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Abstract. Due to challenges in diagnosing myasthenia gravis 
(MG), identifying novel diagnostic biomarkers for this disease 
is essential. Mitochondria are key organelles that regulate 
multiple physiological functions, such as energy production, 
cell proliferation and cell death. In the present study, Mfn1/2, 
Opa1, Drp1, Fis1, AMPK, PGC‑1α, NRF‑1 and TFAM were 
compared between patients with MG and healthy subjects 
to identify potential diagnostic biomarkers for MG. Blood 
samples were collected from 50 patients with MG and 
50 healthy subjects. The participants' demographic information 
and routine blood test results were recorded. Mitochondrial 
dynamics were evaluated and levels of Mfn1/2, Opa1, Drp1, 
Fis1, AMPK, PGC‑1α, NRF‑1 and TFAM were determined in 
peripheral blood mononuclear cells using western blotting and 
reverse transcription‑quantitative PCR, respectively. Receiver 
operating characteristic curve analysis was used to evaluate 
the diagnostic accuracy of these indicators. The areas under 

the curve values of Mfn1/2, Opa1, Drp1, Fis1,AMPK, PGC‑1α, 
NRF‑1 and TFAM were 0.5408‑0.8696. Compared with 
control subjects, mRNA expression levels of Mfn1/2, Opa1, 
AMPK, PGC‑1α, NRF‑1 and TFAM were lower, while those 
of Drp1 and Fis1 were higher in patients with MG. The protein 
expression levels of all these molecules were lower in patients 
with MG than in control subjects. These results suggested that 
mitochondrial dynamics and biogenesis indicators may be 
diagnostic biomarkers for MG.

Introduction

Myasthenia gravis (MG) is an autoimmune disease charac‑
terized by dysfunctional transmission of nerve impulses to 
muscles (1), which impedes eyelid movement, facial expres‑
sion, chewing, talking, swallowing and breathing. The global 
incidence of MG is 1.7‑21.3/1,000,000 individuals per year (2). 
Although studies have shown that the mortality rate of MG is 
currently lower than two decades ago (3,4), MG still impacts 
the quality of life of patients. In current clinical practice, MG 
diagnosis is dependent on disease stage and involves clinical 
examination based on serum autoantibody detection. The 
specific diagnostic tools evaluate levels of anti‑acetylcholine 
receptor (AChR) and anti‑muscle‑specific tyrosine kinase 
(MuSK) Abs (5). However, ~10% of patients with MG test nega‑
tive for both anti‑AChR and anti‑MuSK Abs (6). Therefore, 
developing novel methods to diagnose MG is vital.

Mitochondria are abundant in muscle cells and provide 
most of the energy required to maintain daily activity of the 
human body (7). They are key for energy production and cell 
proliferation and death (8). Mitochondrial function is regulated 
and depends on structure, dynamics and biogenesis (9). 
Mitochondria serve a key role in improving the metabolic 
quality and plasticity of skeletal muscles by maintaining 
biogenesis, dynamics and autophagy/mitophagy (10).

Mitofusion 1 (Mfn1), Mfn2, optic atrophy type 1 (Opa1), 
dynamin‑related protein 1 (Drp1) and fission 1 (Fis1) are key 
factors associated with mitochondrial fusion and fission (11). 
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Mfn1 and Mfn2 are located in the outer mitochondrial 
membrane (OMM) and regulate mitochondrial fusion. Opa1 is 
a member of the dynamin family of mechanoenzymes that are 
localized in the inner MM, where they regulate mitochondrial 
fusion (12).

Previous studies have indicated that regulation of Mfn2 
to restore mitochondrial homeostasis inhibits development 
of diabetic cardiomyopathy (13,14). Drp1 dissociates in the 
cytosol, while Fis1 is anchored to the OMM. Specific signals 
induce transfer of Drp1 from the cytosol to the surface of the 
organelle where it interacts with Fis1 to complete organelle 
division (12,15). This physiological process is known as mito‑
chondrial dynamics (8).

AMP‑activated protein kinase (AMPK) is an energy 
metabolism receptor that serves an important role in main‑
taining balanced energy metabolism in cells (16). Peroxisome 
proliferator‑activated receptor‑γ co‑activator‑1α (PGC‑1α) 
is the primary transcriptional regulator of mitochondrial 
biogenesis, respiration and oxidative phosphorylation (17). 
Nuclear respiratory factor‑1 (NRF‑1) is a nuclear transcription 
factor that stimulates expression of nuclear genes to enhance 
mitochondrial respiratory function. Mitochondrial transcrip‑
tion factor A (TFAM), a DNA‑binding protein, controls 
mitochondrial metabolism and dysfunction by regulating the 
transcription of its genome and organizing mitochondrial 
DNA (mtDNA) (18). PGC‑1α activates TFAM by serving 
as a co‑transcription factor of NRF‑1, thereby regulating 
mitochondrial biogenesis (19).

Previous studies have shown that mitochondria serve 
a role in the development of rare neuromuscular diseases, 
such as Duchenne and Becker muscular dystrophy (20,21). 
Mitochondrial dysfunction affects muscle function, leading 
to atrophy (22). Muscle weakness is the primary symptom 
of MG. Both muscle contraction and relaxation require 
mitochondria for energy supply; the dynamic balance and 
biogenesis of mitochondria are key for these processes (23). 
Therefore, it was hypothesized that mitochondrial dynamics 
and biogenesis factors may serve as diagnostic biomarkers for 
MG. The aim of the present study was to investigate the differ‑
ences in mitochondrial dynamics and biogenesis between 
patients with MG and healthy individuals. Receiver operating 
characteristics (ROC) curves were plotted using reverse 
transcription‑quantitative (RT‑q)PCR data to evaluate the 
diagnostic value of mitochondria‑associated genes, as well as 
to determine whether mitochondrial dynamics and biogenesis 
factors can serve as diagnostic biomarkers for MG.

Materials and methods

Participants. Patients with MG (19 males and 31 females) were 
enrolled from The First Affiliated Hospital of Guangzhou 
University of Chinese Medicine (Guangzhou, China) between 
August 2018 and February 2019. Samples from 50 healthy 
volunteers (25 males, 25 females) were also included in the 
present cross‑sectional study. The following inclusion criteria 
were used: i) Age, 14‑75 years, ii) willing to participate in the 
study and iii) examination by personnel trained in diagnosis 
of MG class IIb (based on the clinical classification proposed 
by the MG Foundation of America) (24). The following exclu‑
sion criteria were used: i) Hormone, immunosuppression, 

plasmapheresis, or intravenous γ globulin treatment during 
the previous 3 months, ii) serious infectious disease or subse‑
quent complications (such as mental illness; cerebrovascular, 
heart or liver disease; kidney failure; or malignant tumor) and 
iii) participation in another clinical study in the past 3 months. 
All participants understood the experimental procedure and 
provided written informed consent. Written informed consent 
was obtained from the parents/guardians of all participants 
<18 years old. All procedures involving human subjects were 
approved by the Academic Ethics Committee of The First 
Affiliated Hospital of Guangzhou University of Chinese 
Medicine.

Isolation of human peripheral blood mononuclear cells 
(PBMCs). Peripheral blood samples (5 ml) were collected in 
an anticoagulant tube. Within 1 h of sample collection, PBMCs 
were isolated using Ficoll‑Paque™ gradient (GE Healthcare). 
An equal volume of phosphate buffer was added to dilute the 
blood sample, which was added to the Ficoll‑Paque separating 
solution and centrifuged at 600 x g for 20 min at 25˚C. The 
samples were separated into four layers. PBMCs were collected 
from the second layer (mononuclear cells). PBMCs were washed 
three times with phosphate‑buffered saline and centrifuged 
(600 x g, 10 min, 4˚C), and then stored at ‑80˚C (Fig. 1).

Total RNA extraction. Total RNA was isolated from 
PBMCs using TRIzol® reagent, according to the manufac‑
turer's instructions (Invitrogen; Thermo Fisher Scientific, Inc.). 
TRIzol reagent (1 ml) and chloroform (0.2 ml) were added to 
each sample tube. The tubes were mixed for 15 sec, allowed 
to stand for 3 min and centrifuged at 600 x g for 15 min 
at 4˚C. The upper aqueous phase was carefully aspirated and 
transferred to a new tube. An equal volume of isopropanol 
was added and samples were mixed at 25˚C for 20 min. The 
samples were centrifuged at 13,000 x g for 10 min at 4˚C to 
precipitate the RNA and the supernatant was removed. The 
sediment was washed with 1 ml pre‑cooled 75% ethanol and 
centrifuged again (600 x g, 5 min, 4˚C). After discarding the 
supernatant, the RNA pellet was dissolved in 30 µl diethyl 
pyrocarbonate‑treated water and stored at ‑80˚C.

RT‑qPCR evaluation of target mRNA expression in PBMCs. 
Total RNA was extracted from PBMCs using TRIzol® reagent 
as aforementioned and reverse‑transcribed to cDNA using 
PrimeScript™ RT Master Mix (cat. no. RR036Q; Takara 
Bio, Inc.) according to the manufacturer's instructions. 
The mRNA expression levels were measured using SYBR 
Green Master Mix (cat. no. RR036A; Takara Bio, Inc.) on 
a CFX96 Real‑Time PCR System (Bio‑Rad Laboratories, 
Inc.), according to the manufacturer's instructions, using 
the following thermocycling conditions: Initial denaturation 
at 95˚C for 20 sec, followed by 40 cycles of 95˚C for 10 sec, 
60˚C for 30 sec and 70˚C for 1 sec. The target gene sequences 
were obtained from GenBank (https://www.ncbi.nlm.nih.
gov/genbank/) and primer sequences for all target genes are 
listed in Table I. Relative expression was determined using the 
2‑ΔΔCq method (25). GAPDH was used as the reference gene.

Western blotting evaluation of protein expression in 
PBMCs. PBMCs were lysed on ice with RIPA lysis buffer 
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(cat. no. 78510; Thermo Fisher Scientific, Inc.) and centrifuged 
at 13,000 x g for 15 min at 4˚C, and then supernatant was 
collected. Protein concentration was determined using the 
bicinchoninic acid method. An equal amount (30 µg, 20 µl) of 
protein was loaded/lane and samples were separated by 12% 
sodium dodecyl sulfate‑polyacrylamide gel electrophoresis. 
Samples were transferred onto polyvinylidene difluoride 
membranes using a Trans‑Blot Turbo Transfer System (Bio‑Rad 
Laboratories, Inc.) and blocked at 25˚C with 5% non‑fat 
powdered milk for 1.5 h. The membranes were incubated 
overnight at 4˚C with the following primary antibodies (all 
Abcam): Anti‑Mfn1 (cat. no. ab129154; rabbit; 1:2,000 in 5% 
non‑fat dry milk), anti‑Mfn2 (cat. no. ab124773; rabbit; 1:1,000 
in 5% non‑fat dry milk), anti‑Opa1 (cat. no. ab42364; rabbit; 
1:2,000 in 5% BSA), anti‑Drp1 (cat. no. ab219596; rabbit; 
1:2,000 in 5% BSA), anti‑Fis1 (cat. no. ab229969; rabbit; 1:200 
in 5% non‑fat dry milk), anti‑AMPK (cat. no. ab80039; mouse; 
1:1,000 in 5% non‑fat dry milk), anti‑phosphorylated‑AMPK 
(cat. no. ab133448; rabbit; 1:1,000 in 5% non‑fat dry milk), 
anti‑PGC‑1α (cat. no. ab54481; rabbit; 1:1,000 in 5% non‑fat 
dry milk), anti‑NRF‑1 (cat. no. ab34682; rabbit; 1:1,000 in 5% 
non‑fat dry milk), anti‑TFAM (cat. no. ab176558; rabbit; 1:1,000 
in 5% non‑fat dry milk) and anti‑GAPDH (cat. no. ab8245; 
mouse; 1:5,000 in 5% non‑fat dry milk). The membranes were 
then incubated with goat anti‑rabbit (cat. no. ab7085; 1:3,000 

in 5% non‑fat dry milk) or goat anti‑mouse (cat. no. ab7063; 
1:3,000 in 5% non‑fat dry milk) secondary antibodies for 
90 min at 25˚C, then washed three times for 5 min each using 
Tris‑buffered saline and polysorbate 20 (Beijing Solarbio 
Science & Technology Co., Ltd.). Protein bands were visual‑
ized using Clarity™ Western ECL Substrate kit (Bio‑Rad 
Laboratories, Inc.). The chemiluminescent signal was captured 
using a ChemiDoc™XRS+ system and resulting bands were 
analyzed using Image Lab software version 3.0 (both Bio‑Rad 
Laboratories, Inc.).

Statistical analysis. The sensitivity and specificity of vari‑
ables for MG diagnosis were determined by ROC curve 
analysis using a non‑parametric approach. The optimal cutoff 
values were selected based on those that minimized the 
sensitivity‑specificity difference and maximized the discrimi‑
nating power of the tests. All data were repeated three times 
and analyzed using SPSS 22.0 (IBM Corp.) and are expressed 
as the mean ± standard deviation. Unpaired t‑test was used 
to compare differences between control and MG. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Participant information. A total of 50 healthy volunteers 
(25 males and 25 females; mean age, 38.92±14.76 years) 
were recruited for the control group and 50 patients with 
MG (19 males and 31 females; mean age, 42.58±13.76 years) 
were recruited for the MG group. The clinical characteristics 
of participants are listed in Table II (raw data are shown in 
Table SI). A higher number of women than men were affected 
by MG, which was consistent with clinical reports (26,27), and 
66% of patients with MG were aged 30‑60 years. According to 
Table II, the proportion of MG patients with a disease span of 
0‑6 years was 88%. The patients exhibited dysphagia, chewing 
weakness, thymectomy and thyroid dysfunction (Table II). 
The hematology results of the patients with MG are shown in 
Table III. Routine blood examination values were all within 
normal ranges. The results provide comprehensive information 
on the participants.

Table I. Primers used for reverse transcription‑quantitative PCR.

Gene Forward primer, 5'‑3' Reverse primer, 5'‑3'

Mfn1 ATGTAACGGACGCCAATC ATCTTTAGCTTCTACTCCCACT
Mfn2 TGCAGGTGTAAGGGACGATT GAGGCTCTGCAAATGGGATG
Opa1 TGTCCTCCGCAAAGTCAT TGCTTGGGAGACCCTACA
Drp1 CAAAGCAGTTTGCCTGTGGA TCTTGGAGGACTATGGCAGC
Fis1 CCAGGTAGAAGACGTAATCCC GTCCAAGAGCACGCAGTTT
AMPK TTGAAACCTGAAAATGTCCTGCT GGTGAGCCACAACTTGTTCTT
PGC‑1α TCAGTCCTCACTGGTGGACA TGCTTCGTCGTCAAAAACAG
NRF‑1 GGTGCAGCACCTTTGGAGAA CCAGAGCAGACTCCAGGTCTTC
TFAM CACATTTTCCACCTGGTGAT CACTCCGCCCTATAAGCATC
GAPDH AAGAAGGTGGTGAAGCAGG GTCAAAGGTGGAGGAGTGG

Mfn, mitofusion; Opa, optic atrophy; Drp, dynamin‑related protein; Fis, fission; AMPK, AMP‑activated protein kinase; PGC, peroxisome 
proliferator‑activated receptor‑γ co‑activator; NRF, nuclear respiratory factor; TFAM, mitochondrial transcription factor A.

Figure 1. Isolation of human PBMCs. PBMC, peripheral blood mononuclear 
cell; MG, myasthenia gravis.
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mRNA expression of Mfn1, Mfn2, Opa1, Drp1, Fis1, AMPK, 
PGC‑1α, NRF‑1 and TFAM measured by RT‑qPCR. mRNA 
expression levels of Mfn1, Mfn2 and Opa1 were significantly 
lower in the MG than the control group (P<0.05; Fig. 2; 
Table SII). By contrast, mRNA expression of Drp1 and Fis1 
was higher in the MG group than the control (P<0.05). In 
addition, mRNA expression of AMPK, PGC‑1α, NRF‑1 and 
TFAM was significantly lower in the MG group than in the 
control (P<0.05). The results of 6 MG patients who were 

anti‑AChR‑negative are shown in Table SIII. According to the 
comparison of the results, there were differences in mRNA 
expression between control group and MG group patients 
(including antibody‑negative patients).

Diagnostic value of Mfn1, Mfn2, Opa1, Drp1, Fis1, AMPK, 
PGC‑1α, NRF‑1 and TFAM. To determine whether mitochon‑
dria‑associated genes serve as diagnostic biomarkers for MG, 
ROC curves were plotted using RT‑qPCR data (Fig. 3). In ROC 
curve analysis (28), the area under the curve (AUC) quantifies 
the diagnostic potential of each candidate biomarker with a 
high AUC indicating a more accurate distinction between 
patients with MG and controls. AUCs were 0.8628 for PGC‑1α, 
0.8696 for NRF‑1, 0.8072 for TFAM, 0.6488 for Mfn1, 0.6441 
for Mfn2, 0.6212 for Opa1, 0.6468 for Drp1, 0.6604 for Fis1 
and 0.5408 for AMPK (Fig. 3A‑I). The results showed that 
mitochondrial energy metabolism (as measured by PCG‑1α, 
NRF‑1 and TFAM) had higher diagnostic value for MG.

Evaluation of Mfn1, Mfn2, Opa1, Drp1, Fis1, AMPK, PGC‑1α, 
NRF‑1 and TFAM expression by western blotting. Western 
blotting was performed to determine whether proteins were 
differentially expressed between control and MG groups. 
Mitochondrial dynamics‑associated proteins (Mfn1, Mfn2, 
Opa1, Drp1 and Fis1) were expressed at significantly lower 
levels in PBMCs from patients with MG than in control subjects 
(P<0.05; Fig. 4). Mitochondrial biogenesis‑associated proteins 
(AMPK, PGC‑1α, NRF‑1 and TFAM) were also expressed 
at lower levels in patients with MG than in control subjects 
(P<0.05; Fig. 5). The results indicate that these mitochondrial 
markers may have diagnostic value for MG.

Discussion

Mitochondria are abundantly present in skeletal muscle fibrils, 
which require large amounts of ATP for contraction and 
diastolic movement (29). Mitochondria are semi‑autonomous 
organelles that are key sites of tricarboxylic acid cycle reactions; 
their normal function determines whether skeletal muscles 
contract freely and flexibly (30). The accepted mechanism of 
skeletal muscle contraction (sliding filament theory) asserts 
that, when stimulated by neurotransmitters and in the presence 

Table II. Clinical characteristics of patients and controls.

Characteristic MG (n=50) Control (n=50)

Sex  
  Male 19 25
  Female 31 25
Age, years  
  14‑29 9 23
  30‑44 20   6
  45‑59 16 17
  ≥60 5   4
Course of disease, months  
  0‑36 36 ‑
  37‑72 8 ‑
  73‑108 4 ‑
  >108 2 ‑
Symptom (+)  ‑
  Neostigmine 50 ‑
  AchR‑Ab 44 ‑
  MuSK‑Ab 30 
Dysphagia 25 ‑
Chewing weakness 11 ‑
Thymectomy 28 ‑
Thyroid dysfunction 10 ‑

MG, myasthenia gravis; AchR, acetylcholine receptor; Ab, antibody; 
MuSK, muscle‑specific tyrosine kinase.

Figure 2. mRNA expression levels of mitochondrial fusion/fission‑associated genes in peripheral blood mononuclear cells. (A) Mfn1/2, Opa 1, Fis 1, Drp 1, 
(B) AMPK, PGC‑1α, NRF‑1 and TFAM, mRNA expression levels in control and MG group. Data are presented as the mean ± SD. *P<0.05, **P<0.01 vs. 
control. Mfn, mitofusion; Opa, optic atrophy; Drp, dynamin‑related protein; Fis, fission; AMPK, AMP‑activated protein kinase; PGC, peroxisome proliferator‑
activated receptor‑γ co‑activator; NRF, nuclear respiratory factor; TFAM, mitochondrial transcription factor A.
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Table III. Hematology results of patients with myasthenia gravis (mean ± SD, n=50).

Variable Male (n=19) Normal male range Female (n=31) Normal female range

WBC, 103/µl 8.59±4.63 4.0‑10.0 9.94±3.13 4.0‑10.0
RBC, 106/µl 4.45±0.57 4.0‑5.5 4.58±0.62 3.5‑5.0
PLT, 103/µl 227.11±60.22 100.0‑300.0 229.78±41.86 100.0‑300.0
Hb, g/l 130.89±19.18 120.0‑160.0 130.42±18.06 110.0‑150.0

WBC, white blood cell; RBC, red blood cell; PLT, platelet; Hb, hemoglobin.

Figure 3. Receiver operating characteristic curves for mitochondrial dynamics‑ and biogenesis‑associated mRNAs. AUC of (A) Mfn 1 is 0.6488, of (B) Mfn 2 
is 0.6441, of (C) Opa 1 is 0.6212, of (D) Drp 1 is 0.6468, of (E) Fis 1 is 0.6604, of (F) AMPK is 0.5408, of (G) PGC‑1α is 0.8628, of (Η) TFAM is 0.8072 and 
of (I) NRF‑1 is 0.8696. Analysis based on the reverse transcription‑quantitative PCR results in mRNAs plotted as sensitivity versus specificity. AUC>0.5 was 
considered significant. AUC, area under the curve; Mfn, mitofusion; Opa, optic atrophy; Drp, dynamin‑related protein; Fis, fission; AMPK, AMP‑activated 
protein kinase; PGC, peroxisome proliferator‑activated receptor‑γ co‑activator; NRF, nuclear respiratory factor; TFAM, mitochondrial transcription factor A.
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of ATP hydrolysis, muscle myosin and actin perform muscle 
contraction by sliding on muscle fibers, leading to overall 
macro fiber shortening and densifying (31). Furthermore, 
studies (32,33) have shown that muscle cells in patients with 
MG are highly sensitive to energy deficiency, which affects 
signal transduction and normal physiological activity of the 
neuromuscular junction. Histopathological analysis of extra‑
ocular muscle tissues of patients with MG has shown that 
myopathic features predominantly include substitution of 
muscle fibers by adipocytes and mitochondrial dysfunction 
at the ultrastructural level (34). Another study reported mito‑
chondrial dysfunction in a patient with early‑stage muscular 
dystrophy; these abnormal mitochondria were susceptible 
to further damage following sarcolemma injury (35). These 
results suggest that mitochondrial and neuromuscular disease 
are associated. Insufficient mitochondrial ATP synthesis leads 
to development of muscle movement disorders and clinical 

MG symptoms, such as limb weakness, eyelid ptosis, chewing 
weakness, dysphagia and respiratory muscle paralysis (Fig. 6).

The most common method for MG diagnosis in clinical 
practice includes assessment of symptoms and signs of 
MG and a positive test for specific autoantibodies (36). 
However, a portion of patients with MG are not diagnosed as 
anti‑AChR or anti‑MuSK positive; thus, this method should be 
complemented.

By contrast with previous studies (37,38) on MG that 
have concentrated on the immune system, the present study 
investigated mitochondrial dysfunction in muscles as a 
potential mechanism for MG. A large number of patients 
were needed to achieve reasonable results but the invasive 
nature of muscle tissue sampling causes pain and imposes a 
psychological burden on participants, resulting in reluctance 
to enroll in this type of study. This was a limitation of the 
present study. However, collecting blood samples for PBMC 

Figure 4. Levels of mitochondrial fusion/fission‑associated protein in peripheral blood mononuclear cells. (A) Mfn1, (B) Mfn2, (C) Opa 1, (D) Fis 1 and 
(E) Drp 1 protein expression in control and MG group. Data are presented as the mean ± SD. *P<0.05 vs. control. Mfn, mitofusion; Opa, optic atrophy; Drp, 
dynamin‑related protein; Fis, fission; MG, myasthenia gravis.
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isolation is relatively painless, involves a simple procedure and 
has high patient compliance, which increases the feasibility 
of long‑term research. PBMCs are used to identify cellular 
dysfunction associated with the pathophysiology of Parkinson's 
disease, a neurodegenerative disorder, such as decreased 
proteasome activity and mitochondrial dysfunction (39). 
Yalçınkaya et al (40) reported that gene expression analysis 
using PBMCs is a simple diagnostic method for Parkinson's 
disease. This research provided a reference for the present 
study to analyze the diagnostic value of MG by PBMCs.

Mitochondrial fission and fusion are key for immature cell 
proliferation as they provide cells with an adequate number 

of mature mitochondria for effective bioenergy genesis (41). 
Mitochondrial fusion helps mitochondria resist oxidative 
stress‑induced damage (42). Studies have shown that mitochon‑
drial fusion and fission impairment may affect mitochondrial 
function and lead to cardiomyocyte death (43,44).

In the present study, mRNA and protein levels of fusion‑
associated genes Mfn1/2 and Opa1 were decreased in patients 
with MG compared with control subjects. Mfn1 promotes 
fusion of tethering‑adjacent mitochondria in coordination 
with Opa1, whereas Mfn2 acts independently. Mitochondria 
of cardiomyocytes in Mfn‑2‑deficient mice are pleiomor‑
phic, enlarged and exhibit functional deterioration (15,45). 

Figure 5. Expression levels of mitochondrial biosynthesis‑associated protein in peripheral blood mononuclear cells. (A) AMPK, (B) PGC‑1α, (C) NRF‑1 and 
(D) TFAM protein expression levels in control and MG group. Data are presented as the mean ± SD. *P<0.05, **P<0.01 vs. control. AMPK, AMP‑activated 
protein kinase; PGC, peroxisome proliferator‑activated receptor‑γ co‑activator; NRF, nuclear respiratory factor; TFAM, mitochondrial transcription factor A; 
p‑, phosphorylated; MG, myasthenia gravis.
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Santel et al (46) found that the highest mRNA levels of Mfn1 
and Mfn2 are present in energy‑demanding tissue, such as 
skeletal muscle, heart and brain, which demonstrates the role 
of mitochondrial fusion in the energy supply chain.

Fission‑associated gene products include Fis1 and Drp1. 
Drp1 translocates to the OMM following signaling from cyto‑
solic GTPase and active fission sites (45). Fis1 recruits Drp1 
to the mitochondria to regulate fission, which is associated 
with skeletal muscle mass. The impairment of mitochondrial 
fission has been shown to result in muscle atrophy (8,47). 
These two proteins were expressed at lower levels in patients 
with MG than in control subjects. However, in the present 
study, mRNA expression levels of Drp1 and Fis1 were higher 
than expected compared with protein levels. Fis1 was barely 
detected in patients with MG, as confirmed by repeat testing. 
Therefore, it was hypothesized that other factors may have 
influenced the translation process to decrease protein synthesis. 

Untranslated regions (UTRs) determine the fate of proteins by 
regulating their interactions. In most cases, single‑stranded 
miRNAs are not fully complementary to the 3'‑UTR of their 
target mRNA, thus blocking translation and regulating gene 
expression. Synthetic 5'‑UTR RNA structures regulate protein 
translation in mammalian cells (48,49). Circular RNAs also 
exhibit a potent translation regulatory function via their 
sponge function (50). These mechanisms only affect protein 
levels, not mRNA stability. Further investigation is required 
to determine the mechanism underlying differences in mRNA 
and protein expression levels.

Mitochondrial dynamics and biogenesis are reciprocally 
coupled. Mitochondrial fission‑associated proteins induce 
opening of the mitochondrial permeability transition pore 
channel, which leads to changes in mitochondrial membrane 
potential and reactions in the mitochondrial respiratory 
chain (51), which enhance mitochondrial biogenesis.

Figure 6. Schematic diagram of mitochondrial dynamics and biogenesis associated with MG. Decreased Mfn1/2, Opa1, Fis1 and Drp1 proteins leads to imbal‑
ance of mitochondrial fusion and fission, affecting mitochondrial structure and regulation of mitochondrial permeability transition pore channels. AMPK 
modulates activation of PGC‑1α and binding to NRF‑1 to activate TFAM. Decreased expression of these proteins decreases mitochondrial biosynthesis, 
energy generation and ATP synthesis, affecting the binding of myosin and actin and causing MG symptoms, such as limb weakness, eyelid ptosis, chewing 
weakness and dysphagia. MG, myasthenia gravis; Mfn1/2, mitofusion1/2; Opa1, optic atrophy type 1; Drp1, dynamin‑related protein 1; Fis1, fission 1; AMPK, 
AMP‑activated protein kinase; PGC‑1α, peroxisome proliferators activated receptor γ coactivator 1α; NRF‑1, nuclear respiratory factor‑1; TFAM, mitochon‑
drial transcription factor A; mPTP, mitochondrial permeability transition pore.
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Mitochondrial biogenesis serves a vital role in metabolic 
health and plasticity. AMPK is an energy metabolism receptor 
that phosphorylates PGC‑1α and activates SIRT1 by increasing 
cellular NAD+ levels. Furthermore, AMPK leads to increased 
expression of PGC‑1α (17). SIRT1 has been shown to interact 
with PGC‑1α to enhance mitochondrial biogenesis (52). The 
overexpression of PGC‑1α is an effective therapy for age‑asso‑
ciated muscle loss. In addition, PGC‑1α‑deficient mice exhibit 
neurodegeneration, suggesting that PGC‑1α may be involved 
in the pathogenesis of neuromuscular disease (53,54). PGC‑1α 
interacts with NRF‑1, a member of the NRF‑1 Cap'n'collar‑Basic 
leucine zipper protein family of nuclear transcription factors, to 
increase TFAM expression and regulate mitochondrial biosyn‑
thesis. NRF‑1 stimulates nuclear gene expression to promote 
mitochondrial respiratory reactions. TFAM is a member of the 
high‑mobility‑group‑box domain‑containing protein family 
that initiates transcription of mtDNA. Conditional knockout 
of TFAM in dopaminergic neurons in MitoPark mice results 
in decreased mtDNA levels (55,56). Therefore, biosynthesis 
promotes mitochondrial ATP synthesis and increases the 
number of mitochondria to provide an energy reservoir for 
skeletal muscle contraction (57,58).

Preliminary work by our group on the gastrocnemius 
muscle tissue of a rat model of autoimmune MG, in which mito‑
chondria are vacuolated, showed that the cristae were broken, 
expression levels of fusion‑ and fission‑associated proteins were 
decreased and Na+/K+‑ATPase and Ca2+/Mg2+‑ATPase activity 
was decreased compared with control rats (59,60). ATPase 
activity was decreased to varying degrees in this rat model, 
leading to a decrease in ATP synthesis and inability of muscles 
to complete contraction and diastolic movement. Ke et al (33) 
suggested that the mitochondrial biogenesis signaling pathway 
is associated with MG, verifying the association between MG 
and mitochondrial dynamics and biogenesis.

In the present study, expression levels of fusion‑associated 
proteins Mfn1/2 and Opa1 and fission‑associated proteins Fis1 
and Drp1 were significantly lower in patients with MG than 
in control subjects. However, the mRNA expression levels 
of Mfn1, Mfn2 and Opa1 decreased, while those of Fis1 and 
Drp1 increased in patients with MG compared with control 
subjects. Both the protein and mRNA expression levels of 
mitochondrial biogenesis‑associated factors AMPK, PGC‑1α, 
NRF‑1 and TFAM were decreased in PBMCs of patients with 
MG. Of 50 patients with MG included in the present study, 
6 patients were anti‑AChR‑negative. Gene expression analysis 
in these patients (anti‑AChR‑negative) demonstrated that 
mRNA expression level was consistent with the whole sample 
(including anti‑AChR‑negative and ‑positive) result, indicating 
that this subset of patients also have mitochondrial energy 
metabolism decreased.

ROC curve analysis showed that mitochondrial 
dynamics‑ and biogenesis‑associated factors were specific 
and sensitive for diagnosing MG. Excluding AMPK, AUC 
values of the Mfn1/2, Opa1, Fis1, Drp1, PGC‑1α, NRF‑1 and 
TFAM were 0.6212‑0.8696 (P<0.05). Furthermore, the AUC 
values of PGC‑1α, NRF‑1 and TFAM were >0.8. A higher 
AUC value indicates a greater potential to distinguish 
patients from controls. Thus, ROC curve analysis indicated 
that these proteins may serve as promising biomarkers for 
MG. However, the present study had limitations. In the 

absence of clinical diagnosis, it is difficult to distinguish 
MG from other types of mitochondria‑associated disease 
based on levels of mitochondrial indicators. In addition, the 
present study only collected patients with type IIb MG and 
obtained AUC>0.8, but this result is not comprehensive. 
The present study did not determine the explicit mechanism 
that how suffering MG underlying mitochondrial func‑
tion disorder and to distinguish MG from other types of 
mitochondria‑associated disease. In future, the potential 
diagnostic value of mitochondria‑associated indicators in 
MG should be further researched.

In conclusion, expression levels of mitochondrial 
dynamics‑ and biogenesis‑associated factors in PBMCs were 
significantly different between patients with MG and control 
subjects. These factors may serve as potential diagnostic 
biomarkers for MG.
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