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Abstract. Vascular endothelium is a target of cadmium (Cd), 
which is a global pollutant of the environment. However, the 
detailed effects and underlying mechanisms remain to be 
elucidated. In the present study, human umbilical vein endo‑
thelial cells (HUVECs) were treated with 0.1, 1, 5, 10, 50 µM 
cadmium chloride (CdCl2) for 12 h. It was found that vascular 
endothelial (VE)‑cadherin mRNA and protein expression 
was upregulated by Cd in HUVECs in a dose‑dependent 
manner. Higher levels of VE‑cadherin were detected at 
cell‑to‑cell junctions in HUVECs treated with 10 µM CdCl2 
compared with normal condition. The phosphorylation level 
of myosin‑binding subunit of myosin phosphatase, a down‑
stream substrate of Rho‑associated protein kinase (ROCK), 
was reduced by 10 µM CdCl2, suggesting that Cd inhibited 

the Rho/ROCK pathway. Activation of ROCK by narciclasine 
reversed the Cd‑induced increase of VE‑cadherin expression. 
By contrast, ROCK pathway inhibitor Y27632 increased 
VE‑cadherin expression in HUVECs. Following inhibition 
of the ROCK pathway, Cd did not significantly alter the level 
of VE‑cadherin. Taken together, the results suggested that Cd 
exposure enhanced VE‑cadherin expression in endothelial 
cells via suppression of ROCK signaling.

Introduction

Cadmium (Cd) is one of the global pollutants of the envi‑
ronment (1). Tobacco smoke, Cd‑contaminated food and 
industrial contamination are the main sources of Cd toxicity 
in humans (2,3). Chronic exposure to Cd has a major effect on 
humans, causing damage to multiple organs including kidneys, 
liver, lung, pancreas and testes (3‑5). In addition, studies have 
reported that the vascular endothelial cell (VEC) is another 
main target of Cd (6,7). Accumulated Cd impairs endothelial 
function at a variety of molecular levels, including cell adhesion 
molecules, metal ion transporters and protein kinase signaling 
pathways (7,8). As blood vessels are widely distributed in 
organs, functional damage of VECs further causes toxicity in 
the parenchymal cells of human organs (8,9). Therefore, it is of 
great significance to investigate the underlying mechanism of 
Cd toxicity on VECs.

Vascular endothelial (VE) cadherin, a principal adhe‑
sion protein, is composed of a large ectodomain with five 
cadherin repeats, a transmembrane domain and a cytoplasmic 
tail (10). Cell‑to‑cell adhesion is established by interactions 
of ectodomain of VE‑cadherin (11). The cytoplasmic tail of 
VE‑cadherin is regulated by a range of phosphatases and 
kinases (12). Phosphorylation of the VE‑cadherin cytoplasmic 
tail leads to VE‑cadherin dissociation from the junctions (11). 
VE‑cadherin is produced by various stimuli to regulate 
vascular permeability (13‑16). It has been reported that 
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VE‑cadherin mRNA expression is reduced in chick embryo 
model treated with 50 µM Cd (17). In addition, low concentra‑
tion of Cd induces membrane dissociation of VE‑cadherin in 
human renal glomerular endothelial cells and human umbilical 
vein endothelial cells (HUVECs) (18,19). Further research is 
required on the effect of Cd on VE‑cadherin.

Rho is a member of guanosine triphosphatase (GTPase) 
family (20). Rho‑associated coiled‑coil kinase (ROCK), 
including ROCK1 and ROCK2, is a serine/threonine kinase 
downstream of Rho GTPases (20). ROCK pathway regulates 
various cellular functions, including contraction, cytoskeleton 
organization, cell‑to‑cell adhesion and permeability (21). 
Lipopolysaccharide has been reported to activate the 
RhoA/ROCK signaling pathway to weaken cell junctions by 
reducing the expression of VE‑cadherin and altering distri‑
bution of VE‑cadherin (22). However, whether Cd regulates 
VE‑cadherin by ROCK pathway is uncertain.

In the present study, the results showed that Cd increased 
VE‑cadherin expression in HUVECs in a dose‑dependent 
manner. It also found that 10 µM Cd inhibited ROCK pathway. 
Narciclasine, an activator of ROCK pathway, reversed 
Cd‑induced VE‑cadherin expression. In addition, the expres‑
sion of VE‑cadherin is unchanged in HUVECs treated with 
10 µM narciclasine in the absence or presence of 10 µM CdCl2. 
ROCK pathway inhibitor Y27632 increased VE‑cadherin 
expression in HUVECs in a dose‑dependent manner. With 
pretreatment of 20 µM Y27632, 10 µM Cd did not alter 
VE‑cadherin expression. The present study demonstrated a 
role for the ROCK pathway in regulating the VE‑cadherin 
expression induced by Cd in HUVECs.

Materials and methods

Reagents and antibodies. CdCl2 was purchased from 
Millipore Sigma and dissolved in phosphate buffered saline 
(PBS). Narciclasine (MedChem Express) and Y27632 (Selleck 
Chemicals) were dissolved in dimethyl sulfoxide (DMSO). 
The primary antibody against VE‑cadherin was purchased 
from Abcam. The primary antibodies against myosin 
phosphatase‑targeting subunit (MYPT), phosphorylated 
(p)‑MYPT (Ser507) and GAPDH were purchased from Cell 
Signaling Technology, Inc. The secondary antibody was goat 
anti‑rabbit IgG (cat. no. 7074; Cell Signaling Technology, Inc.).

Cell Culture. HUVECs were purchased from American Type 
Culture Collection and maintained in Dulbecco's modified 
Eagle's medium (DMEM) supplemented with 10% fetal 
bovine serum (FBS; Lonza Group Ltd.), 10% FBS, 100 U/ml 
penicillin and 100 µg/ml streptomycin at 37˚C in 5% CO2.

Reverse transcription‑quantitative (RT‑q) PCR. HUVECs 
were seeded at a density of 5x105 cells/ml in a 65‑mm dish 
with different treatment. RNA extraction, cDNA synthesis 
and qPCR were performed according to the manufacturer's 
protocols. Total RNA from the treated HUVECs was isolated 
with the E.Z.N.A. Total RNA kit II (Omega Bio‑Tek, Inc.). 
Complementary cDNA was synthesized using the RevertAid 
First strand cDNA Synthesis kit (Thermo Fisher Scientific, 
Inc.). Diluted cDNA (4.6 µl; 50 ngcDNA) and 5.4 µl of primer 
and supermix mixture (SYBR premix Ex Tap™ II and dH2O; 

Takara Biotechnology Co., Ltd.) were used in each RT‑qPCR 
reaction. The RT‑qPCR process was performed on the CFX96 
Real‑Time System (Bio‑Rad Laboratories, Inc.). Reaction 
conditions were: 95˚C for 5 min, 40 cycles of 95˚C for 10 sec 
and 60˚C for 32 sec. All PCR reactions were repeated three 
times and the mRNA levels were normalized to β‑actin. 
Relative quantitative values were obtained from cycle threshold 
(Ct) and the 2‑∆∆Cq method (23). The human VE‑cadherin PCR 
primers were 5'‑CAG CCC AAA GTG TGT GAG AA‑3' (sense) 
and 5'‑CGG TCA AAC TGC CCA TAC TT‑3' (antisense). The 
human β‑actin PCR primers were 5'‑TTG CCG ACA GGA TGC 
AGA A‑3' (sense) and 5'‑GCC GAT CCA CAC GGA GTA CT‑3' 
(antisense).

Western blotting. Western blotting was performed as previ‑
ously described (24). Cells were homogenized with in RIPA 
buffer at 4˚C. Protein concentrations were measured using 
Pierce BCA Assay kit (Thermo Fisher Scientific, Inc.). 
Supernatants of cell lysates were mixed with loading buffer 
and heated at 95˚C for 5 min. Samples containing 25 µg protein 
was separated by 10% SDS‑PAGE and transferred to 0.45 µm 
polyvinylidene difluoride (PVDF) membrane. Membranes 
were blocked with 5% non‑fat milk for 2 hat room temperature 
and incubated with primary antibody against VE‑cadherin 
(1:1,000; cat. no. ab33168; Abcam), MYPT (1:1,000; 
cat. no. 2634; Cell Signaling Technology, Inc.), phosphorylated 
(p)‑MYPT (1:1,000; cat. no. 3040; Cell Signaling Technology, 
Inc.) and GAPDH (1:3,000, cat. no. 2118; Cell Signaling 
Technology, Inc.) at 4˚C overnight. After washing with TBS‑T 
(0.5% Tween), the membranes were incubated with secondary 
antibodies for 2 h at room temperature and then washed 
with TBS‑T. The secondary antibody was HRP‑linked goat 
anti‑rabbit IgG antibody (1:8,000; cat. no. 7074; Cell Signaling 
Technology, Inc.). Following the manufacturer's instructions, 
specific binding was revealed by an ECL kit (Pierce; Thermo 
Fisher Scientific, Inc.). Densitometry analysis was performed 
with ImageJ software 1.48 (National Institute Health).

Immunofluorescence. HUVECs were grown into monolayer 
on fibronectin‑coated glass chamber slides and were then 
treated with 10 µM CdCl2 for 12 h. Then, cells were washed 
with PBS and fixed with 4% paraformaldehyde for 15 min. 
After washing three times with PBS for 10 min, the cells were 
stained with a primary antibody against human VE‑cadherin 
(cat. no. a33168; Abcam) at a dilution of 1:500 overnight at 4˚C 
and were incubated with the Alexa Fluor 546 donkey anti‑rabbit 
secondary antibody (1:200; cat. no. A10040; Thermo Fisher 
Scientific, Inc.) for 2 h at room temperature. After washing 
three times with PBS for 10 min at room temperature, samples 
were imaged using an Olympus BX51 fluorescence micro‑
scope (Olympus Corporation) with an excitation wavelength 
of 546 nm (magnification, x200). The chamber slide with the 
monolayer was divided in 16 equal areas (4x4) and one field 
was randomly chosen in each area. The image mostly close 
to the average staining intensity was chosen as representative 
image.

Statistical data analysis. All the data were analyzed using 
GraphPad Prism 5.0 (GraphPad Software, Inc.). Data are 
presented as means ± SD. Statistical significance was assessed 
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using one‑way analysis of variance followed by Tukey's post 
hoc test or Student's t‑test. A statistical difference of P<0.05 
was considered significant.

Results

High dose Cd increases VE‑Cadherin expression. The 
present study analyzed the mRNA and protein expression of 
VE‑cadherin in HUVECs treated with different concentra‑
tions of Cd for 12 h. Fig. 1A showed that relative VE‑cadherin 
mRNA expression was not changed at concentrations of 0.1, 
1 and 5 µM of Cd. However, it was significantly upregulated by 
10 and 50 µM Cd. Western blotting showed that Cd increases 
VE‑cadherin protein expression following treatment with Cd 
at concentrations of 1, 5, 10 and 50 µM (Fig. 1B and C). A 
previous study showed that Cd disrupts VE‑cadherin mediated 
cell‑to‑cell adhesion of HUVECs (25). Immunofluorescent 

staining with VE‑cadherin antibody on HUVECs treated 
with Cd was performed. As shown in Fig. 1D, VE‑cadherin 
is mainly distributed in cytoplasm membrane under normal 
condition. After treatment with 10 µM Cd, the fluorescence 
became stronger, suggesting that higher levels of VE‑cadherin 
were detected at cell‑to‑cell junctions between cells.

Cd inhibits ROCK activity in HUVECs. To examine whether 
Cd affected ROCK activity, the phosphorylation levels of 
ROCK downstream substrate, myosin‑binding subunit of 
myosin phosphatase (MYPT), were evaluated by western blot‑
ting. HUVECs treated with 10 µM Cd showed a significant 
decrease in p‑MYPT after 12 h (Fig. 2A and B), suggesting 
that Cd inhibited the Rho/ROCK pathway.

ROCK activation reduces Cd‑induced increase of 
VE‑cadherin expression. Narciclasine is an activator of 

Figure 1. Effects of Cd on VE‑cadherin expression in HUVECs. (A) Relative VE‑cadherin mRNA expression measured by reverse transcription‑quan‑
titative PCR in HUVECs treated with different concentrations of CdCl2 for 12 h (n=4). (B) Densitometry analyses of the immunoblots in (C) (n=5). 
(C) Immunoblots of VE‑cadherin from protein samples of HUVECs exposed to different concentrations of CdCl2 for 12 h. GAPDH was used as loading 
control. (D) Immunofluoresence staining of VE‑cadherin on HUVEC monolayer, treated with 10 µM CdCl2. Magnification, x200. Statistical significance was 
assessed using one‑way analysis of variance followed by Tukey's post hoc test. *P<0.05 and **P<0.01 compared with control. HUVECs, human umbilical vein 
endothelial cells; n.s., non‑significant; VE‑cadherin, vascular endothelial cadherin.
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the Rho/ROCK pathway (26). The present study examined 
whether narciclasine inhibited Cd‑induced VE‑cadherin 
expression. As shown in Fig. 3A‑C, 10 µM narciclasine 
reduced mRNA and protein level of VE‑cadherin upon Cd 
treatment (P<0.01). With pretreatment of 10 µM narciclasine, 
10 µM Cd did not increases VE‑cadherin protein in HUVECs 
(Fig. 3D), suggesting Cd induced VE‑cadherin expression 
through inhibition of ROCK signaling.

Inhibition of ROCK upregulates the expression of 
VE‑cadherin. To examine the effect of ROCK pathway 
on VE‑cadherin, HUVECs were treated with different 
concentrations of ROCK inhibitors Y27632 for 12 h. 
Y27632 increased the expression of VE‑cadherin 
mRNA at 10 and 20 µM (P<0.05; Fig. 4A). Y27632 also 
increased the protein levels of VE‑cadherin (P<0.05; 
Fig. 4B and C), suggesting that ROCK pathway negatively 
regulated VE‑cadherin expression. With pretreatment of 
10 µM Y27632, Cd did not significantly alter the level of 
VE‑cadherin in HUVECs (Fig. 4D).

Discussion

Cd exposure has been reported to cause dysfunction of 
VECs (8,27). Depending on the dose of exposure, Cd differen‑
tially affects vascular VECs, including permeability, apoptosis 
and proliferation (7,28,29). The present study demonstrated 
that Cd upregulated expression of VE‑cadherin via inhibition 
of ROCK activities.

The regulation of signaling pathways in response to Cd 
toxicity is dependent on Cd concentration (30). A previous study 
demonstrated that low‑dose Cd (4 µM) impairs adherens junc‑
tions by inducing VE‑cadherin and β‑catenin redistribution, 
causing hyperpermeability in HUVEC monolayers (19,31). 
In the present study, Cd increased VE‑cadherin expression 
in HUVECs in a concentration‑dependent manner. The 
effect of Cd (10 µM) on VE‑cadherin was the more remarked 
than other concentration. In a previous study, treatment of 
HUVECs with Cd reduces VE‑cadherin localization to cell 
junctions in a concentration‑dependent manner (32). Similarly, 
in the present study, lower levels of VE‑cadherin were noted at 
cell‑to‑cell junctions between cells following 10 µM Cd treat‑
ment. However, Cd (10 µM) has been reported to induce VEC 
hyperpermeability, suggesting that the increased expression 

Figure 2. Effect of Cd on ROCK activity. (A) Immunoblots of p‑MYPT and 
MYPT from protein samples of HUVECs treated with 10 µM CdCl2 for 
12 h. GAPDH was used as loading control. (B) Densitometry analyses of 
the immunoblots in (A). Statistical significance was assessed using Student's 
t‑test. n=4; **P<0.01. ROCK, rho‑associated coiled‑coil kinase; p‑, phos‑
phorylated; MYPT, myosin phosphatase‑targeting subunit.

Figure 3. Effects of narciclasine on VE‑cadherin expression in HUVECs. 
(A) Relative VE‑cadherin mRNA expression measured by reverse transcrip‑
tion‑quantitative PCR in HUVECs treated with 10 µM CdCl2 for 12 h in 
the absence or presence of narciclasine. Statistical significance was assessed 
using Student's t‑test; n=6; **P<0.01. (B) Immunoblots of VE‑cadherin from 
protein samples of HUVECs treated with 10 µM CdCl2 for 12 h in the absence 
or presence of 10 µM narciclasine. (C) Densitometry analyses of the immu‑
noblots in (B). Statistical significance was assessed using Student's t‑test; 
n=6; **P<0.01. (D) Western blot analysis of the expression of VE‑cadherin 
in HUVECs treated with 10 µM narciclasinein the absence or presence of 
10 µM CdCl2. GAPDH was used as loading control. (E) Densitometry anal‑
yses of the immunoblots in (D). Statistical significance was assessed using 
Student's t‑test. n=4.VE‑cadherin, vascular endothelial cadherin; HUVECs, 
human umbilical vein endothelial cells; n.s., non‑significant.
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of VE‑cadherin induced by 10 µM Cd fails to rescue vascular 
hyperpermeability (33). One reason may be that apoptosis 
and senescence of VECs during 10 µM Cd exposure leads 
to enhanced vessel wall permeability to cytokines, growth 
factors, lipids and immune cells (34).

The present study demonstrated that 10 µM of Cd inhib‑
ited ROCK activity. The ROCK pathway increases vascular 
permeability by causing junction protein remodeling and 
endothelial barrier dysfunction (35,36). ROCK inhibits the 
expression of tight junction components, including occludin 
and claudin‑1 (37,38). The present study found that ROCK 
also negatively regulated the expression of VE‑cadherin in 
HUVECs, In addition, Cd did not increase the expression 
of VE‑cadherin in the presence of ROCK inhibitor Y27632, 
suggesting that ROCK mediated Cd‑induced VE‑cadherin 
expression. The results of the present study are consistent with 
previous studies. For example, the ROCK pathway inhibitor 
partially limits the increased monolayer permeability in 
lethal toxin‑treated VECs through restoration of VE‑cadherin 
expression and membrane localization (39). Inhibition of 
ROCK decreases the tension across VE‑cadherin adhesion 
and VE‑cadherin dissociation rate, resulting in accumulation 
of VE‑cadherin in adherens junctions (40). FPND, a ROCK 
inhibitor, protects vascular integrity through cytoskeletal rear‑
rangement and enhancement of cell‑to‑cell junctions in VECs 
via the ROCK1 and VE‑cadherin signaling pathways (41).

In conclusion, the results of the present study suggested 
that ROCK inhibition contributes to Cd‑induced expression 
of VE‑cadherin in endothelial cells. It increases our under‑
standing of Cd‑induced vascular dysfunction.
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