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Abstract. Cachexia denotes a complex metabolic syndrome
featuring severe loss of weight, fatigue and anorexia. In
total, 50-80% of patients suffering from advanced cancer
are diagnosed with cancer cachexia, which contributes
to 40% of cancer-associated mortalities. MicroRNAs
(miRNAs) are non-coding RNAs capable of regulating
gene expression. Dysregulated miRNA expression has been
observed in muscle tissue, adipose tissue and blood samples
from patients with cancer cachexia compared with that
of samples from patients with cancer without cachexia or
healthy controls. In addition, miRNAs promote and main-
tain the malignant state of systemic inflammation, while
inflammation contributes to cancer cachexia. The present
review discusses the role of miRNAs in the progression
of cancer cachexia, and assess their diagnostic value and
potential therapeutic value.
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1. Introduction

Cachexia is a complex syndrome featuring loss of weight
that results from reduced skeletal muscle mass (1). This
syndrome usually appears in the late stages of severe illnesses,
including cancer, kidney disease, human immunodeficiency
virus, congestive heart failure and chronic obstructive pulmo-
nary disease (2,3). Patients with cachexia are insensitive to
treatment, have a low quality of life and have a high mortality
rate (4).

Cancer cachexia affects 50% of patients with cancer and
causes ~40% of cancer-associated mortalities (5). The inci-
dence of cancer cachexia changes with the stage and type of
cancer (6). According to a previous cohort study on patients
with advanced tumors, those with pancreatic cancer are at the
greatest risk of developing cancer cachexia (~70%), followed
by colorectal, gastroesophageal, and head and neck cancer
(~45%) (7), while patients with breast and prostate cancer
are at the lowest risk of developing cachexia (20-30%) (7).
In addition, cancer cachexia may result in inefficient chemo-
therapy, increased treatment interruptions or decreased
survival rates (8).

The diagnostic standard of cachexia is loss of weight >5%
or >2% among patients who have a body mass index (BMI)
less than 20 kg/m? (9). In addition, neuroendocrine changes
occur in patients with cancer cachexia, leading to early satiety
and food aversion (10). The Warburg effect is the catabolism
of glucose to lactate to obtain adenosine triphosphate (11).
Lactate is converted to glucose in the liver at a cost of energy.
When glucose is released into the bloodstream, cancer cells
may use it again for glycolysis. The Cori cycle is a fruitless
glucose-lactate shuttle that increases energy expenditure and
hepatic gluconeogenesis (12). As a result, catabolic metabo-
lism in fat and skeletal muscle provides additional glucose
precursors for gluconeogenesis. In cachexia, the Warburg
effect in myocytes contributes to muscle mass reduction (13).
Reduced food absorption and excessive metabolism eventually
lead to a negative energy balance and mass loss, particularly
skeletal muscle mass loss (5). Decreased skeletal muscle mass
and muscle function are found to negatively influence the life
quality among patients with cancer cachexia and have recently
been widely referred to as ‘sarcopenia’ (14,15). Cancer
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cachexia may subsequently progress to refractory cachexia,
and interventions at such stage are unlikely to be successful.

Currently, there are limited options for the treatment
of cancer cachexia. There are two therapeutic concepts:
i) non-pharmacological options, which are focused on nutri-
tion and exercise interventions (3,16); and ii) chemotherapy,
including the usage of hormone therapy (e.g. gonadotropins),
myostatin inhibitors and anti-inflammatory drugs (17).
However, the effectiveness of these treatments remains
unclear, as clinical outcomes and long-term efficacy reports are
insufficient (18). Therefore, novel early diagnostic biomarkers
and therapeutic targets for cancer cachexia are needed (19).

Several microRNAs (miRNAs or miRs), such as let-7d-3p
and miR-345-5p, were found to be markedly dysregulated
among patients with cachexia (6,20). Furthermore, several
miRNAs have been found to have a regulatory effect on
inflammatory pathways, and on the degradation and synthesis
of proteins in skeletal muscle, which makes miRNAs
potential novel therapeutic candidates in cancer cachexia
therapy (21,22). The present review summarizes miRNAs
differentially expressed in specimens derived from patients
with cancer cachexia, including muscle, adipose tissue and
blood. In addition, the present review proposes that miRNAs
may be considered as potential diagnostic markers or
therapeutic targets for cancer cachexia.

2. miRNAs in the development of cancer and cancer
cachexia

miRNAs are short RNAs that can regulate the expression
of ~60% of protein-encoding genes of human mRNAs (23).
miRNAs were firstly identified in 1993, and additional types
of miRNAs have been identified and studied since then (24).
The miRBase database contains published miRNA sequences,
and the up-to-date version of this database contains >2,570
mature miRNAs from humans (25). The majority of miRNAs
can be transcribed by RNA polymerase (pol) II or pol III in the
nucleus to produce primary precursor miRNAs (pri-miRNAs)
(60-100 nt) (Fig. 1) (26). The Drosha/DiGeorge critical region
8 ribonuclease complex divides pri-miRNAs to generate
precursor pre-miRNAs, which are later exported to the cyto-
plasm via the exportin-5 complex (27). The Dicer/TAR-RNA
binding protein complex subsequently divides pre-miRNAs
to produce mature double-stranded miRNAs (28). To become
functional, double-stranded miRNAs are then disassembled
to produce passenger and guide strands. The passenger
strand is degraded, while the guide strand is loaded onto the
RNA-induced silencing complex (29,30). The primary function
of miRNAs is to inhibit the translation of target mRNAs.
miRNA expression profiling shows that changes in
miRNA expression are associated with various illnesses,
including primary muscle diseases, dexamethasone-induced
atrophy, diabetes and wasting diseases (such as cancer
cachexia) (31,32). In addition, various aspects of metabolic
changes and inflammatory responses are also regulated by
miRNAs (33-35). Hypermetabolism and systemic inflamma-
tion are typical symptoms of cancer cachexia (36). Therefore,
miRNAs possibly impact cancer cachexia pathogenesis.
Cancer cells may produce inflammatory cytokines and
cause local and systemic inflammation in the host (37,38).

Previous studies have demonstrated that the tumor itself may
be capable of secreting exosomes containing miRNAs (39-42),
which can increase the synthesis of circulating inflammatory
factors (39). The levels of circulating inflammatory cytokines,
including tumor necrosis factor-a (TNF-a), interferon-vy
(IFN-v), interleukin 1 (IL-1) and IL-6, can be also altered in
patients with cachexia (43,44). miRNAs can be transported via
exosomes, which can be secreted into the serum, cerebrospinal
fluid, urine and saliva (45). Exosomes from adipose tissue
in the tumor microenvironment may also promote the
development of systemic inflammation (46,47).

miR-182-5p, miR-183-5p, miR-21-5p, the miR-200 family,
miR-7-5p, miR-125b-5p, miR-96-5p, miR-139-5p, miR-99a-5p,
miR-497-5p and miR-486-5p have been found to be altered
in breast cancer (BC) (48). A total of 26 differentially
expressed miRNAs were found to interact with frequently
deregulated genes known to be involved in colorectal
cancer pathways (49). The majority of these miRNAs could
predict the prognosis of patients with colorectal cancer in
stages II and III (49). It has been demonstrated that miRNAs
can be used for the early detection of oral cancer (50). A total
of 9 differentially expressed miRNAs (miR-486-1, miR-486-2,
miR-153, miR-210, miR-9-1, miR-9-2, miR-9-3, miR-577 and
miR-4732) have been identified, which could be used as lung
adenocarcinoma diagnostic biomarkers (51).

In addition, miRNAs may have a prognostic value for
patients treated with a combination of interventions, including
diet and physical activity (48). Differentially expressed extracel-
lular vesicle (EV) miRNAs resulting from the Mediterranean
diet may be engaged in pathways associated with cardiometa-
bolic risk factors in overweight BC survivors (52). In addition,
environmental factors such as pesticides may modify miRNA
expression and the DNA methylation status (53). Alteration of
miRNA expression profiles upon exposure to naturally occur-
ring asbestiform fibers is a diagnostic indicator of mesothelial
neoplastic transformation (54). In patients with colon cancer,
vascular endothelial growth factor (VEGF) may be an inde-
pendent predictor of weight loss (55). VEGF promotes the
proliferation, migration and tube formation of endothelial cells
(ECs), and has become a primary target of anti-angiogenic
therapy (56-59). Furthermore, VEGF is linked to systemic
inflammation and malnutrition, supporting the possible involve-
ment of VEGF in cancer cachexia pathogenesis (55). VEGF is
required for tumor angiogenesis, and inhibition of VEGF inhibits
angiogenesis and tumor growth (57,60-62). miRNAs promote
angiogenesis by facilitating the proliferation and migration of
ECs (63). The hypoxia inducible factor-lo/VEGF signaling
pathways regulated by miR-210, miR-21 and miR-126 play a role
in colon cancer initiation (64). Overexpression of miR-638 could
inhibit angiogenesis and tumor growth in hepatocellular carci-
noma by suppressing VEGF signaling (65). miRNAs produced
from tumor cells, such as miR-23a, miR-494 and miR-210, were
reported to be packaged into EVs and transported to recipient
ECs (66). These miRNAs promote angiogenesis by facilitating
the proliferation and migration of ECs (63).

3. miRNAs in muscular atrophy

Patients with cancer cachexia can lose <75% of their skeletal
muscle mass, which may lead to poor prognosis and higher
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Figure 1. microRNA (miRNA) biogenesis and release in tumor cells. miRNAs are transcribed by RNA polymerase II (pol II) or polymerase 111 (pol III) in
the nucleus to generate primary miRNAs (pri-miRNAs). Pri-miRNAs are separated with Drosha/DiGeorge Critical Region 8 (DGCRS) complex to generate
pre-miRNAs, which will be exported to cytoplasm via exportin-5 complex. The Dicer/TAR-RNA binding protein (TRBP) complex further separates the
pre-miRNAs to generate mature double-stranded miRNAs. Afterward, the passenger strand for mature miRNA undergoes degradation, and the guide strand
is loaded into the RNA-induced silencing complex (RISC) for regulating target gene expression.

mortality associated with cancer (67). Muscle protein degrada-
tion in cancer cachexia is mediated mainly by the ubiquitin
proteasome system, induced by activation of E3 ligands (68).
The Fork head box O (FoxO) signaling pathway is involved
in this process by inducing the transcription of E3 ubiquitin
ligases, of which there are three members in skeletal muscle:
FoxO3, FoxO1l and FoxO4 (68). Inhibition of FoxO tran-
scriptional activity attenuates muscle fiber atrophy during
cachexia (69). miRNA-486 reduces FoxOl protein expression
and enhances FoxOl phosphorylation to inhibit E3 ubiquitin
ligase (70). miR-21 associates with and activates Toll-like
receptor 7, which induces apoptosis in muscle cells via the
c-Jun N-terminal kinase pathway, leading to atrophy (18).
Dysregulated expression of miRNAs (such as myomiRNAs,
a subset of miRNAs with high expression in skeletal muscle) is
associated with muscle atrophy, which is a hallmark of cancer
cachexia (71-74). The expression profile of miRNAs in rectus
abdominis muscle samples was evaluated among patients
with cancer who exhibited or not a cachexia syndrome (6). In
that study, 8 miRNAs were upregulated among patients with
cancer cachexia, including let-7d-3p, miR-423-5p, miR-345-5p,
miR-532-5p, miR-3184-3p, miR-1296-5p, miR-423-3p and
miR-199a-3p (6). Pathway analysis indicated that the target
miRNAs were enriched in the adipogenesis, myogenesis, inflam-
mation and innate immune response pathways (6). In another
study, the expression levels of 754 miRNAs in broad fascia
biopsies of 8 healthy individuals and 8 patients with non-small
cell lung cancer who exhibited cachexia were investigated (75).
The expression of 28 miRNAs was significantly changed, with

23 miRNAs being downregulated and 5 upregulated (75). In
addition, the genes of TNF, transforming growth factor-§, IL-6
and insulin are among the 158 putative target genes identified
using miRTarBase (75). A total of 9 miRNAs were found to be
differentially expressed in muscles of a cancer cachexia mouse
model (20). miRNA-mRNA co-sequencing revealed activation
of the atrophy-related transcription factors STAT3, NF-«B and
FoxO, thus exposing transcriptional and post-transcriptional
regulatory networks involved in muscle wasting (76).

4. miRNAs in adipose tissue depletion

The hallmarks of cancer cachexia are muscle loss, browning
of white adipose tissue (WAT) and lipolysis (77,78). Increased
levels of circulating inflammatory cytokines can also induce
lipolysis and proteolysis in adipose tissue and muscle,
respectively, as well as downregulate protein synthesis, which
causes a reduction in skeletal muscle mass and adipose tissue
in patients with cancer cachexia (21). WAT can promote the
circulation of inflammatory cytokines as well as regulate
inflammatory processes in immune cells and tissues by
secreting miRNA-containing exosomes (79-81). miR-483-5p,
miR-744, miR-23a and miR-99b were found to be downregu-
lated in the abdomen subcutaneous adipose tissue of patients
with gastrointestinal cancer and cachexia in contrast to those
of patients without cachexia syndrome, while the expression of
miR-378 was upregulated (82). miRNAs in blood may serve as
non-invasive biomarkers of cancer malignancy, and miRNAs
can remain highly stable in blood.
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Table I. miRNAs in specimens of patients with cancer cachexia or cancer.

miRNAs Specimens (Refs.)

let-7d-3p, miR-345-5p, miR-423-5p, miR-532-5p, Muscles from cachectic patients with pancreatic (6)

miR-1296-5p, miR-3184-3p, miR-423-3p, miR-199a-3p and colorectal cancer

miR-450a-5p, miR-424-5p, miR-450b-5p, miR-424-3p, Muscles from cachectic patients with non-small (75)

miR-335-3p, miR-103-3p, miR-483-5p, mir-409-3p, cell lung cancer

miR-15b-5p, miR-370-3p, miR-20a-3p, miR-451a,

miR-517¢c-3p, miR-144-5p, miR-766-3p, miR-1255b,

miR-517a-3p, miR-512-3p, miR-522-3p, miR-520g-3p,

miR-483-3p, miR-519a-3p, miR-26a-2-3p, miR-485-3p,

miR-379-5p, miR-518b, miR-520h, miR-656-3p

miR-483-5p, miR-23a, miR-744, miR-99b, miR-378 Abdominal subcutaneous tissues/primary human (82)
dipocytes from cachectic patients with
gastrointestinal cancers

miR-1 Serum from cachectic patients with advanced (95)
hepatocellular carcinoma

miR-21 Serum from cachectic patients with colorectal cancer (88)

miR-130a Plasma from cachectic patients with head and (96)
neck cancer

miR-203 Serum from patients with colorectal cancer &7

miR-468 Serum from patients with breast cancer 97)

5. Circulating miRNAs in cancer cachexia

miRNAs also present in serum, saliva, plasma, urine, and
cerebrospinal fluid (83,84). The psoas muscle mass index
(PMI) provides a simple approach to describing skeletal
muscle volume in the body (85,86). A study on miR-203 in
the blood of patients with colorectal cancer demonstrated that
patients with low PMI had higher levels of miR-203 than those
with high PMI (87). Furthermore, overexpression of miR-203
in serum is an independent predictor of sarcopenia (87).
Similarly, previous studies have shown that the level of miR-21
increased in the blood of patients with colorectal cancer who
developed cancer cachexia compared with that of patients who
did not develop cancer cachexia (88).

Exosomes are the most common type of EVs, which are
small membrane-bound vesicles between 30 and 150 nm
in diameter (89). The presence of miRNA-rich circulating
exosomes may promote the development and maintenance
of systemic chronic inflammation in patients with cancer
cachexia (21,89). Furthermore, a previous study reported the
upregulation of miR-155 in exosomes of BC cells (4T1), which
can target peroxisome proliferator-activated receptor-y in
adipocytes, and promote adipocyte metabolism and browning
differentiation (90). In conclusion, tumor-derived exosomal
miRNAs may induce cancer cachexia, and therefore exosomal
miRNAs are considered potential early diagnostic markers of
cancer cachexia (90-94).

6. Discussion and perspectives

Dysregulation of specific miRNAs, such as let-7d-3p,
miR-345-5p, miR-532-5p, miR-378, miR-92a-3p, miR-21, is

involved in the development of cachexia. Cachexia may induce
the differential expression of miRNAs but it has not been vali-
dated. Dysregulated expression of miRNAs was observed in
muscle tissue, adipose tissue and blood specimens from patients
with cancer cachexia in contrast to the findings in patients
who did not exhibit cancer cachexia or in healthy controls
(Table I) (6,75,82,87,88,95-97). However, miRNAs directly
obtained from adipose or muscle tissue biopsies are not appli-
cable as diagnostic markers of cancer cachexia (84). Thus,
the diagnostic value of miRNAs for cancer cachexia should
be restricted to circulating miRNAs. miRNAs with high
stability in body fluids can be potentially used as non-invasive
markers (98,99). miRNAs from plasma/serum have been
reported as biomarkers for the early diagnosis of different
types of tumor, including gastric cancer (100), BC (101) and
pancreatic cancer (102). Therefore, it can be proposed that
circulating miRNAs in the blood can be used as biomarkers
to differentiate patients at risk of developing cancer cachexia.
For example, circulating miRNAs such as miR-21 may serve
as markers for diagnosing cancer cachexia among patients
likely to develop colorectal cancer (88). However, the appli-
cation of using circulating miRNAs in patients with cancer
as biomarkers for diagnosis needs to be validated in future
clinical trials.

Multiple characteristics of miRNAs make them potential
targets for new treatments of cancer cachexia. Firstly, miRNAs
regulate the translation of mRNAs belonging to multiple genes
and signaling pathways that are dysregulated in cancer cachexia,
such as TNF, IFN signaling, STAT and NF-«kB transcription
factors and associated target genes (15,103-105). Secondly,
miRNAs have been used to promote muscle development and
maintain muscle homeostasis (106). The expression of multiple
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miRNAs has been found to be dysregulated in muscle wasting
of cachexia (107). Thirdly, treatment of cancer cachexia with
miRNAs can induce reversible and specific changes in gene
regulation without affecting the DNA (108). miRNAs can
be used as knockdown complementary mRNA targets (103).
In knockdown therapy, complement-specific miRNA drugs
compete with their mRNA targets for translation. Fourthly,
EVs can prevent miRNAs from being degraded in transfer
and expedite their uptake via target cells (109,110). Finally,
miRNAs can be efficiently stabilized or concentrated using
novel processing methods (103,111). However, no miRNA
drugs have been clinically used to date, although there are
several ongoing clinical trials on phases 1 and 2 (112). For
example, a phase I clinical study that applied miR-16 mimics
for the treatment of non-small cell lung cancer or mesothe-
lioma was accomplished, and may be followed up by a phase II
study (113). miRNAs have also been adopted for targeting
serum amyloid 1 and 2, which are lipoproteins usually gener-
ated in response to inflammatory cytokines, and were shown
to successfully relieve muscle atrophy in a pre-clinical mouse
model (114). miRNA mimics already used in clinical studies
for cancer therapy, such as miR-16, can be investigated in
animal models of cancer cachexia to evaluate whether they can
improve weight loss and alleviate cancer cachexia symptoms.
The implications of miRNAs in the pathogenesis of cancer
cachexia make them attractive therapeutic targets. In addition,
miRNA-based therapies for cancer cachexia target specific
pathways that have the potential to restore homeostasis in
chronically dysfunctional networks and enable positive muscle
responses to exercise and diet.
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