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Abstract. The gut microbiota plays an important role in the 
regulation of the immune system and the metabolism of the 
host. The aim of the present study was to characterize the gut 
microbiota of patients with type 2 diabetes mellitus (T2DM). A 
total of 118 participants with newly diagnosed T2DM and 89 
control subjects were recruited in the present study; six clinical 
parameters were collected and the quantity of 10 different types 
of bacteria was assessed in the fecal samples using quantitative 
PCR. Taking into consideration the six clinical variables and the 
quantity of the 10 different bacteria, 3 predictive models were 
established in the training set and test set, and evaluated using 
a confusion matrix, area under the receiver operating charac‑
teristic curve (AUC) values, sensitivity (recall), specificity, 
accuracy, positive predictive value and negative predictive value 
(npv). The abundance of Bacteroides, Eubacterium rectale and 
Roseburia inulinivorans was significantly lower in the T2DM 
group compared with the control group. However, the abundance 
of Enterococcus was significantly higher in the T2DM group 
compared with the control group. In addition, Faecalibacterium 
prausnitzii, Enterococcus and Roseburia inulinivorans were 
significantly associated with sex status while Bacteroides, 
Bifidobacterium, Enterococcus and Roseburia inulinivorans 
were significantly associated with older age. In the training set, 
among the three models, support vector machine (SVM) and 

XGboost models obtained AUC values of 0.72 and 0.70, respec‑
tively. In the test set, only SVM obtained an AUC value of 0.77, 
and the precision and specificity were both above 0.77, whereas 
the accuracy, recall and npv were above 0.60. Furthermore, 
Bifidobacterium, age and Roseburia inulinivorans played 
pivotal roles in the model. In conclusion, the SVM model exhib‑
ited the highest overall predictive power, thus the combined use 
of machine learning tools with gut microbiome profiling may be 
a promising approach for improving early prediction of T2DM 
in the near feature.

Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common 
metabolic disorders worldwide and is primarily caused by 
defective insulin secretion (1). Over the past 30 years, the 
number of individuals with T2DM and prediabetes has 
increased two‑fold globally, indicating T2DM as a rapidly 
growing public health challenge. However, T2DM is a multi‑
factorial disease that slowly progresses over several years (2). 
Environmental factors including obesity, aging, an unhealthy 
diet, a lack of physical activity, smoking, as well as genetic 
factors and epigenetic modifications all contribute to the 
accelerating diabetes epidemic in China (3). However, genetic 
variation accounts for only a small ratio of risk of T2DM 
development and environmental factors play a pivotal role in 
driving the progression of T2DM. In addition, several studies 
have reported increased hypertension rates among T2DM 
subjects (4‑6). It is estimated that the incidence of hyperten‑
sion is increased ~two‑fold in patients with T2DM compared 
with those without T2DM (7). A previous study indicated that 
moderate consumption of alcohol has been associated with a 
reduced risk of T2DM (8). However, moderate drinking needs 
to be monitored cautiously under a culturally appropriate 
context, particularly considering the stable increase in alcohol 
consumption in several Asian countries (9) and the excess 
increase in alcohol consumption in European countries (10).

Recent studies reported the occurrence of gut microbiota 
(GM) dysbiosis in obese patients with T2DM and indicated 
that the gut microflora may be a major environmental factor 
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involved in the onset and progression of diabetes. Additionally, 
intestinal microbiome changes were also associated with the 
onset of type 1 DM and gestational DM (11,12). Therefore, it 
is necessary to develop a reliable early method for detecting 
T2DM that could lead to earlier interventions and treatments 
for T2DM.

The human gut microbiome has been demonstrated to 
possess 500‑1,000 bacterial species, which are estimated to 
encompass ~2,000,000 genes. Surprisingly, the bacterial genes 
possess 100 times more genes than the human genes (13). The 
GM is a very diversified ecosystem and its function is depen‑
dent on several factors, such as host genetics, species, sex, 
age, body mass index (BMI), diet, smoking and drugs (14,15). 
GM may be key to the management of T2DM development. 
The aim of the present study was to develop a rapid machine 
learning‑based method to predict the risk of T2DM.

Materials and methods

Sample and clinical data collection. A total of 118 newly diag‑
nosed patients with T2DM and 89 controls (non‑T2DM) were 
randomly recruited between January 2019 and October 2020 
from the affiliated Hospital of Chengde Medical University 
(Chengde, China). The inclusion criteria for T2DM were 
as follows: i) Patients with T2DM were enrolled in accor‑
dance with the 1999 WHO diagnostic criteria as previously 
described (16); and ii) were aged >18 years. The exclusion 
criteria were as follows: i) Acute infection, trauma or surgery 
within the past month; ii) use of antibiotics, glucocorticoids or 
other immune regulators within the past month; iii) severe coro‑
nary heart disease, stroke or malignant disease; iv) pregnancy 
or lactation; v) autoimmune diseases, such as hyperthyroidism; 
and vi) other types of diabetes (17). The exclusion criteria for 
the controls were the same as those aforementioned.

All procedures were per formed and approved 
(approval no. CYFYLL2021171) in accordance with the ethical 
standards of the Clinical Research Ethics Committee of the 
affiliated Hospital of Chengde Medical University (Chengde, 
China), and written informed consent was obtained from all 
participants included in the study.

Fecal sample collection and DNA extraction. A total of 207 
fresh fecal samples were collected in sterile collection tubes 
(Thermo Fisher Scientific, Inc.). All samples were stored at 
‑20˚C for temporary preservation and then transferred to ‑80˚C 
for longer term storage. Specifically, 200 mg fecal sample was 
added to 1 ml PBS in a 1.5 ml tube, vortexed at maximum 
speed for 3 min and centrifuged at 167.7 x g for 5 min at 4˚C 
and then the supernatant was collected and transferred to a 
2‑ml tube. A total of ~800 µl supernatant was centrifuged 
at 1,677 x g for 5 min at 4˚C and then the supernatant was 
removed. Subsequently, the microbial DNA was extracted 
from the fecal samples using a nucleic acid extraction kit 
(cat. no. T221S) according to the manufacturer's protocol 
(Xi'an Tianlong Science & Technology Co., Ltd,). Finally, 
~60 µl DNA was obtained for downstream experiments.

Primers and PCR amplification. A total of 10 microbial oligo‑
nucleotide primers were synthesized and purified by General 
Biol (generalbiol.com/) (Table SI). Quantitative PCR (qPCR) 

was performed using an ABI‑7500 real‑time PCR system 
(Thermo Fisher Scientific, Inc.). The thermocycling condi‑
tions were: Pre‑denaturation at 95˚C for 10 min; followed by 
45 cycles of denaturation at 95˚C for 15 sec and annealing at 
60˚C for 45 sec. Following amplification, melting temperature 
analysis of PCR products was performed to determine the 
specificity of the PCR amplification. The melting curves were 
obtained by heating from 60 to 95˚C at a rate of 0.3˚C/sec, 
with continuous fluorescence measurement. Differences in 
threshold cycles between the positive control (universal 16S 
rDNA) and each bacteria were quantified using the 2‑ΔCq method 
as previously described (18), where ΔCq was the differences in 
Cq values for each bacteria and universal 16S rDNA and the 
relative abundance of each bacteria was calculated.

Construction of the prediction models. In the present study, 
three machine learning tools were established to predict T2DM 
development, including an artificial neural network of the 
multilayer perceptron (MLP) model, an XGboost model and a 
support vector machine (SVM) model and combined 6 clinical 
features and 10 bacterial species. The SVM model has been 
reported to predict chronic kidney disease in clinical applica‑
tions (19), the XGBoost model exhibits improved performance 
in predicting patients with postoperative sepsis (20), and 
the MLP model performed well when applied to computed 
tomography for coronary artery disease and myocardial 
perfusion (21). K‑fold is a common cross validation approach, 
particularly when the datasets are limited (22). Therefore, 
k‑fold (k=5) was used to train, construct and compare the three 
predictive models. Additionally, the parameters of the three 
predictive models were tuned for the optimization of the equa‑
tions in Python (Table SII).

A total of 207 participants (118 patients with T2DM and 
89 controls) were randomly allocated into a training set (80%) 
and a test set (20%). In the training set, k=5 was used and 
various parameter combinations were exhausted using grid 
search. For each model, the confusion matrix, area under the 
receiver operating characteristic (ROC) curve (AUC), accu‑
racy, sensitivity (recall), specificity, positive predictive value 
[ppv (precision)] and negative predictive value (npv) and were 
used to evaluate and compare the comprehensive performance 
of feature selection as previously described (23).

Statistical analysis. The three models were used to predict 
the risk of T2DM and evaluated using Python (version 3.6.12; 
Python Software Foundation) and incorporated including 
6 clinical features and 10 bacterial species. The diagnostic 
values of the three models were assessed using ROC analysis. 
After preprocessing the data with pandas and sklearn, XGboost 
was used to analyze the importance of features and evaluated 
by Python as previously described (24). Categorical variables 
were presented by numbers or proportions, and differences in 
distribution between the two groups were analyzed using a 
χ2 test in SPSS (version 19.0; IBM Corp.) Continuous variables 
are presented as the median and range. Continuous variables 
between the two groups were compared using a nonparametric 
Mann‑Whitney U test (for two groups) or nonparametric 
Kruskal‑Wallis test followed by Dunn's post hoc test (for more 
than two groups). Statistical calculations were performed 
in GraphPad Prism (version 8.0; GraphPad Software, Inc.). 
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P≤0.05 was considered to indicate a statistically significant 
difference.

Results

Clinical characteristics of the participants. The clinical 
characteristics of the patients with T2DM and controls are 
shown in Table SIII. There were no significant differences 
in age (P=0.502), sex (P=0.683), BMI (P=0.230), smoking 
(P=0.146), alcohol consumption (P=0.220) and hypertension 
status (P=0.055) between patients with T2DM and controls.

Comparison of the 10 bacteria between patients with T2DM 
and controls. A total of 10 bacteria, including Veillonellaceae, 
Clostridium leptum, Roseburia inulinivorans, Bacteroides, 
Prevotella, Bifidobacterium, Lactobacillus, Faecalibacterium 
prausnitzii, Enterococcus and Eubacterium rectale were 
detected by qPCR. The abundance of Bacteroides (P=0.0055), 
Eubacterium rectale (P=0.0432) and Roseburia inulinivorans 
(P=0.0019) was significantly lower in the T2DM group than 
in the control group (Fig. 1A‑C). In addition, the abundance 
of Enterococcus (P=0.0002) was significantly higher in the 
T2DM group than in the control group (Fig. 1D). However, 
there were no significant differences in Prevotella (P=0.164), 
Bifidobacterium (P=0.103), Veillonellaceae (P=0.642), 
Faecalibacterium prausnitzii (P=0.157), Lactobacillus 
(P=0.078) and Clostridium leptum (P=0.493) between the two 
groups (Fig. S1).

In addition, Faecalibacterium prausnitzii was significantly 
higher in the control female subgroup than in the T2DM female 

subgroup (P=0.032; Fig. 2A). Furthermore, the abundance of 
Enterococcus was higher in the T2DM male subgroup than in 
both control female (P=0.025) and male (P=0.0121) subgroups 
(Fig. 2B). Roseburia inulinivorans was significantly higher in 
both control female and male subgroups than in the T2DM 
female subgroup (P=0.0008 and P=0.0026, respectively) 
(Fig. 2C). However, there were no significant differences in 
the abundance of the Bacteroides (P=0.0477), Prevotella 
(P=0.468), Bif idobacterium (P=0.35), Lactobacillus 
(P=0.326), Eubacterium rectale (P=0.118), Veillonellaceae 
(P=0.124) and Clostridium leptum (P=0.178) between each 
subgroup (Fig. S2).

The abundance of Bacteroides in the control older age 
(>60 years old) subgroup was higher than that in the T2DM 
older age subgroup (P=0.0208; Fig. 3A). The abundance of 
Bifidobacterium in the T2DM older age subgroup (>60 years 
old) was higher than that in the T2DM younger age (≤60 years 
old) subgroup (P=0.0343) and the control older age subgroup 
(P=0.0041; Fig. 3B). The abundance of Enterococcus was 
significantly higher in both the T2DM older age and younger 
age subgroups (P=0.0012 and P=0.0012, respectively; 
Fig. 3C), compared with control participants less than 60 years 
old. Furthermore, Roseburia inulinivorans was significantly 
higher in the control younger age subgroup than in the T2DM 
older age subgroup (P=0.0007; Fig. 3D). However, there were 
no significant differences in the abundance of Prevotella 
(P=0.0975), Lactobacillus (P=0.0697), Eubacterium 
rectale (P=0.102), Faecalibacterium prausnitzii (P=0.455), 
Veillonellaceae (P=0.507) and Clostridium leptum (P=0.904) 
between each subgroup (Fig. S3).

Figure 1. Comparison of 4 bacteria between the patients with T2DM and controls. Abundance of (A) Bacteroides, (B) Eubacterium rectale and (C) Roseburia 
inulinivorans were significantly lower in the T2DM group than in the control group. (D) The abundance of Enterococcus was significantly higher in the T2DM 
group than in the control group. Results represent the median and range. *P<0.05, **P<0.01 and ***P<0.001 as determined by nonparametric Mann‑Whitney U 
test. T2DM, type 2 diabetes mellitus. 
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Comparison of the 3 machine learning models. SVM, 
XGboost and MLP models were used to predict the risk of 
T2DM by incorporating 6 clinical features and 10 bacterial 
species. A total of 207 samples were randomly divided into 
a training set (80%) and test set (20%). The ROC curve is 
widely used to validate the performance of prediction models, 
and the average AUC and 95% CI are shown in Fig. 4A. In 
the training set, the results indicated that the AUC values of 
SVM, XGboost and MLP models were 0.72, 0.70 and 0.69, 
respectively. Furthermore, the accuracy, ppv (precision) and 
sensitivity (recall) were >0.61 in all models (Table SIV). 
However, specificity and npv were poor in the three models. 
In the test set, the results showed that the SVM obtained 
the highest AUC value (0.77); the XGboost and MLP model 

AUC values were 0.69 and 0.67, respectively (Fig. 4B). The 
accuracy was >0.67 in the three models and the specificity 
and precision were >0.72 (Table SV). However, recall and 
npv did not perform well in all the models. Furthermore, 
the XGboost model was used to analyze the importance of 
the 16 features, and then the feature score rankings were 
measured (Fig. 5). The results showed that Bifidobacterium, 
age and Roseburia inulinivorans were the top three features 
in the model.

Discussion

The prevalence of T2DM has become a major public concern, 
with its continuingly increasing incidence worldwide. Gut 

Figure 2. Comparison of 3 bacterial species between the control female and male subgroups, and the T2DM female and male subgroups. (A) Faecalibacterium 
prausnitzii abundance was significantly higher in the control female subgroup than in the T2DM female subgroup. (B) The abundance of Enterococcus was 
higher in the T2DM male subgroup than in both control female and male subgroups. (C) The abundance of Roseburia inulinivorans was significantly higher 
in both control female and male subgroups than in the T2DM female subgroup. Results represent the median and range. *P<0.05, **P<0.01 and ***P<0.001 as 
determined by Kruskal‑Wallis test followed by Dunn's post hoc test. T2DM, type 2 diabetes mellitus.
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dysbiosis in patients with T2DM is caused by not only envi‑
ronmental factors but also the host genetics. Studies have 
suggested that the composition of the intestinal microbiota can 
trigger T2DM (25‑27). Therefore, further research is required 
to elucidate the connection between GM and T2DM.

T2DM is a systemic disease which is characterized by 
hyperglycemia, hyperlipidemia and organismic insulin resis‑
tance (28). In the present study, six clinical data including 
age, sex, BMI, smoking, alcohol consumption and hyperten‑
sion status which were associated with T2DM development 
were collected. Additionally, numerous studies have shown 
that non‑alcoholic fatty liver disease (NAFLD) is commonly 
observed in patients with T2DM (29,30). However, whether 
NAFLD is a cause or consequence of the diabetic pathology 
remains a source of debate (28). Thus, this relationship is bidi‑
rectional, since T2DM substantially predicts the development 

of these metabolic disorders (3). Therefore, the NAFLD status, 
hyperlipidemia and disorders of glucose and lipid metabolism 
status were not collected to predict the risk of T2DM in the 
present study. According to previous studies, 10 bacteria 
including Veillonellaceae, Clostridium leptum, Roseburia 
inulinivorans, Bacteroides, Prevotella, Bifidobacterium, 
Lactobacillus, Faecalibacterium prausnitzii, Enterococcus 
and Eubacterium rectale were associated with T2DM (31,32). 
The abundance of Bacteroides was significantly lower in the 
T2DM group, which is consistent with a previous study in 
animals, which revealed that after administration of metformin, 
the relative abundance of Bacteroides was increased in mice 
and rats treated with metformin (33). Roseburia inulinivorans 
was more abundant in the control group in the present study, 
which is similar to a study which showed that the abundance 
of Roseburia inulinivorans was increased in patients after 

Figure 3. Comparison of 4 bacterial species between the control older age and younger age subgroups, and the T2DM older age and younger age subgroups. 
(A) The abundance of Bacteroides was higher in the T2DM older age subgroup than in the control older age subgroup. (B) The abundance of Bifidobacterium 
was higher in the T2DM older age subgroup than in the T2DM younger age subgroup and the control older age subgroup. (C) The abundance of Enterococcus 
was significantly higher in both the T2DM younger age and older age subgroups than in the control younger age subgroup. (D) Abundance of Roseburia 
inulinivorans was significantly higher in the control younger age subgroup than in the T2DM older age subgroup. Results represent the median and range. 
*P<0.05, **P<0.01 and ***P<0.001 as determined by Kruskal‑Wallis test followed by Dunn's post hoc test. T2DM, type 2 diabetes mellitus. 
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diabetic remission, achieved by both laparoscopic Roux‑en‑Y 
gastric bypass or sleeve gastrectomy surgery (34). Interestingly, 
Roseburia inulinivorans was significantly higher in both control 
female and male subgroups than in the T2DM female subgroup. 
Moreover, Roseburia inulinivorans was significantly higher in 
the control younger age subgroup than in the T2DM older age 

subgroup. In the present study, the abundance of Eubacterium 
rectale was significantly higher in the control group than in 
the T2DM group, which is consistent with a metagenome‑wide 
association study which revealed that the relative abundance 
of Eubacterium rectale was higher in the control group than 
in the patients with T2DM (31). A previous study found that 

Figure 4. Evaluation of the predictive models. The figure shows the average ROC curves of the 3 models in the training set and test set. (A) Mean AUC values 
and 95% CIs of all models are shown in the training set. (B) The AUC values of all models are shown in the test set. ROC, receiver operating characteristic; 
AUC, area under the ROC curve; CI, confidence interval. 
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Enterococcus was positively correlated with obesity (35). 
Enterococcus was significantly higher in the patients with 
T2DM in the present study, which is in accordance with a study 
that showed that Enterococcus was more enriched in the DM 
group than in the control group (36). Interestingly, the abun‑
dance of Enterococcus was higher in both T2DM younger and 
older age subgroups than in the control younger age subgroup. 
Additionally, Enterococcus was higher in the T2DM male 
subgroup than in both control female and male subgroups.

Addit ional ly, several studies have shown that 
Bifidobacterium was negatively associated with T2DM (37,38). 
Conversely, Sasaki et al (39) reported that Bifidobacterium 
was significantly increased in the patients with T2DM when 
compared with the healthy controls. However, in the present 
study, the abundance of Bifidobacterium did not significantly 
differ between the control group and the T2DM group. 
Interestingly, Bifidobacterium exhibited the higher abun‑
dance in the T2DM older age subgroup than in the T2DM 
younger age subgroup and the control older age subgroup. 
Faecalibacterium prausnitzii was found to be negatively asso‑
ciated with T2DM (32,40). Interestingly, Faecalibacterium 
prausnitzii was significantly higher in the control female 
subgroup than in the T2DM female subgroup; although 
there was no significant difference in Faecalibacterium 
prausnitzii abundance between the control group and T2DM 
group. Penckofer et al (41) reported that Lactobacillus was 
more abundant in women with T2DM than in the controls. 
Conversely, previous studies have demonstrated the benefi‑
cial effects of Lactobacillus for human health, including 
improving T2DM, exhibiting anti‑inflammatory effects and 
reducing body weight (42‑44). Human gut Lactobacillus can 
reduce blood glucose responses in vivo (45). The aforemen‑
tioned studies indicated that Lactobacillus shows the most 
discrepant results among studies. Furthermore, Prevotella 
was significantly correlated with lipid metabolites, such as 
lysophosphatidylglycerol and phosphatidylinositol‑3, resem‑
bling obese and diabetic phenotypes (46). The abundance of 

Clostridium leptum in the probiotic group was significantly 
higher than in the control group who did not take probiotics 
than in Japanese patients with T2DM (47). In a previous study, 
it was demonstrated that Veillonellaceae was significantly 
higher in the acarbose group than in the placebo group (48). 
However, in the present study, the abundance of Lactobacillus, 
Prevotella, Clostridium leptum and Veillonellaceae did not 
significantly differ between the control and T2DM groups.

In order to improve earlier warnings in patients with 
T2DM, the SVM, XGboost and MLP models were used, incor‑
porating 6 clinical features and 10 bacterial species to predict 
the risk of T2DM. A total of 207 samples were randomly 
divided into a training set (80%) and test set (20%). Among 
the three models, SVM and XGboost models obtained AUC 
values of 0.72 and 0.70, respectively, in the training set, and the 
accuracy, precision and recall were >0.61. While in the test set, 
only the SVM model obtained an AUC value of 0.77, the preci‑
sion and specificity were >0.77, and the accuracy, recall, and 
npv were >0.60. Previous studies reported that if the model 
AUC is >0.70, the model has high accuracy (49,50). Although 
the SVM model had the highest overall predictive power, the 
sample size in the training and test set were small. Thus, large 
samples are required to verify this result.

In addition, the XGboost model was used to analyze 
the importance of the 16 features, including 6 clinical 
features and 10 bacterial species. The results revealed that 
Bifidobacterium, age and Roseburia inulinivorans played 
major roles in the model, while alcohol consumption, 
smoking status and sex were less important. Bifidobacterium 
represents beneficial genera, most frequently reported in 
studies of T2DM, and appears to be the most consistent genus 
supported by the literature, exhibiting potentially protective 
effects against T2DM (51). Roseburia inulinivorans is also the 
most consistently reported to exhibit a negative association 
with T2DM (51). Therefore, the results indicated that the gut 
microbiome can be a potential marker for predicting the risk 
of T2DM. Yang et al (52) reported that the meta‑analysis of 

Figure 5. Evaluation of the predictive models. The figure shows the average ROC curves of the 3 models in the training set and test set. (A) Mean AUC values 
and 95% CIs of all models are shown in the training set. (B) The AUC values of all models are shown in the test set. ROC, receiver operating characteristic; 
AUC, area under the ROC curve; CI, confidence interval. 
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the prevalence T2DM rate at the age of 55‑74 years was six‑ to 
seven‑fold higher than that of individuals aged 20‑34 years, in 
China. Thus, age may be a major factor in the risk of T2DM. 
In the present study, age was ranked as the second most 
important factor in the model. Additionally, Bifidobacterium, 
Roseburia inulinivorans and Enterococcus were associated 
with an older age. Bifidobacterium, Roseburia inulinivorans 
and Enterococcus were ranked as the top 5 important features 
in the model. In addition, a previous study showed that a high 
BMI was the single strongest risk factor for T2DM (53), and 
was associated with several metabolic abnormalities that 
result in insulin resistance (54). According to a series of 
nationwide surveys reported in China (55), the prevalence of 
being overweight (23 kg/m2 ≤ BMI <27.5 kg/m2) in Chinese 
adults aged 20‑59 years old increased from 37.4% in 2000 to 
39.2% in 2005, 40.7% in 2010, and 41.2% in 2014. The preva‑
lence of obesity (BMI ≥27.5 kg/m2) increased from 8.6% in 
2000 to 10.3% in 2005, 12.2% in 2010 and 12.9% in 2014. 
Notably, T2DM develops at a considerably lower BMI in the 
Chinese population than in European populations. The rela‑
tively high risk of diabetes at a lower BMI could be partially 
attributed to the tendency towards visceral adiposity in East 
Asian populations, including the Chinese population (56). 
Therefore, BMI may not play an important role in developing 
T2DM in the Chinese population. In the present study, BMI 
ranked as the fifth most important feature in the model. In 
addition, smoking has shown to induce insulin resistance 
and compensatory insulin‑secretion responses (57), which 
may explain the increased risk of T2DM in individuals who 
smoke. On the one hand, moderate consumption of alcohol 
has been associated with a reduced risk of T2DM (8). On the 
other hand, it may be due to the public education campaigns 
to reduce the prevalence of smoking in China in recent years. 
A meta‑analysis indicated that the prevalence of T2DM was 
9.9% for men and 11.6% for women in China (2000‑2014) (52). 
It appears that the effect of sex on the prevalence of T2DM 
amongst the Chinese is equal. Thus, alcohol consumption, 
smoking and sex are less important in the model ranking. 
Meanwhile, the abundance of Faecalibacterium prausnitzii, 
Veillonellaceae, Clostridium leptum and Lactobacillus did 
not differ between the control and T2DM groups, which may 
explain why they were ranked lower.

There are several limitations in the present study. First, the 
sample size used was relatively small and the total cohort of 
patients with T2DM and cohort of controls was unbalanced. 
Second, only 6 clinical features and 10 bacterial species were 
used to establish the models between the two groups. The 16S 
rRNA gene is a promising method for detecting GM, but in 
the present study, the abundance of the 10 bacterial species 
between the two groups was assessed by qPCR instead. Third, 
although the SVM model obtained an AUC value of 0.77 in 
the test set, larger cohorts are required to validate in the model 
before the model can be assessed in the clinic for detection of 
early stage T2DM.

In conclusion, three machine learning models were 
constructed and compared to predict the risk of T2DM, 
revealing that the SVM model exhibited the highest overall 
predictive power. In addition, Bifidobacterium, age and 
Roseburia inulinivorans had important impacts in predicting 
early stage T2DM. Therefore, SVM machine learning may 

have potential to aid in the early prediction and treatment of 
patients with T2DM in the near feature.
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