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Abstract. Rutaecarpine (RUT) is an alkaloid isolated from 
Tetradium ruticarpum, which has been reported to protect 
against several inflammatory diseases. However, to the best 
of our knowledge, the role of RUT in acute lung injury (ALI) 
and the specific molecular mechanism remain unknown. In 
the present study, an in vitro model of ALI was established 
in BEAS‑2B cells by lipopolysaccharide (LPS) administra‑
tion. Cell viability following RUT treatment with or without 
LPS stimulation was evaluated using a Cell Counting Kit‑8 
assay. The inflammatory response and oxidative stress were 
detected using ELISA kits and commercially available 
kits, respectively. TUNEL assay and western blotting were 
performed to assess cell apoptosis. The expression levels 
of endoplasmic reticulum (ER) stress‑related proteins and 
AMP‑activated protein kinase (AMPK)/sirtuin 1 (SIRT1) 
signaling pathway‑related proteins were measured by western 
blotting. The results revealed that RUT markedly improved 
cell viability after LPS treatment in a dose‑dependent 
manner. In addition, RUT inhibited the LPS‑induced inflam‑
matory response and oxidative stress in BEAS‑2B cells, and 
suppressed the LPS‑induced apoptosis of BEAS‑2B cells. 
Mechanistically, RUT alleviated ER stress by inhibiting 
the production of CHOP, glucose‑regulated protein‑78, 

caspase‑12 and activating transcription factor 6. Additionally, 
western blotting demonstrated that RUT activated the 
phosphorylation of AMPK and SIRT1, which indicated the 
involvement of the AMPK/SIRT1 signaling pathway in the 
protective effect of RUT against LPS‑induced lung injury. In 
conclusion, these results demonstrated that RUT mitigated 
LPS‑induced lung cell injury by inhibiting ER stress via the 
activation of the AMPK/SIRT1 signaling pathway.

Introduction

Acute lung injury (ALI) is a clinically severe respiratory 
disorder, which is characterized by pulmonary edema, diffuse 
alveolar damage, intrapulmonary hemorrhage and impaired 
gas exchange. Notably, ALI may progress to its most severe 
form, acute respiratory distress syndrome (ARDS) (1‑3). 
There are numerous pathogenic factors in ALI, including 
pancreatitis, pneumonia, sepsis, aspiration of gastric contents 
and inhalation of injurious gases (4). Despite the advances 
in clinical treatment and management, ALI remains a major 
cause of mortality worldwide (5); therefore, the development of 
preventative and therapeutic measures for ALI is imperative.

Rutaecarpine (RUT) is a major quinazolino carboline 
alkaloid compound from the dry unripe fruit (referred to as 
‘Wu‑Chu‑Yu’ in China) of Tetradium ruticarpum (Fig. 1A) (6). 
A pharmacological study previously demonstrated that RUT 
has a variety of biological and pharmacological effects, such 
as anti‑inflammatory, antioxidant, cardiovascular protective 
and brain function recovery effects (7). Recently, Ren et al (8) 
reported that RUT alleviated ethanol‑induced gastric damage, 
the ulcer index and histopathological damage. Additionally, 
RUT was shown to suppress the expression and nuclear 
translocation of NF‑κB p65, and the expression levels of 
TNF‑α, IL‑6, IL‑1β and myeloperoxidase (8). Another study 
revealed that RUT may reduce H2O2‑induced intracellular 
reactive oxygen species accumulation and ameliorate dextran 
sulfate sodium‑induced inflammatory bowel disease by 
increasing nuclear factor‑erythroid factor 2‑related factor 2 
(NRF2) nuclear translocation (9), thus suggesting that RUT 
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may serve a protective role in inflammatory diseases. It 
has been documented that RUT alleviates hyperlipidemia 
and hyperglycemia in fat‑fed, streptozotocin‑treated rats 
via regulation of insulin receptor substrate 1/PI3K/Akt, 
and promotion of the phosphorylation of AMP‑activated 
protein kinase (AMPK) and acetyl‑CoA carboxylase 2 (10). 
In addition, Wang et al (11) reported that dexmedetomidine 
ameliorated sepsis‑induced lung injury and reduced inflam‑
matory cytokine expression and apoptosis by activating the 
AMPK/sirtuin 1 (SIRT1) signaling pathway. However, to the 
best of our knowledge, the biological role of RUT in ALI 
remains incompletely understood.

The present study aimed to investigate the role of RUT 
in LPS‑induced ALI and to explore the potential underlying 
molecular mechanism through the AMPK/SIRT1 signaling 
pathway.

Materials and methods

Cell culture and treatment. BEAS‑2B human bronchial 
epithelial cells were obtained from American Type Culture 
Collection, and were cultured in DMEM containing 10% FBS 
(both from Thermo Fisher Scientific, Inc.), 100 U/ml penicillin 
and 100 µg/ml streptomycin (MilliporeSigma) in a humidi‑
fied atmosphere containing 5% CO2 at 37˚C. Subsequently, 
the cells were pretreated with RUT (2.5, 5 and 10 µM; 
MedChemExpress) for 24 h at 37˚C (9,12) and then incubated 
with LPS (2 µg/ml; Sigma‑Aldrich; Merck KGaA) at 37˚C for a 
further 24 h. In addition, compound C (20 µM; Sigma‑Aldrich, 
Merck KGaA) was used as an inhibitor of the AMPK signaling 
pathway to treat cells prior to LPS or RUT treatment for 24 h 
at 37˚C.

Cell viability assay. BEAS‑2B cells were seeded into a 
96‑well plate at a density of 5x103 cells/well and cultured for 
24 h. RUT (2.5, 5 and 10 µM) was administered to pretreat 
BEAS‑2B cells before LPS stimulation. After 24 h of LPS 
treatment, 10 µl Cell Counting Kit‑8 (CCK‑8) solution 
(Beyotime Institute of Biotechnology) was added to each well 
and the plates were incubated at 37˚C for 2 h. The absorbance 
at 450 nm was measured using a microplate reader (Bio‑Rad 
Laboratories, Inc.).

ELISA. The levels of TNF‑α,  IL‑1β  and IL‑6 in 
BEAS‑2B cells were determined using TNF‑α assay kit 
(cat. no. H052‑1), IL‑1β assay kit (cat. no. H002) and IL‑6 
assay kit (cat. no. H007‑1‑1) (all from Nanjing Jiancheng 
Bioengineering Institute) according to the manufacturer's 
instructions. The absorbance at 450 nm was detected using a 
microplate reader (Bio‑Rad Laboratories, Inc.). Six parallel 
wells were set for ELISAs.

Determination of malondialdehyde (MDA), superoxide 
dismutase (SOD) and glutathione peroxidase (GSH‑Px) 
levels. The MDA content, and the activities of SOD and 
GSH‑Px in BEAS‑2B cells were evaluated using MDA assay 
kit (cat. no. A003‑1‑2), SOD assay kit (cat. no. A001‑3‑2) 
and GSH‑Px assay kit (cat. no. A005‑1‑2) (all from Nanjing 
Jiancheng Bioengineering Institute) according to the manufac‑
turer's protocols.

TUNEL assay. The TUNEL assay was performed to assess cell 
apoptosis. Briefly, BEAS‑2B cells were fixed with 4% parafor‑
maldehyde for 15 min at room temperature and stained using a 
TUNEL kit for 1 h at 37˚C, followed by counterstaining of the 
nuclei with 10 µg/ml DAPI at 37˚C for 2‑3 min. The cells were 
then mounted using an anti‑fade reagent (Beijing Solarbio 
Science & Technology Co., Ltd.). The labeled BEAS‑2B cells 
were observed from three random fields under a fluorescence 
microscope (magnification, x200; Nikon Eclipse80i; Nikon 
Corporation).

Western blot analysis. Total proteins were extracted from 
BEAS‑2B cells using RIPA buffer (Beyotime Institute of 
Biotechnology) and the protein concentration was measured 
using a BCA Protein Assay Kit (Beijing Dingguo Changsheng 
Biotechnology Co., Ltd.). An equal amount of protein 
(30 µg/lane) was separated by SDS‑PAGE on 10% gels and 
then transferred to a PVDF membrane (MilliporeSigma). 
After blocking with 5% skimmed milk for 1 h at room 
temperature, the membranes were probed at 4˚C overnight 
with the following primary antibodies: Anti‑Bcl‑2 (dilution, 
1:1,000; cat. no. ab32124; Abcam), anti‑Bax (dilution, 1:1,000; 
cat. no. ab32503; Abcam), anti‑cleaved caspase‑3 (dilution, 
1:500; cat. no. ab32042; Abcam), anti‑cleaved caspase‑9 
(dilution, 1:1,000; cat. no. 20750; Cell Signaling Technology, 
Inc.), anti‑CHOP (dilution, 1:1,000; cat. no. 2895; Cell 
Signaling Technology, Inc.), anti‑glucose regulated protein‑78 
(GRP78; dilution, 1:1,000; cat. no. ab108615; Abcam), 
anti‑caspase‑12 (dilution, 1:1,000; cat. no. ab62484; Abcam), 
anti‑activating transcription factor 6 (ATF6; dilution, 1:1,000; 
cat. no. ab227830; Abcam), anti‑phosphorylated‑(p‑)AMPK 
(dilution, 1:1,000; cat. no. ab92701; Abcam), anti‑p‑SIRT1 
(dilution, 1:1,000; cat. no. ab76039; Abcam), anti‑AMPK 
(dilution, 1:1,000; cat. no. ab32047; Abcam), anti‑SIRT1 (dilu‑
tion, 1:1,000; cat. no. ab189494; Abcam) and anti‑GAPDH 
(dilution, 1:2,500; cat. no. ab9485; Abcam). The membranes 
were then incubated with HRP‑conjugated goat anti‑rabbit or 
goat anti‑mouse IgG secondary antibodies (dilution, 1:2,000; 
cat. nos. #7074 and #7076; Cell Signaling Technology, Inc.) 
at room temperature for 1 h. Finally, the protein bands were 
visualized using an ECL detection system (Beyotime Institute 
of Biotechnology) and the bands were semi‑quantified using 
ImageJ software 1.8.0 (National Institutes of Health).

Statistical analysis. SPSS 22.0 software (IBM Corp.) and 
GraphPad Prism 6 software (GraphPad Software, Inc.) were 
used to analyze the data from three independent experimental 
repeats. All results are presented as the mean ± SD. Differences 
among multiple groups were analyzed by one‑way ANOVA 
followed by a Bonferroni post hoc test. P<0.05 was considered 
to indicate a statistically significant difference.

Results

RUT restores the viability of LPS‑induced BEAS‑2B cells. 
To explore the effects of RUT on lung epithelial cells, the 
present study first examined the effects of RUT on BEAS‑2B 
cell viability. The results of the CCK‑8 assay demonstrated 
that 2.5‑10 µM RUT had no significant effects on BEAS‑2B 
cell viability (Fig. 1B). In addition, LPS treatment markedly 
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inhibited the viability of BEAS‑2B cells, whereas RUT restored 
cell viability in a dose‑dependent manner (Fig. 1C). These 
results indicated that RUT reversed the negative effect of LPS 
treatment on BEAS‑2B cell viability.

RUT inhibits the inflammatory response, oxidative stress and 
apoptosis in LPS‑induced BEAS‑2B cells. The effects of RUT 
on the inflammatory response, oxidative stress and apoptosis 
in BEAS‑2B cells induced by LPS were further investigated. 
As shown in Fig. 2A, a notable increase in the production of 
TNF‑α, IL‑1β and IL‑6 was observed in LPS‑induced cells 
compared with in the control cells. However, RUT treatment 
reduced the LPS‑induced elevated levels of TNF‑α, IL‑1β 
and IL‑6 in BEAS‑2B cells. Furthermore, LPS enhanced the 
MDA levels, but inhibited the activities of SOD and GSH‑Px, 
whereas RUT reversed the effects of LPS on MDA, SOD and 
GSH‑Px, indicating the suppressive effect of RUT on oxidative 
stress in LPS‑induced BEAS‑2B cells (Fig. 2B). Furthermore, 
the cell apoptotic rate was significantly increased in the 
LPS group compared with in the control group, and RUT 

pretreatment suppressed cell apoptosis under LPS stimula‑
tion in a dose‑dependent manner (Fig. 3A and B). Western 
blot analysis further demonstrated that the protein expression 
levels of Bcl‑2 were decreased, whereas the protein expression 
levels of Bax, cleaved caspase‑3 and cleaved caspase‑9 were 
markedly increased in BEAS‑2B cells following stimulation 
with LPS, whereas the opposite trends in the expression levels 
of these proteins were observed following pretreatment with 
RUT (Fig. 3C). These data suggested that RUT pretreatment 
suppressed the LPS‑induced inflammation, oxidative stress 
and apoptosis of BEAS‑2B cells.

RUT reduces endoplasmic reticulum (ER) stress in 
LPS‑induced BEAS‑2B cells. The present study explored the 
potential mechanisms underlying the protective effects of 
RUT on LPS‑exposed BEAS‑2B cells. As shown in Fig. 4, 
western blot analysis revealed that LPS significantly promoted 
the expression levels of ER stress‑related proteins, including 
CHOP, GRP78, caspase‑12 and ATF6. However, the expres‑
sion levels of these proteins were dose‑dependently reduced by 

Figure 1. RUT increases the viability of LPS‑induced BEAS‑2B cells. (A) Structure of RUT. (B) Cell viability after treatment with different doses of RUT, as 
determined by CCK‑8 assay. (C) Cell viability after LPS treatment with or without RUT pretreatment was determined by CCK‑8 assay. Results are presented 
as the mean ± SD. *P<0.05, ***P<0.001. CCK‑8, Cell Counting Kit‑8; LPS, lipopolysaccharide; RUT, rutaecarpine.

Figure 2. RUT suppresses LPS‑triggered inflammatory response and oxidative stress in BEAS‑2B cells. (A) Levels of TNF‑α, IL‑1β and IL‑6 in RUT‑treated 
cells induced by LPS. (B) MDA levels, and the activities of SOD and GSH‑Px in RUT‑treated cells induced by LPS. Results are presented as the mean ± SD. 

*P<0.05, ***P<0.001. GSH‑Px, glutathione peroxidase; LPS, lipopolysaccharide; MDA, malondialdehyde; RUT, rutaecarpine; SOD, superoxide dismutase.
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treatment with different concentrations of RUT. These results 
indicated that RUT pretreatment had an inhibitory effect on 
LPS‑induced ER stress in BEAS‑2B cells.

RUT activates the AMPK/SIRT1 signaling pathway. To inves‑
tigate the molecular mechanism underlying the effects of RUT 
on LPS‑treated cells, the expression levels of proteins involved 
in the AMPK/SIRT1 signaling pathway were detected by 
western blotting. As shown in Fig. 5, LPS stimulation markedly 
inhibited the phosphorylation of AMPK and SIRT1; however, 
different doses of RUT dose‑dependently increased the protein 
expression levels of p‑AMPK and p‑SIRT1. Additionally, the 
total protein levels of both AMPK and SIRT1 were not signifi‑
cantly different among the groups. These results indicated that 
RUT may activate the AMPK/SIRT1 signaling pathway in 
ALI.

RUT alleviates damage and ER stress by activating the 
AMPK/SIRT1 signaling pathway in LPS‑induced BEAS‑2B 
cells. To identify the role of AMPK/SIRT1 signaling 
in RUT‑treated BEAS‑2B cells, the AMPK inhibitor 
compound C was used. As shown in Fig. 6A, pretreatment 
with compound C (20 µM) markedly enhanced the levels of 
TNF‑α, IL‑1β and IL‑6 in BEAS‑2B cells co‑treated with 
RUT and LPS. In addition, compound C increased the levels 
of MDA, and reduced the activities of SOD and GSH‑Px 
compared with those in the RUT + LPS group (Fig. 6B). 
Additionally, the decreased percentage of apoptotic cells 

was enhanced by compound C, and the protein expression 
levels of Bcl‑2, Bax, cleaved caspase‑3 and cleaved caspase‑9 
were reversed by compound C in BEAS‑2B cells co‑treated 
with RUT and LPS (Fig. 6C‑E). Furthermore, compound C 
markedly exacerbated the ER stress process by increasing 
the expression levels of CHOP, GRP78, caspase‑12 and ATF6 
in BEAS‑2B cells co‑treated by RUT and LPS (Fig. 7). These 
data suggested that RUT suppressed LPS‑induced cell injury 
and ER stress via activation of the AMPK/SIRT1 signaling 
pathway in BEAS‑2B cells.

Discussion

ALI is the direct cause of ARDS, which has a heavy medical 
burden on individuals and society (13). It is well known that 
inflammatory factors, such as IL‑6, IL‑1β and TNF‑α, are 
closely associated with ALI and ARDS (14). Despite the high 
morbidity and mortality rates of lung injury in humans, there 
are few effective treatments for ALI (15). The present study 
provided evidence indicating that RUT exerted protective 
effects against LPS‑induced lung injury through the improve‑
ment of cell viability, and the inhibition of the inflammatory 
response and oxidative stress in BEAS‑2B lung epithelial cells 
subjected to LPS treatment. The present data also demon‑
strated that RUT diminished LPS‑triggered apoptosis and 
ER stress. In addition, mechanistic investigation revealed that 
RUT attenuated LPS‑induced lung injury by activating the 
AMPK/SIRT1 signaling pathway.

Figure 3. RUT restrains the LPS‑induced apoptosis of BEAS‑2B cells. (A and B) Apoptosis was detected by TUNEL assay. Magnification, x200. (C) Protein 
expression levels of Bcl‑2, Bax, cleaved caspase‑3 and cleaved caspase‑9 were measured by western blotting. Results are presented as the mean ± SD. **P<0.01, 
***P<0.001. LPS, lipopolysaccharide; RUT, rutaecarpine.
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Traditional Chinese medicine (TCM) has been developed 
and used for thousands of years to treat a variety of human 
diseases, including lung injury (16,17). Numerous bioactive 
ingredients used in TCM have exhibited anti‑inflammatory, 
anti‑apoptotic and antioxidant effects on lung injury (18,19). 
For example, Lu et al (20) reported that forsythoside A 
ameliorated ALI pathological damage, and inhibited the 
generation of inflammatory cytokines and the activation of 
STAT3 to prevent LPS‑induced ALI. Additionally, Wang and 
Xiao (21) demonstrated that isochlorogenic acid A attenu‑
ated LPS‑induced ALI via inhibition of lung active markers 

and inflammatory factors via the NF‑κB/NLR family pyrin 
domain‑containing 3 signaling pathway. RUT is an alkaloid 
isolated from Tetradium ruticarpum, which has been reported 
to exert antioxidant and anti‑inflammatory effects (22,23). It has 
been reported that RUT suppresses cerebral ischemia/reperfu‑
sion (CI/R)‑induced neuronal damage in a dose‑dependent 
manner, and can alleviate CI/R‑induced apoptosis, inflamma‑
tory response and oxidative stress (24). Another study revealed 
that pretreatment with RUT markedly mitigated pancreatic 
inflammatory damage and increased the serum levels of the 
anti‑inflammatory cytokine IL‑10, whereas it reduced the 

Figure 4. RUT inhibits ER stress in LPS‑exposed BEAS‑2B cells. The expression levels of ER stress‑related proteins CHOP, GRP78, caspase‑12 and ATF6 
were evaluated by western blotting. Results are presented as the mean ± SD. **P<0.01, ***P<0.001. ATF6, activating transcription factor 6; GRP78, glucose 
regulated protein‑78; LPS, lipopolysaccharide; RUT, rutaecarpine.
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concentrations of the pro‑inflammatory cytokines IL‑6 and 
TNF‑α (23). Consistently, the present study revealed that RUT 
markedly increased the viability of BEAS‑2B cells treated with 
LPS, and reduced the inflammatory response by suppressing 
the production of TNF‑α, IL‑1β and IL‑6. Furthermore, 
LPS‑induced oxidative stress and apoptosis were observed 
to be inhibited following treatment with different doses of 
RUT. These data indicated the protective role of RUT against 
LPS‑induced ALI through antioxidant, anti‑inflammatory and 
anti‑apoptotic effects.

ER stress may induce physical dysfunction of the ER 
and lead to pathological imbalance in ER homeostasis (25). 
Accumulating evidence has indicated that ER stress is closely 
implicated in the occurrence and development of ALI (26,27). 
Du et al (28) revealed that pirfenidone reduced the LPS‑induced 
apoptosis of alveolar epithelial type II cells via the inhibition of 
ER stress and mitochondrial injury. Bi et al (29) demonstrated 
that helix B surface peptide reduced the levels of inflammatory 
factors in lung tissues, and suppressed oxidative stress and ER 
stress in lung epithelial cells by activating the NRF2/heme 
oxygenase‑1 signaling pathway. In addition, Li et al (30) 
revealed that RUT ameliorated sepsis‑induced apoptosis and 
the inflammatory response in peritoneal resident macrophages 
by inhibiting the ER stress‑mediated caspase‑12 and NF‑κB 
signaling pathways. In the present study, LPS treatment mark‑
edly induced the abnormal production of ER stress‑related 
proteins; however, RUT suppressed LPS‑induced ER stress of 
BEAS‑2B cells by hindering the protein expression levels of 

CHOP, GRP78, caspase‑12 and ATF6, which was consistent 
with the aforementioned findings.

It has been reported that RUT may prevent endothelial 
dysfunction and benefit cardiovascular health by promoting 
nitric oxide synthesis and endothelial nitric oxide synthase 
phosphorylation via the calmodulin/Ca2+/calmodulin‑depen‑
dent protein kinase kinase β/AMPK signaling pathways, 
which indicates that RUT could activate the AMPK signaling 
pathway in certain pathological conditions (31). AMPK/SIRT1 
signaling is considered to be a crucial pathway that participates 
in the regulation of ALI (32,33). A previous study demonstrated 
that irisin alleviated pulmonary epithelial barrier dysfunc‑
tion in sepsis‑induced ALI by suppressing inflammation and 
apoptosis via activation of the AMPK/SIRT1 signaling path‑
ways (34). The present study revealed that the addition of the 
AMPK inhibitor compound C markedly reversed the effects of 
RUT on inflammatory factors, oxidative stress and apoptosis, 
and even ER stress levels in LPS‑induced BEAS‑2B cells, 
suggesting that the AMPK/SIRT1 signaling pathway may be 
involved in the protective effect of RUT against LPS‑induced 
lung injury.

In conclusion, the present study indicated that RUT 
ameliorated LPS‑induced lung cell injury by inhibiting inflam‑
mation, oxidative stress, apoptosis and ER stress by activating 
AMPK/SIRT1 signaling. These results provide evidence that 
RUT may be considered a functional therapeutic agent for 
patients with ALI. However, the present study also had limita‑
tions. For example, the effects of RUT on ALI in vivo have not 

Figure 5. RUT promotes activation of the AMPK/SIRT1 signaling pathway. The protein expression levels of p‑AMPK, p‑SIRT1, AMPK and SIRT1 were 
detected by western blotting. Results are presented as the mean ± SD. *P<0.05, ***P<0.001. AMPK, AMP‑activated protein kinase; LPS, lipopolysaccharide; 
p, phosphorylated; RUT, rutaecarpine; SIRT1, sirtuin 1; t, total.
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Figure 6. RUT protects against LPS‑induced BEAS‑2B cell damage by activating the AMPK/SIRT1 signaling pathway. (A) Levels of TNF‑α, IL‑1β and IL‑6 
in RUT‑treated cells induced by LPS with or without compound C. (B) MDA levels, and the activities of SOD and GSH‑Px in RUT‑treated cells induced by 
LPS with or without compound C. (C and D) Apoptosis was detected by TUNEL assay. Magnification, x200. (E) Protein expression levels of Bcl‑2, Bax, 
cleaved caspase‑3 and cleaved caspase‑9 were measured by western blotting. Results are presented as the mean ± SD. *P<0.05, **P<0.01, ***P<0.001. GSH‑Px, 
glutathione peroxidase; LPS, lipopolysaccharide; MDA, malondialdehyde; RUT, rutaecarpine; SOD, superoxide dismutase.
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been assessed. Additionally, considering that the activation of 
Toll‑like receptors is involved in the inflammatory response 
following ALI (35), the effect of RUT on the regulation of 
Toll‑like receptors remains unclear and will be explored in 
future.
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