL‑17A receptor, has had 
similar success in treating psoriatic skin (115).

IL‑23, which is produced by macrophages and DCs, is 
important for upregulating IL‑17 production by promoting 
Th17 survival and proliferation (116). It also appears to be 
necessary for keratinocytes to participate in inflammation, 
causing acanthosis and mixed inflammatory cell infiltration of 
the dermis (95). IL‑23 is also responsible for increasing TNF 
production in macrophages.

A viable treatment method for psoriasis is by inhibiting IL‑23 
or the IL‑23 receptor, therefore affecting Th17 cells (117‑119). 
Ustekinumab, a highly successful psoriasis treatment, is 
a monoclonal antibody that binds to p40, a subunit of both 
IL‑23 and IL‑12 that causes Th17 cells to die. Guselkumab, 
tildrakizumab, risankizumab, and mirikizumab are other 
selective IL‑23 blockers with high efficacy in clinical practice 
and clinical trials. Psoriasis is also being studied with agents 
that disrupt the JAK/STAT signaling pathways (key intracel-
lular processes in Th17 cytokine generation) (120‑122).

Th1. Th1 cell production is enabled by IL‑12, a cytokine gener-
ated by activated mDCs. It is unclear how IL‑12‑mediated 
actions contribute to psoriasis (88). IFN‑γ, IL‑2, and TNF‑α 
are among the proinflammatory cytokines produced by 
Th1 cells  (123). In non‑lesional psoriatic skin, IFN‑γ, the 
prototypic cytokine produced by these cells, can cause 
psoriasis‑like alterations (124). Of note is that infliximab, an 
effective anti‑TNF medication for psoriasis, can also arrest 
Th1 cells from producing IFN‑γ (125).

CD8+ T cells. Cytotoxic CD8 T cells that are mostly present in 
the epidermis of psoriatic skin, produce cytolitic enzymes and 
play a smaller role in psoriasis than CD4+ T cells via the produc-
tion of inflammatory cytokines such as IL‑17A (126‑128). The 
predominance of Th1/IFN‑γ and pro‑inflammatory cytokines, 
occurs in the chronic phase  (129,130), as opposed to the 
IL‑23/Th17/IL‑17 axis that has a major role in the onset of 
psoriasis inflammation (131). Indeed, the disease is marked by 
an increase in cytokines from the Th1 pathway (IL‑2, IFN‑γ, 
IL‑12, and TNF‑α) (132,133). Furthermore, IFN‑γ, TNF‑α, 
IL‑18, and IL‑12 levels in the peripheral blood are propor-
tionally associated with the severity of psoriasis (36). IFN‑γ, 
in particular, suppresses keratinocyte death, resulting in 
hyperproliferation in psoriatic skin (134‑136). Notably, clonal 
restriction of resident memory epidermal T cells seems limited 
to the CD8+ compartment (137). As these types of MHC class 



BRANISTEANU et al:  ETIOPATHOGENESIS OF PSORIASIS6

I‑restricted antigens are normally presented in CD8 T cells, 
rather than CD4 T cells, this finding suggests a relationship 
between viral or self‑antigens in the epidermis and triggering 
of psoriasis (138).

TRMs. T cells are present in healthy skin. Following exposure 
to an antigen, naive T cells evolve into effector T cells that 
can act as immunological defense mechanisms. Subsequent to 
the immune response most of these cells die; however, some 
survive and differentiate into memory T cells. Although central 
memory T cells (TCM) traffic through lymphoid tissues, 
effector memory cells (TEM) circulate through peripheral 
tissues. TRM T cells are a newly identified subset of memory 
T cells that remain in tissues over a long period of time without 
circulating in the bloodstream, thereby serving as a first line 
of adaptive cellular defense (139). However, growing evidence 
suggests that the abnormal activation of these cells may be 
involved in the pathogenesis of autoimmune and inflammatory 
disorders, rendering these cells a potentially novel therapeutic 
target (140). Approximately 20 billion TRMs are present in 
healthy adult skin (141).

TRMs differ from traditional TCMs and TEMs in terms 
of transcription, phenotype, and function. They act as alarm 
sensors or cytotoxic killers in the T‑cell zones of secondary 
lymphoid organs, lymph, and non‑lymphoid tissues including 
the skin (137,140,142,143).

The aim of TRMs is to defend non‑lymphatic tissues 
against viral and bacterial infections. These cells have also 
been demonstrated to protect against HSV infection, vaccinia 
pox, lymphocytic choriomeningitis virus (LCMV), influenza, 
listeriosis, malaria, and various types of cancer (144).

Immunization involves, among other things, training 
TRMs how to react rapidly to an infection (145). TRMs are 
prevalent in numerous tissues and provide a more effective 
in situ response to infectious pathogens compared to TEMs. 
Granzyme B, which is useful in the prevention of prevent 
pathogens from spreading at the infection site, is released. 
TRMs are also capable of stimulating the innate and adaptive 
responses of the immune system (146‑148). TRMs are cells 
that connect the adaptive and innate immune systems. They 
also promote protective immune responses for previously 
encountered tissue as numerous viruses have tissue tropism. 
However, mounting evidence suggests their involvement in 
the pathogenesis of autoimmune diseases including psoriasis, 
vitiligo, autoimmune hepatitis and rheumatoid arthritis (140), 
in addition to their protective functions.

Depending on the tissue of residency and the nature of 
the pathogen, TRMs have variable expression of different 
markers. As a result, they may exist as distinct subsets with 
phenotypic heterogeneity. CD8+ cells that express CD103, 
CD69, and CD49a are optimally characterized TRMs (149).

CD103 (αE integrin chain) binds to E‑cadherin, thereby 
fostering retention within epithelial tissues (150). Only CD8+ 
TRMs express the CD103 marker (integrin E subunit), not 
CD4+ TRM cells. Its expression is the most prominent on 
epidermal CD4+ and CD8+ TRMs because it allows them to 
bind to E‑cadherin, which is widely expressed by epithelial 
cells (143,151,152).

CD69 is a T‑cell activation marker and is involved in 
distinguishing T cells in tissues from those in circulation 

and it is responsible for the colonization of TRMs in tissues, 
preventing them from recirculating. CD69 expression 
mediates early T‑cell retention in the skin by blocking 
sphingosine 1‑phosphate receptor 1 (S1PR1)‑mediated egress 
from tissues (153). CD69 expression is preceded, followed 
by CD103. Specifically, the former marker, i.e., greatly 
impacts the early attachment of TRMs in tissue, whereas the 
latter (CD103) is involved in their persistence subsequent to 
reaching the skin. The absence of these surface molecules 
induces a reduction in the TRM cell population, but not a total 
elimination (143).

CD49a (the α‑subunit of the α1β1 integrin receptor, also 
known as very late antigen VLA‑1) is another TRM cell 
marker. CD49a determines a subset of CD8+ TRMs that are 
localized in the epidermis. In the skin, CD8+CD49a+ TRMs, 
which are abundant in vitiligo, produce perforin, granzyme B, 
and IFN‑γ, the last of which is a key cytokine in fighting viral 
infections. In addition, CD8+CD49a+ TRMs acquire high 
cytotoxic capacity upon IL‑15 stimulation (154,155). These 
cells, on the other hand, do not express high quantities of 
these cytolytic molecules in the absence of external stimu-
lation, and thus differ from circulating CD8+ T cells (156). 
Psoriasis is caused by CD8+CD49‑ TRMs that generate IL‑17 
and concentrate in the skin (154,155). TRMs also expresses 
the surface proteins that suppresses T‑cell activity, such as 
program cell death protein‑1 (PD‑1) and T‑cell immuno-
globulin mucin receptor 3 (TIM3). The expression of these 
proteins occurs in inflamed tissues. In such situations, TRMs 
exert an anti‑inflammatory effect, indicating the ambiguous 
character of these cells (157,158).

In psoriasis, Th1 and Th17 phenotype CD4+ T cells are 
considered the most pathogenic T‑cell subpopulations. A 
clearer understanding has been gained of the role of LL‑37 
(an antimicrobial peptide formed from keratinocytes) and 
ADAMTSL5 (a protein produced by melanocytes) in the 
etiology of psoriasis. The proteins listed above are known 
as autoantigens. LL‑37 is also recognized as an autoantigen 
by CD4 T cells, and it correlates with the Psoriasis Area 
Severity Index (PASI) (52,66). In psoriatic epidermis, CD8+ 
T lymphocytes with TRM phenotype are numerous, but CD4+ 
TRMs preferentially occupy the dermis. The differences 
in colonization are caused by the presence of CD69, which 
inhibits the sphingosine‑1‑phosphate receptor (S1P1), which 
normally allows lymphatic entrance. A considerable propor-
tion of skin TRMs also expresses CD103, the αEβ7 integrin 
chain that interacts with E‑cadherin expressed by keratino-
cytic cells. TGF‑β through TGF‑RII is the signal essential 
for their survival (145). Hair follicles, through IL‑15 and IL‑7 
production, are also important in their recruitment (159). In 
addition to cytokines, lipids found in the skin are necessary for 
the maintenance of TRMs.

TRMs have been identified in recurrent psoriasis sites 
in unaltered and cured skin, indicating their involvement 
in the local memory of the disease  (160). Memory T‑cell 
recirculation between the skin and circulation is a recently 
identified immunological mechanism that plays a key role in 
the onset of the psoriasiform response (161‑163). The patho-
genicity of TRMs is determined by their ability to generate 
the pro‑inflammatory cytokines IL‑17 and IL‑22, which are 
important in this process (158,162).
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The experiment of Boyman et al  (164) was the first to 
show the significance of resident cutaneous T lymphocytes 
in psoriasis. Authors of that study used immunodeficient 
mice (AGR129 mice, which lack type  I  and  II interferon 
receptors, as well as the recombination activating gene 2) to 
implant unchanged human psoriatic skin. Within 8 weeks, 
the reproduction of resident human T lymphocytes and 
the establishment of psoriatic lesions were detected. They 
were mostly found in the epidermis and dermal‑epidermal 
junction, and they had the CD8+ phenotype with TNF‑α 
susceptibility (164).

CD4+ T cells, which produce pro‑inflammatory cyto-
kines such as IL‑17A, IL‑22, and IFN‑γ, are thought to be 
the predominant pathogenic T‑cell subpopulation, but CD8+ 
memory T cells, which are found in healthy skin, have a 
similar pro‑inflammatory cytokine profile. These cells 
can identify peptide antigens presented on MHC class  I 
molecules, including HLA‑Cw6, and are abundant in the 
psoriatic epidermis  (162). On the murine AGR model of 
psoriasis, blocking 1‑integrin arrested T cells from entering 
the epidermis, which reduces disease eruptions  (126). 
Di  Meglio  et  al  (162) demonstrated that an increase in 
epidermal CD8+ cells causes keratinocyte hyperprolifera-
tion as well as papillomatosis (an increase in CD8+ cells that 
corresponds to the intensity of Ki67 staining in keratino-
cytes)  (162). Psoriasis‑related cytokines are produced by 
CD8+ T lymphocytes isolated from psoriasis patients. These 
cytokines remain in the skin after treatment, as TRMs and 
LL‑37‑specific CD8+ T cells that express integrin α1β1 (162).

The optimal treatment time required to totally silence 
TRMs and ensure that lesions do not recur at the same 
site remains to be determined  (165). As a result, psoriatic 
lesions reappear more frequently in previously affected skin 
areas, and pathogenic TRMs exposed to IL‑17A and IL‑22 
accumulate in resolved lesions (137,166). Sérézal et al (167) 
investigated tissue responses after T‑cell stimulation in healthy 
and psoriatic lesions. An increase in the number of epidermal 
IL‑17 and IL‑22 (producing skin‑resident T CCR6+ cells) may 
be a genetically predisposed response to microbial stimulation 
in never‑lesional skin in psoriasis patients. As a result, IFN‑γ 
production increases, and keratinocytes that produce INF‑α 
are stimulated, causing psoriatic inflammation.

Psoriasis plaques, on the other hand, revealed IL‑17‑induced 
response patterns, indicating a relapse. The proportional 
amount of induced IFN‑γ, IL‑10e, and IL‑17A was associated 
with the time it took for patients to relapse after stopping 
treatment (167).

Biopsies from psoriatic lesions were examined in a study 
by Kurihara et al (151). The number of CD8+CD103+ TRMs 
in the epidermis was shown to be linked with epidermal 
thickness (P=0.016), suggesting an important role in the devel-
opment of psoriatic lesions (151). The majority of TRMs were 
CD8+CD69+ T cells that expressed skin colonization antigens, 
with a modest number of CD4+CD103+ TRMs. IFN‑γ, IL‑17A, 
and IL‑22 were generated by some of the CD8+CD103+ 
T cells. Furthermore, CD8+CD103+ TRMs produced more 
IL‑17A than CD8+CD103‑ and effector cells CD8+CD103+ or 
CD4+CD103+. The number of CD8+CD103+IL‑17A+ TRMs 
was higher in individuals who received biological or systemic 
therapy  (151). TRMs, on the other hand, expressed less 

CD103 in the dermis of psoriatic plaques, as demonstrated 
by Cheuk et al  (137). Epidermal TRMs expressing CCR6 
collaborate with CCL20‑expressing keratinocytes in the early 
stages of psoriatic inflammation, in the skin where lesions are 
absent (166,168).

Vo et al (168) investigated the phenotypic characteristics 
of TRMs in non‑lesional, lesional, and healthy skin. When 
compared to the skin of healthy subjects, an immunofluores-
cence study revealed that CD103+CD8+ TRMs were prevalent 
in both non‑lesional and lesional epidermis. Furthermore, 
individuals with a longer disease duration produced more 
IL‑17A (168).

Diani et al (169) investigated the phenotype of circulating 
T lymphocytes in psoriasis patients using gene expression anal-
ysis in psoriatic skin. The percentage of CCR6+CD4+ TEMs and 
TEMs in the blood was found to be positively connected with 
the severity of skin lesions and inflammation (CRP, C‑reactive 
protein), while the percentage of CXCR3+CD4+ TEMs was 
found to be negatively correlated. Furthermore, the severity 
of psoriasis was negatively correlated with CLA+CD4+ TCMs 
expressing CCR6+ or CCR4+CXCR3+. CLA expression has 
been linked to the recruitment of CD4+ T cells into the skin, 
particularly when expressed on TCMs, especially CD4+ TCMs 
with the CCR4+ and CCR6+ phenotype (52,169). In a previous 
study, Bosè et al  (170) demonstrated that the inhibition of 
the CCR7/CCL19 axis was required for psoriasis remission 
produced by TNF inhibitors (161). In psoriasis, circulating 
CCR4+CD4+ T cells have a substantial correlation with the 
PASI, while CCR5+CD4+ T cells have a strong negative corre-
lation (170). Systemic inflammation (CRP) and the severity 
of skin lesions are both strongly correlated with a subpopu-
lation of T effector CCR4+CD8+CD103+ cells (171,172). The 
fraction of IL‑17 secreting CD4+ T lymphocytes, and likely 
γδ T‑lymphocytes, was also found to play a role in the creation 
of a self‑sustaining inflammatory loop (169).

TRM suppression is necessary for complete remission of 
the disease. TRMs, however, have a long lifespan and are resis-
tant to both harmful agents and apoptosis. This explains the 
reason for frequent psoriasis relapses in the same area. TRMs 
are capable of generating IL‑17A even after the clinical lesions 
have resolved, and effective therapy merely reduces their 
activity (161,165). CD8+ TRMs also accumulate in untreated 
psoriasis localizations, which is probably related to duration of 
the disease (140,171). The explanation of memory cell lifespan 
is a fascinating field of study. One of the reasons is its apoptosis 
resistance. CD8+ (αEβ7) is a heterodimeric marker compound, 
comprised of CD103 and beta7 subunits, that plays a vital func-
tion in the stability of CD8+ TRMs by elevating the expression 
of the anti‑apoptotic Bcl‑2 molecule (143,151). TRMs, on the 
other hand, can produce granzyme B (serine protease), which 
can cause cell death (158). Furthermore, IL‑15 is thought to 
play a role in TRM cell survival (173).

Of note is that the effector T cells generate adenosine 
triphosphate (ATP) using glycolysis energy, which is less effi-
cient but faster. Endogenously produced fatty acids, glucose 
catabolism, and oxidative phosphorylation are used by TCMs 

on the other hand, to support their long‑term survival and func-
tion (174,175). TCMs use extracellular glucose from the blood 
to generate fatty acids in the endoplasmic reticulum, using 
lysosomal acid lipase, which is required for the breakdown 
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of cholesteryl esters and triglycerides in LDL molecules to 
cholesterol and free fatty acids (FFA). They can be long‑lived 
and react rapidly to antigen owing to such mechanisms (174). 
Cui et al also revealed that IL‑7, a cytokine important for TCM 
differentiation and survival, increased glycerol transport and 
triacylglycerol synthesis by upregulating the gene expression of 
the glycerol channel aquaporin 9, thereby providing substrates 
for mitochondria via fatty acid oxidation (FAO) (174,176).

However, the metabolic characteristics of TRMs are 
currently unknown due to a lack of accurate data. CD8+ 
TRMs, on the other hand, are known to establish a transcrip-
tional pathway that includes the overexpression of FABP4 
(adipocyte‑FABP), FABP5 (epidermal‑FABP), CD36 (lipid 
scavenger receptor), and lipoprotein lipase (cleaves triglycer-
ides to yield FFA and diacylglycerol). In naive T cells, TCMs, 
or effector memory cells, such activity of genes responsible for 
the action of these molecules is not found (174).

Pan  and  Kupper  (174) found that mouse CD8+ TRMs 
produced by cutaneous viral infection have a different 
expression level of genes encoding proteins that mediate 
intracellular lipid uptake and transport, such as fatty 
acid‑binding protein‑FABP4 (adipocyte‑FABP) and FABP5 
(epidermal‑FABP). These are substances that aid in the acqui-
sition and metabolism of exogenous FFAs (174). CD8+ TRMs 
upregulated the gene expression of FABP4/FABP5 in a peroxi-
some proliferator‑activated receptor (PPAR)‑γ‑dependent 
manner (174,177). T‑specific deficit of these molecules has 
been found to impair CD8+ TRM uptake of exogenous FFA, 
reducing their long‑term survival in vivo, but has no impact on 
TCM survival in lymph nodes. Furthermore, CD8+ TRM skin 
cells missing FABP4/FABP5 were less effective in protecting 
mice against cutaneous viral infection (177). This remains to 
be determined in psoriasis patients as compared to healthy 
subjects.

In the presence of exogenous FFA, CD8+ TRMs revealed 
increased oxidative metabolism of mitochondria in normal and 
psoriatic skin in vitro. These findings suggest that FABP4 and 
FABP5 are important for CD8+ TRM maintenance, lifespan, 
and function, and that CD8+ TRMs rely on exogenous FFA 
and their oxidative metabolism to survive in tissue. FABP4 
and FABP5 deficiency has been demonstrated to have no effect 
on CD8+ T‑cell proliferation or skin recruitment, but they are 
required for their long‑term survival in the skin (177). Blocking 
PPAR‑γ functions may pave the way for the development of 
psoriatic lesion therapeutic strategies.

Psoriatic inflammation is exacerbated by oxidative stress. 
The redox status of CD4+ TRMs and its connection with IL‑17 
response were studied by Esmaeili et al (178). The increased 
intracellular ROS production in CD+ memory T cells in 
patients with psoriasis reduced the catalase gene expression 
relative to healthy cells, but there were no differences in the 
intracellular glutathione levels or plasma total antioxidant 
capacity. The above diseases, however, seemed to have no 
impact on the IL‑17 response in memory T cells (178).

Regulatory T cells. Finally, regulatory T‑cell (Treg) dysfunc-
tion, which is primarily involved in maintaining tolerance 
and avoiding autoimmune diseases, is a key factor in the 
pathogenesis of psoriasis (179). These Tregs had a decreased 
function in counterbalancing pathogenic T cells during 

psoriasis. Notably, Foxp3+ Tregs from psoriasis patients can 
more quickly develop into pathogenic Th17 cells than other 
Foxp3+ Tregs. IL‑17A+/Foxp3+/CD4+ triple‑positive cells can 
be found in the skin lesions on a regular basis and can be 
utilized to determine the severity of psoriasis. Understanding 
Treg features in psoriasis can therefore aid in the development 
of immunotherapies to treat disease.

6. Conclusions

In conclusion, psoriasis is a chronic inflammatory skin disorder 
that is mostly genetically determined and is associated with a 
wide range of medical and psychological comorbidities. Recent 
findings on the etiopathogenesis of psoriasis as they relate to 
genetic factor, AMPs, the IL23/Th17/IL17 axis, TRMs and 
Tregs were assessed in this review. New therapies were also 
mentioned.

The pathophysiology of psoriasis is still being researched. 
To improve the quality of life of psoriatic patients, the choice 
of available treatments is now increasing. Advances in under-
standing of the pathophysiology of the disease will almost 
certainly lead to the finding of new therapeutic treatments and 
improved patient outcomes.
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