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Applications of polymerase chain reaction-based
methods for the diagnosis of plague (Review)
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Abstract. Plague is an acute bacterial infection caused by
Yersinia pestis. The three major clinical forms of plague
are bubonic, pneumonic and septicemic, which have high
case-mortality rates. Therefore, rapid and reliable diagnostic
tools are crucial. Currently, bacteriological means and tradi-
tional serological assays are used for detecting infection
with Y. pestis. However, such methods have their limitations.
Polymerase chain reaction (PCR) is one of the most useful tools
for rapid diagnosis of plague. The present review introduced
the main PCR techniques and their applications for detecting
and confirmation of Y. pestis. The advantages and disadvan-
tages of the different PCR methods were also summarized.
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1. Introduction

Plague is a zoonotic infection disease having a high mortality
rate without treatment. It may present three distinct clinical
forms: bubonic, septicemic and pneumonic (1). Yersinia pestis
(Y. pestis), a member of the genus Yersinia which belongs
to the Enterobacteriaceae family, is the etiological agent
of plague (2). Y. pestis is a highly pathogenic gram-negative
coccobacillus, which are nonmsotile, non-spore-forming,
oxidase-negative, catalase-positive and lactose-negative,
exhibiting bipolar staining with Giemsa, Wright's and Wayson
stains (3). It grows at temperatures ranging from 4-40°C and
the optimal temperature for growth is 28-30°C (4). At present,
four biotypes of Y. pestis are recognized, including Antiqua,
Orientalis, Mediaevalis and Microtus, on the basis of their
ability to ferment glycerol and form nitrite from nitrate (5,6).
Among them, three classic biotypes (Antiqua, Orientalis and
Mediaevalis) of Y. pestis demonstrate no difference in their
pathology in animals or humans (7). By contrast, Microtus
is nonpathogenic for humans (8). Y. pestis has a complex
infectious cycle, which starts within an insect vector (fleas)
followed by transmission to a mammalian host (rodents and
humans) (9) (Fig. 1).

The bacterial pathogen, Y. pestis, has caused at least three
pandemics in human history. The first historically documented
pandemic started with the Justinianic Plague (AD 541-544) in
Pelusium, Egypt (10), which caused tens of millions of mortali-
ties throughout North Africa, Europe, central and southern
Asia and Arabia. The second plague pandemic (14-18th centu-
ries) started with the Black Death (1347-1353). This pandemic
persisted for over 400 years and devastated Europe and the
nearby regions (11). The third plague pandemic originated
from Yunnan province of China in the 1850s and spread glob-
ally at the end of the 19th century (12).

Early diagnosis and treatment can effectively reduce the
mortality of bubonic plague and septicemic plague (13,14).
Polymerase chain reaction (PCR)-based methods have enabled
the rapid identification of cultured or uncultured bacteria (15).
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Previous reviews describing microbiological and molecular
aspect, molecular typing and molecular diagnostic techniques
of Y. pestis, are available (16-20). The present review focused
on the applications of PCR-based methods for detection of
Y. pestis and attempt to compile and update technical aspects
of PCR strategies in diagnosis of Y. pestis infection.

Laboratory diagnosis of plague. At present, there are various
laboratory tests for diagnosis of plague, such as bacterial
culture, staining techniques, serological evidence, phage
tests, DNA hybridization and PCR analysis (21). Isolation and
identification of pathogen in the laboratory is gold standard
for plague diagnosis (22). Clinical specimens for analysis can
include blood, bubo aspirates, sputum, or cerebrospinal fluid.
Y. pestis can be cultivated on culture media, such as brain
heart infusion broth, MacConkey agar and sheep blood agar.
Isolation of Y. pestis should be performed under biosafety
level 3 conditions. However, bacteriological evidence is time
consuming due to the low growth rate of Y. pestis. Serological
tests are often used to diagnosis plague, including the agar-gel
precipitin inhibition, the complement fixation, passive hemag-
glutination (PHA) test (23), immunochromatography test (24),
enzyme-linked immunosorbent assay (ELISA) (25), dot
enzyme-immunosorbent assay (DOT-ELISA) (26) and the
dissociation-enhanced lanthanide fluorescent immunoassays
(DELFIA) (27). Serological tests seem to be more effective but
are expensive and labor intensive. Moreover, it can be unspecific
due to serological cross-reactivity with other enteropathogenic
bacteria (24). DNA hybridization using Y. pestis-specific DNA
probe may be used for plague diagnosis (28). The minimum
detection limits of this method are ~10° bacteria, which limits
its clinical application. PCR is well suited molecular biology
tool for diagnosis of pathogens. At present, confirmation of
plague is performed using reverse transcription PCR targeting
a plasminogen activator gene (pla) and 60-Md plasmid-located
gene (cafl) and in the case of discordant or uncertain results,
a PCR targeting pla, caf] and an invasin protein gene (inv) is
performed (Fig. 2).

PCR-based methods for diagnosis of plague. The rapid identi-
fication of the Y. pestis is crucial, so that more specific therapy
can be initiated. PCR is a key technique for accurate detection
of Y. pestis due to its higher sensitivity and specificity within
several hours and without any cultivation. Y. pestis genome has
a size of 4,380+135 kb with a 46 to 47 mol% G+C content. The
advances concerning the structure of the Y. pestis genome led
to the development of specific PCR assays for plague diag-
nosis. The first PCR-based test for identification of Y. pestis
was introduced by Bulat ef al (29) in 1991. They performed
gene typing with PCR assay to identify six Yersinia species
(Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, Y. kirst-
ensenii, Y. frederiksenii and Y. intermedia). Previous studies
further report the determination of the molecular typing and
the genetic variations of Y. pestis using PCR methods (30-35).
For example, the PCR-based O-genotyping proves useful to
type Y. pseudotuberculosis and Y. pestis (36). PCR is also a
useful tool for analysis of genomic polymorphism of typical
and atypical strains of the Y. pestis (37). Additionally, the
developed approach based on PCR allows for an effective
differentiation of Y. pestis strains of various subspecies (38-40).

Some studies elucidated a mechanism by which Y. pestis
may be transmitted between host species using PCR (41,42).
Researchers also developed a standard curve-based competi-
tive PCR to quantitate Y. pestis in individual fleas, which is
more reliable than colony count (43). The PCR method is used
to determine bacterial susceptibility to antibiotics by the quan-
tification of differentially expressed marker genes (44-47). A
number of studies present the rapid diagnosis of plague and the
detection of prominent virulence markers of Y. pestis strains
using this technique (48,49). So far, PCR has proven useful in
application as a diagnostic method for routine plague surveil-
lance and outbreak investigations (50-55).

2. Standard PCR

Standard PCR is replacing the more traditional micro-
biological assays in the detection of Y. pestis. This approach
requires development of highly specific oligonucleotide
primers unique to Y. pestis. Primer pairs include the primers
for sequences of cafl, pla, inv, a Y. pestis-specific region of a
yopM gene, 23S ribosomal DNA interspace region and inser-
tion sequence (56-60). Table I gives the different primers for
standard PCR.

Standard PCR is a cost-effective approach for the rapid
detection of Y. pestis (61). Zasada et al (62) present an application
of this assay for detection and identification of Y. pestis, which
takes <50 min and is cheaper than reverse transcription PCR.
Studies also showed that this approach showed high specificity
when compared with ELISA and the culture of Y. pestis (56).
Additionally, standard PCR seems to be relatively rapid and
sensitive when compared to the conventional culture-based
method. Hinnebusch and Schwan (15) report that this assay
may detect as few as 10 cells of Y. pestis. Singh et al (63)
developed a standard PCR assay coupled with lateral flow
strips. The analytical sensitivity of assay is 1 pg genomic DNA
of Y. pestis and 500 copies of target DNA sequence harbored
in a recombinant plasmid. However, Rahalison et al (56)
reveal that the sensitivity of this technique is 50% relative to
the results of culture and 35.2% relative to the results of the
ELISA due to suboptimal field conditions and the volumes
of samples. Therefore, it is worth noting that sample volume
used and efficient DNA extraction protocol direct influence
the sensitivity of standard PCR. Moreover, standard PCR may
be used for the effective differentiation of typical and atypical
plague pathogen strains. A rapid and sensitive one-step PCR
assay has been developed to identify and discriminate patho-
genic Y. enterocolitica from other members of this genus using
a set of species-specific primers (64,65). Zhou et al (66) also
identified 28 signature genes of Y. pestis. PCR amplification
of these signature sequences is ideal for rapid and specific
characterization of pathogens without cross-reaction with the
closely related Y. pseudotuberculosis.

By using specific probe for the amplicon detection, stan-
dard PCR is considered sensitive and specific. However, it
cannot be monitored in real time and requires the performance
of any postreaction processing, such as the electrophoresis
gel. Moreover, standard PCR method is relatively poor in
detecting the low numbers of pathogens in the biopsy sample.
So far, there have been numerous modifications of the PCR
technology for increasing the sensitivity of detection.
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Figure 1. Transmission routes of plague. Rodents act as hosts and reservoirs for Y. pestis, vectored by fleas. Mammals, which are not the natural hosts of
Y. pestis, may become infected via the bite of an infected flea. Infection may be transmitted to humans through flea bites or through direct contact with infected
animals.
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Figure 2. Algorithm for the molecular biology tests of plague. DNA confirmation on the presence of Y. pestis in human specimens is performed using
quantitative PCR targeting pla and cafl and in the case of discordant or uncertain results, a conventional PCR targeting pla, cafl and inv is performed.
pla, plasminogen activator gene; cafl, 60-Md plasmid-located gene; inv, invasin protein gene.

3. Reverse transcription PCR Reverse transcription PCR for the rapid detection and differ-
entiation of Y. pestis has been developed, targeting cafl,
Compared to conventional PCR, reverse transcription PCR has ~ Ymt, pla, hemin storage genes (hmsH, hmsF and hmsR) and
several advantages, including speed, simplicity, reproducibility,  irp2 iron-regulating gene (71,72). Table II gives the different
quantitative capability and low risk of contamination (67-70).  primers and probes for the reverse transcription PCR.
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Table I. Sequences of primers for the standard PCR.

Author, year Gene Forward primer Reverse primer Product, bp (Refs.)
Rahalison et al, cafl CAGTTCCGTTATCG TATTGGTTAGATACG 501 (56)
2000 CCATTGC GTTACGGT
Nyirenda et al, pla ATCTTACTTTCCGTG CTTGGATGTTGAGCT 480 (57)
2018 AGAAG TCCTA
Tsukano et al, inv TAAGGGTACTATCGC CGTGAAATTAACCGT 295 (59)
1996 GGCGGA CACACT
yopM ATAACTCATCGGGGG GCG TTATTT ATC CGA 565
CAAAAT ATTTAGC
cafl CAGGAACCACTAGC CCCCCACAAGGTTC 171
ACATC TCAC
Radnedge et al, Insertion TGTAGCCGCTAAGCA GGCAACAGCTCAACAC 276 (58)
2001 sequence CTACCATCC CTTTGG
Insertion GCATGACCGAAACGT GGATACTTCGCGCATATC 332
sequence CATCCTG TTGCC
Insertion GGATAACGTTGCAG CCTTCGCCACCTTCAC 250
sequence CAGCTTCG CTGC
Insertion TCCAAAATCGGAGA CGTTGTTGATGCCGT CA 226
sequence ATTACTATGGGC CTTTG
23S rRNA CTACCTTAGGACC GAAGGAACTAGGCAAA
GTTATAGTTAC ATGGT
JS GCAGCTTAGGCTGTC CTATCGCCTGATTGGA 223
ATCG GAGG

cafl, capsular antigen fraction 1; pla, plasminogen activator; inv, invasin; yopM, Yersinia outer protein M.

Reverse transcription PCR is proposed as a timely,
cost-effective and accurate diagnostic assay (73,74). The
reliability of this method was evaluated in 1,050 clinical
specimens and high values of specificity were obtained (75).
An autonomous pathogen detection system was developed by
coupling reverse transcription TagMan assay, which generate
extremely low false positive rate (76). Woubit ez al (77) also
identify the genomic targets of Y. pestis to design the primers.
Primer sets are used to specifically detect pathogen with
reverse transcription PCR assays and this assay is found to
be sensitive. A 5' nuclease PCR assay for detection of the
Y. pestis has been developed with a detection threshold of
1.6 pg of total cell DNA (78). Tomaso et al (79) established a
reverse transcription PCR assay for the specific detection of
Y. pestis. The lower limit of detection is ~0.1 genome equiva-
lent. Skottman et al (80) report the development of reverse
transcription PCR assays for detection of Y. pestis with a
sensitivity of 1 fg of total DNA in the PCR tube. In addition,
some researchers develop and validate reverse transcription
PCR for the differentiation and quantification of Y. pestis.
Comer et al (81) report reverse transcription PCR assays
to determine absolute bacterial numbers in flea vector and
mammalian host tissues. A quadruplex reverse transcription
PCR assay proved to be successful in differentiating Y. pestis
from Y. pseudotuberculosis (82). Chase et al (83) also designed
reverse transcription PCR assays to discriminate Y. pestis DNA
from all other Yersinia species tested and from the closely
related Y. pseudotuberculosis. Moreover, reverse transcription

PCR assays have been developed for simultaneous detection of
various organisms. Liu ez al (75) developed a reverse transcrip-
tion PCR-based TagMan array card that can simultaneously
detect 26 organisms, including Y. pestis. Notably, reverse
transcription PCR allows the detection of only live Y. pestis
using amplification of plague diagnostic bacteriophages (84).
It is therefore a useful method for the differentiation among
inactive and active states of Y. pestis.

Some researchers develop reverse transcription PCR for
the specific detection and quantification of Y. pestis from
various samples, such as complex food, synthetic building
debris and leachate and spleen samples of animals (85-89).
Hennebique et al (90) also report the development of a reverse
transcription PCR assay for the detection of Y. pestis in various
types of samples and demonstrate good performances.

Some researchers have compared reverse transcrip-
tion PCR assay performance across various platforms.
Christensen et al (91) detect Y. pestis by reverse transcription
PCR on the R.A.P1.D., the LightCycler and the Smart Cycler
platforms. They find that the tested assays have comparable
sensitivity and specificity on these rapid cycling instruments.
Matero et al (92) also compare this assay performance
between the Applied Biosystems 7300/7500 and the RAZOR
instruments for detection of Y. pestis. Although no notable
differences between two platforms were observed in analytical
sensitivity or specificity, the duration of thermocycling with
the RAZOR instrument was significantly shorter (40 min
vs. 100 min with ABI 7300/7500). Molsé et al (93) compare
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Table II. Sequences of primers and probes for the reverse transcription PCR.

Author, year Gene Primer/probe sequences (5'-3") Product, bp (Refs.)

Bai et al, 2020 pst Forward: GCGAAGCAAACAGGATTTATTG 116 (40)
Reverse: GAGGTGCTGTTCTCACTTTATC
Probe: FAM-AGCCTCCTTCCCTCGAAGCAT
ATAATACCC-BHQI
ypo2088 Forward: TCGGCAACAGCTCAACACCT 107
Reverse: ATGCATTGGACGGCATCACG
Probe: CALRD610-CGCCCTCGAATCGCT
GGCCAACTGC-BHQ2
opgG Forward: ACGTGGGCGTGAATTCTCTCAA 126
Reverse: GCCGTTGGGATCTCCACCAA
Probe: QUAS670-CCTGCGCCCAAGCGCG
TGGG-BHQ2
18S rRNA Forward: CAGATACCGCCCTAGTTCTAA 153
Reverse: GTT TCA GCT TTG CAA CCATAC
Probe: HEX-TCATCGGAGGAACTTCGGC
GGATC-BHQI
Riehm et al, 2011 pst Forward: TACGGTTACGGTTACAGCAT (72)
Reverse: GGTGATCCCATGTACTTAACA
Probe: 6FAM-ACCTGCTGCAAGTTTACC
GCCTTTGG-BBQ
Ymt Forward: AGGACCTAATATGGAGCATGAC
Reverse: CTAACAAAGCCTCAATAATCCA
Probe: 6FAM-TCCAAGCACTCACGAGA
TCTTGCTAA-BBQ
Liu et al, 2016 cafl Forward: CCACTGCAACGGCAACTCTT 71 (75)
Reverse: TGTAATTGGAGCGCCTTCCT
Probe: QUAS705-TTGAACCAGCCCGCAT
CACTCTTACA-BHQ3
Woron et al, 2006 cafl Forward: GCAACTGCTAATGCGGCAGAT 176 (98)
Reverse: CCTGTTTTATAGCCGCCAAGAG
Probe: TAMRA-TGCAAGCACCACTGC
AACGGCAAC-BHQI
pla Forward: GCTTTATGACGCAGAAACAGGA 270
Reverse: AACCAGCCTTTCACATTGAGGT
Probe: JOE-TGGACGTCTCTGGCTTCC
GGTC-BHQ2
entF3 Forward: AACGACGGCATTCACGGTA 122
Reverse: TGGTGATGAGTTGGACGTTAGG
Probe: ROX-CGGCCAAAATGGCGTGAT
AAATACCTT-BHQI1
Tomaso et al, 2003 pla Forward: GTAATAGGTTATAACCAGCGCTT 232 (79)
Reverse: AGACTTTGGCATTAGGTGTG
Probe: HEX-ATGCCATATATTGGACTTG
CAGGCCAGT-BHQI1

cafl, capsular antigen fraction 1; pla, plasminogen activator.

the performance of a novel portable reverse transcription When compared to other PCR based methods used for
PCR thermocycler PikoReal to ABI 7300 for the detection of  detection of Y. pestis, reverse transcription PCR is a sensi-
Y. pestis. The PikoReal system may be a more efficient alterna-  tive method that quantifies the number of Y. pestis in biopsy
tive to detect biothreat agents under field conditions. specimens through the quantification of bacterial DNA in
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real time. However, it may not be as sensitive as nested PCR.
Additionally, the application of reverse transcription PCR
is usually based on the commercial kits, so it will be more
expensive, especially when two genes are targeted.

4. Multiplex PCR

Multiplex PCR is a type of PCR technique which amplifies
more than one target DNA in one reaction system at one
time. Elsholz er al (94) designed a multiplex PCR method for
the parallel detection of a panel of the pathogens, including
B. anthracis, Y. pestis, F. tularensis and ortho pox viruses
(genus). Stenkova et al (95) show that the multiplex PCR
provides an improved method for detection of the Yersinia
genus with identification of pathogenic species (Y. pestis,
Y. pseudotuberculosis, Y. enterocolitica). Stevenson et al (96)
further detect flea-associated microorganisms, such as
Bartonella strains and Y. pestis, in prairie dogs and their fleas
using multiplex PCR. Additionally, the multiplex PCR can be
used to detect and identify Y. pestis using multiplex primers,
including cafl, yopM, pla and inv genes (97). Woron et al also
reported the 4-target multiplex reverse transcription PCR
assay for Y. pestis (98).

The multiplex PCR assay can successfully identify
Y. pestis with high sensitivity (99). Vanlalhmuaka et al (100)
developed a multiplex PCR-based reverse line blot macroarray
for simultaneous detection and characterization of four
pathogens, including B. anthracis, Y. pestis, B. melitensis and
B. pseudomallei. This assay is able to detect 8x10* cfu/ml for
Y. pestis. Similarly, Batra et al (101) describe a sensitive and
specific multiplex PCR assay for the simultaneous detection of
B. anthracis, Y. pestis, B. pseudomallei and Brucella species.
The sensitivity in spiked blood samples was 50 colony forming
units (cfus)/25 pul reaction for the detection of Y. pestis.

Multiplex PCR demonstrates high specificity and reli-
ability (102). Wilson er al (103) developed a multiplexed
PCR-coupled liquid bead array for the detection of Y. pestis.
The assay correctly identified the presence of pathogen with low
material costs. Tran et al (104) detected Y. pestis DNA in dental
pulp specimens collected from graves with high throughput
multiplex PCR, confirmed the outbreaks of plague in medieval
Venice. Melo et al (105) show that the multiplex-PCR technique
is a valuable tool for the plague control programme. A multiplex
oligonucleotide ligation-PCR has also been developed for the
detection of Y. pestis, representing considerable potential in the
field of diagnostics and surveillance (106). A previous study
also showed that there was no significant difference in detection
rates between blood culture, singleplex PCR and multiplex PCR
within the Y. pestis model (107).

Multiplex PCR can be a powerful tool for the simultaneous
quantification of more than one pathogen in a single reaction
by combination of primers and probes. The advantages of this
method include ease of sample collection, improvement in
amplification efficiency and reduction of laboratory time. This
technique is more suitable for screening of pathogenic bacteria.

5. Nested and semi-nested PCR

The nested and semi-nested PCR assays have advantages of
high sensitivity and easy applicability for the detection of

Y. pestis in various samples. Trebesius et al (108) present the
semi-nested PCR approach based on 16S and 23S rDNAs
with respect to diagnosis of plague. A single-tube nested-PCR
technique targeting the cafl gene was evaluated for plague
diagnosis, which showed more sensitive than conventional
PCR (109). Glukhov et al (110) develop a nested PCR method
to distinguish the culture of Y. pestis from cultures of other
microorganism, demonstrating a higher sensitivity and speci-
ficity than standard PCR.

6. Other PCR-based assays

A microchip PCR array instrument was developed for rapid
detection of Y. pestis with the detection limits of 10°-107
organisms/L (111). Pingle et al (112) developed a PCR-ligase
detection reaction-capillary electrophoresis assay for the iden-
tification of pathogens, including Y. pestis. Jacob et al (113)
describe the identification of highly pathogenic bacteria
using an assay coupling biothreat group-specific PCR with
electrospray ionization mass spectrometry. Song et al (114)
also developed a SNP-based multiplexed oligonucleotide
ligation-PCR for rapid Y. pestis detection and antibiotic resis-
tance characterization. Souza et al (115) developed a method
to differentiate Yersinia species using high-resolution melting
analysis. Jeng et al (116) further reported a reverse transcrip-
tion-PCR-electrospray ionization mass spectrometry assay
for distinguishing biothreat agents, including B. anthracis,
Y. pestis, F. tularensis, Brucella spp., Burkholderia spp. and
R. prowazekii. Other PCR-based assays have been used for
detection of Y. pestis, such as ligation-mediated PCR, suicide
PCR, immuno-PCR and viability PCR (117-123).

7. Sampling and sample treatment

The sensitivity limit of PCR depends on the method used for
preparing the sample (124) and the presence of PCR inhibitors
that are often found in biological samples (125). A previous
study showed that some components in the tissues can inhibit
PCR (126). Leal et al (127) found that the spleen suspension
of animals experimentally infected with Y. pestis can be used
as PCR amplification template without DNA extraction. The
sensitivity and specificity were enhanced by amplification
after the second-round PCR. Afanas'ev er al (128) treated
the samples of plague-infected fleas with an affine sorbent
prior to PCR analysis. They found that the use of magnoim-
munosorbent prevents the inhibitory effect of flea tissues and
makes it possible to have a specific concentration of plague
microbial DNA. The high-quality DNA before PCR gene
amplification is essential for the diagnostic of pathogenic
bacteria. Coyne et al (129) evaluate the Schleicher and Schuell
IsoCode Stix DNA isolation device and the Qiagen QIAamp
DNA Mini kit for isolating Y. pestis DNA from serum and
whole-blood samples. They find that the two methods achieve
comparable detection limits. Dauphin ez al (130) evaluate five
commercially available DNA extraction kits. TagMan reverse
transcription PCR analysis revealed that the MasterPure kit
was best extraction method for Y. pestis suspensions and spiked
environmental samples. Gilbert et al (131) show that various
methods of tooth manipulation can influence the PCR-based
detection of Y. pestis DNA in human teeth from European
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excavations of putative plague victims. They use a novel
contamination-minimizing embedding technique to reduce
the levels of environmental bacterial DNA presented in DNA
extracts. Hong-Geller ef al (132) evaluate the sample recovery
efficiencies of two collection methods (swabs and wipes) for
Y. pestis from nonporous surfaces. They found that collection
efficiency was surface-dependent, indicating the importance
of surface interactions in pathogen detection.

8. Perspective and challenge

The developed approach based on PCR is applicable for
identifying and confirming Y. pestis (133,134). This system
also allows for effective differentiation of Yersinia strains
of various subspecies. In addition, the PCR assay is able to
determine bacterial susceptibility to antibiotics and prominent
virulence markers of Y. pestis. Compared with traditional
techniques, PCR-based is simple, rapid, highly sensitive and
specific and it has proven useful in application as a diagnostic
strategy for routine plague surveillance of epidemics. However,
the PCR inhibitors may be present in samples. The suboptimal
field conditions, sample recovery efficiency and DNA extrac-
tion quality directly influence the sensitivity and specificity
of most PCR-based methods. Therefore, future studies should
focus on the standardization of sample processing.
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