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Abstract. Plague is an acute bacterial infection caused by 
Yersinia pestis. The three major clinical forms of plague 
are bubonic, pneumonic and septicemic, which have high 
case‑mortality rates. Therefore, rapid and reliable diagnostic 
tools are crucial. Currently, bacteriological means and tradi‑
tional serological assays are used for detecting infection 
with Y. pestis. However, such methods have their limitations. 
Polymerase chain reaction (PCR) is one of the most useful tools 
for rapid diagnosis of plague. The present review introduced 
the main PCR techniques and their applications for detecting 
and confirmation of Y. pestis. The advantages and disadvan‑
tages of the different PCR methods were also summarized.
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1. Introduction

Plague is a zoonotic infection disease having a high mortality 
rate without treatment. It may present three distinct clinical 
forms: bubonic, septicemic and pneumonic (1). Yersinia pestis 
(Y. pestis), a member of the genus Yersinia which belongs 
to the Enterobacteriaceae family, is the etiological agent 
of plague (2). Y. pestis is a highly pathogenic gram‑negative 
coccobacillus, which are nonmsotile, non‑spore‑forming, 
oxidase‑negative, catalase‑positive and lactose‑negative, 
exhibiting bipolar staining with Giemsa, Wright's and Wayson 
stains (3). It grows at temperatures ranging from 4‑40˚C and 
the optimal temperature for growth is 28‑30˚C (4). At present, 
four biotypes of Y. pestis are recognized, including Antiqua, 
Orientalis, Mediaevalis and Microtus, on the basis of their 
ability to ferment glycerol and form nitrite from nitrate (5,6). 
Among them, three classic biotypes (Antiqua, Orientalis and 
Mediaevalis) of Y. pestis demonstrate no difference in their 
pathology in animals or humans (7). By contrast, Microtus 
is nonpathogenic for humans (8). Y. pestis has a complex 
infectious cycle, which starts within an insect vector (fleas) 
followed by transmission to a mammalian host (rodents and 
humans) (9) (Fig. 1).

The bacterial pathogen, Y. pestis, has caused at least three 
pandemics in human history. The first historically documented 
pandemic started with the Justinianic Plague (AD 541‑544) in 
Pelusium, Egypt (10), which caused tens of millions of mortali‑
ties throughout North Africa, Europe, central and southern 
Asia and Arabia. The second plague pandemic (14‑18th centu‑
ries) started with the Black Death (1347‑1353). This pandemic 
persisted for over 400 years and devastated Europe and the 
nearby regions (11). The third plague pandemic originated 
from Yunnan province of China in the 1850s and spread glob‑
ally at the end of the 19th century (12).

Early diagnosis and treatment can effectively reduce the 
mortality of bubonic plague and septicemic plague (13,14). 
Polymerase chain reaction (PCR)‑based methods have enabled 
the rapid identification of cultured or uncultured bacteria (15). 
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Previous reviews describing microbiological and molecular 
aspect, molecular typing and molecular diagnostic techniques 
of Y. pestis, are available (16‑20). The present review focused 
on the applications of PCR‑based methods for detection of 
Y. pestis and attempt to compile and update technical aspects 
of PCR strategies in diagnosis of Y. pestis infection.

Laboratory diagnosis of plague. At present, there are various 
laboratory tests for diagnosis of plague, such as bacterial 
culture, staining techniques, serological evidence, phage 
tests, DNA hybridization and PCR analysis (21). Isolation and 
identification of pathogen in the laboratory is gold standard 
for plague diagnosis (22). Clinical specimens for analysis can 
include blood, bubo aspirates, sputum, or cerebrospinal fluid. 
Y. pestis can be cultivated on culture media, such as brain 
heart infusion broth, MacConkey agar and sheep blood agar. 
Isolation of Y. pestis should be performed under biosafety 
level 3 conditions. However, bacteriological evidence is time 
consuming due to the low growth rate of Y. pestis. Serological 
tests are often used to diagnosis plague, including the agar‑gel 
precipitin inhibition, the complement fixation, passive hemag‑
glutination (PHA) test (23), immunochromatography test (24), 
enzyme‑linked immunosorbent assay (ELISA) (25), dot 
enzyme‑immunosorbent assay (DOT‑ELISA) (26) and the 
dissociation‑enhanced lanthanide fluorescent immunoassays 
(DELFIA) (27). Serological tests seem to be more effective but 
are expensive and labor intensive. Moreover, it can be unspecific 
due to serological cross‑reactivity with other enteropathogenic 
bacteria (24). DNA hybridization using Y. pestis‑specific DNA 
probe may be used for plague diagnosis (28). The minimum 
detection limits of this method are ~105 bacteria, which limits 
its clinical application. PCR is well suited molecular biology 
tool for diagnosis of pathogens. At present, confirmation of 
plague is performed using reverse transcription PCR targeting 
a plasminogen activator gene (pla) and 60‑Md plasmid‑located 
gene (caf1) and in the case of discordant or uncertain results, 
a PCR targeting pla, caf1 and an invasin protein gene (inv) is 
performed (Fig. 2).

PCR‑based methods for diagnosis of plague. The rapid identi‑
fication of the Y. pestis is crucial, so that more specific therapy 
can be initiated. PCR is a key technique for accurate detection 
of Y. pestis due to its higher sensitivity and specificity within 
several hours and without any cultivation. Y. pestis genome has 
a size of 4,380±135 kb with a 46 to 47 mol% G+C content. The 
advances concerning the structure of the Y. pestis genome led 
to the development of specific PCR assays for plague diag‑
nosis. The first PCR‑based test for identification of Y. pestis 
was introduced by Bulat et al (29) in 1991. They performed 
gene typing with PCR assay to identify six Yersinia species 
(Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, Y. kirst‑
ensenii, Y. frederiksenii and Y. intermedia). Previous studies 
further report the determination of the molecular typing and 
the genetic variations of Y. pestis using PCR methods (30‑35). 
For example, the PCR‑based O‑genotyping proves useful to 
type Y. pseudotuberculosis and Y. pestis (36). PCR is also a 
useful tool for analysis of genomic polymorphism of typical 
and atypical strains of the Y. pestis (37). Additionally, the 
developed approach based on PCR allows for an effective 
differentiation of Y. pestis strains of various subspecies (38‑40). 

Some studies elucidated a mechanism by which Y. pestis 
may be transmitted between host species using PCR (41,42). 
Researchers also developed a standard curve‑based competi‑
tive PCR to quantitate Y. pestis in individual fleas, which is 
more reliable than colony count (43). The PCR method is used 
to determine bacterial susceptibility to antibiotics by the quan‑
tification of differentially expressed marker genes (44‑47). A 
number of studies present the rapid diagnosis of plague and the 
detection of prominent virulence markers of Y. pestis strains 
using this technique (48,49). So far, PCR has proven useful in 
application as a diagnostic method for routine plague surveil‑
lance and outbreak investigations (50‑55).

2. Standard PCR

Standard PCR is replacing the more traditional micro‑
biological assays in the detection of Y. pestis. This approach 
requires development of highly specific oligonucleotide 
primers unique to Y. pestis. Primer pairs include the primers 
for sequences of caf1, pla, inv, a Y. pestis‑specific region of a 
yopM gene, 23S ribosomal DNA interspace region and inser‑
tion sequence (56‑60). Table I gives the different primers for 
standard PCR.

Standard PCR is a cost‑effective approach for the rapid 
detection of Y. pestis (61). Zasada et al (62) present an application 
of this assay for detection and identification of Y. pestis, which 
takes <50 min and is cheaper than reverse transcription PCR. 
Studies also showed that this approach showed high specificity 
when compared with ELISA and the culture of Y. pestis (56). 
Additionally, standard PCR seems to be relatively rapid and 
sensitive when compared to the conventional culture‑based 
method. Hinnebusch and Schwan (15) report that this assay 
may detect as few as 10 cells of Y. pestis. Singh et al (63) 
developed a standard PCR assay coupled with lateral flow 
strips. The analytical sensitivity of assay is 1 pg genomic DNA 
of Y. pestis and 500 copies of target DNA sequence harbored 
in a recombinant plasmid. However, Rahalison et al (56) 
reveal that the sensitivity of this technique is 50% relative to 
the results of culture and 35.2% relative to the results of the 
ELISA due to suboptimal field conditions and the volumes 
of samples. Therefore, it is worth noting that sample volume 
used and efficient DNA extraction protocol direct influence 
the sensitivity of standard PCR. Moreover, standard PCR may 
be used for the effective differentiation of typical and atypical 
plague pathogen strains. A rapid and sensitive one‑step PCR 
assay has been developed to identify and discriminate patho‑
genic Y. enterocolitica from other members of this genus using 
a set of species‑specific primers (64,65). Zhou et al (66) also 
identified 28 signature genes of Y. pestis. PCR amplification 
of these signature sequences is ideal for rapid and specific 
characterization of pathogens without cross‑reaction with the 
closely related Y. pseudotuberculosis.

By using specific probe for the amplicon detection, stan‑
dard PCR is considered sensitive and specific. However, it 
cannot be monitored in real time and requires the performance 
of any postreaction processing, such as the electrophoresis 
gel. Moreover, standard PCR method is relatively poor in 
detecting the low numbers of pathogens in the biopsy sample. 
So far, there have been numerous modifications of the PCR 
technology for increasing the sensitivity of detection.
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3. Reverse transcription PCR

Compared to conventional PCR, reverse transcription PCR has 
several advantages, including speed, simplicity, reproducibility, 
quantitative capability and low risk of contamination (67‑70). 

Reverse transcription PCR for the rapid detection and differ‑
entiation of Y. pestis has been developed, targeting caf1, 
Ymt, pla, hemin storage genes (hmsH, hmsF and hmsR) and 
irp2 iron‑regulating gene (71,72). Table II gives the different 
primers and probes for the reverse transcription PCR.

Figure 1. Transmission routes of plague. Rodents act as hosts and reservoirs for Y. pestis, vectored by fleas. Mammals, which are not the natural hosts of 
Y. pestis, may become infected via the bite of an infected flea. Infection may be transmitted to humans through flea bites or through direct contact with infected 
animals. 

Figure 2. Algorithm for the molecular biology tests of plague. DNA confirmation on the presence of Y. pestis in human specimens is performed using 
quantitative PCR targeting pla and caf1 and in the case of discordant or uncertain results, a conventional PCR targeting pla, caf1 and inv is performed. 
pla, plasminogen activator gene; caf1, 60‑Md plasmid‑located gene; inv, invasin protein gene. 
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Reverse transcription PCR is proposed as a timely, 
cost‑effective and accurate diagnostic assay (73,74). The 
reliability of this method was evaluated in 1,050 clinical 
specimens and high values of specificity were obtained (75). 
An autonomous pathogen detection system was developed by 
coupling reverse transcription TaqMan assay, which generate 
extremely low false positive rate (76). Woubit et al (77) also 
identify the genomic targets of Y. pestis to design the primers. 
Primer sets are used to specifically detect pathogen with 
reverse transcription PCR assays and this assay is found to 
be sensitive. A 5' nuclease PCR assay for detection of the 
Y. pestis has been developed with a detection threshold of 
1.6 pg of total cell DNA (78). Tomaso et al (79) established a 
reverse transcription PCR assay for the specific detection of 
Y. pestis. The lower limit of detection is ~0.1 genome equiva‑
lent. Skottman et al (80) report the development of reverse 
transcription PCR assays for detection of Y. pestis with a 
sensitivity of 1 fg of total DNA in the PCR tube. In addition, 
some researchers develop and validate reverse transcription 
PCR for the differentiation and quantification of Y. pestis. 
Comer et al (81) report reverse transcription PCR assays 
to determine absolute bacterial numbers in flea vector and 
mammalian host tissues. A quadruplex reverse transcription 
PCR assay proved to be successful in differentiating Y. pestis 
from Y. pseudotuberculosis (82). Chase et al (83) also designed 
reverse transcription PCR assays to discriminate Y. pestis DNA 
from all other Yersinia species tested and from the closely 
related Y. pseudotuberculosis. Moreover, reverse transcription 

PCR assays have been developed for simultaneous detection of 
various organisms. Liu et al (75) developed a reverse transcrip‑
tion PCR‑based TaqMan array card that can simultaneously 
detect 26 organisms, including Y. pestis. Notably, reverse 
transcription PCR allows the detection of only live Y. pestis 
using amplification of plague diagnostic bacteriophages (84). 
It is therefore a useful method for the differentiation among 
inactive and active states of Y. pestis.

Some researchers develop reverse transcription PCR for 
the specific detection and quantification of Y. pestis from 
various samples, such as complex food, synthetic building 
debris and leachate and spleen samples of animals (85‑89). 
Hennebique et al (90) also report the development of a reverse 
transcription PCR assay for the detection of Y. pestis in various 
types of samples and demonstrate good performances.

Some researchers have compared reverse transcrip‑
tion PCR assay performance across various platforms. 
Christensen et al (91) detect Y. pestis by reverse transcription 
PCR on the R.A.P.I.D., the LightCycler and the Smart Cycler 
platforms. They find that the tested assays have comparable 
sensitivity and specificity on these rapid cycling instruments. 
Matero et al (92) also compare this assay performance 
between the Applied Biosystems 7300/7500 and the RAZOR 
instruments for detection of Y. pestis. Although no notable 
differences between two platforms were observed in analytical 
sensitivity or specificity, the duration of thermocycling with 
the RAZOR instrument was significantly shorter (40 min 
vs. 100 min with ABI 7300/7500). Mölsä et al (93) compare 

Table I. Sequences of primers for the standard PCR.

Author, year Gene Forward primer Reverse primer Product, bp (Refs.)

Rahalison et al, caf1 CAGTTCCGTTATCG TATTGGTTAGATACG 501 (56)
2000  CCATTGC GTTACGGT  
Nyirenda et al, pla ATCTTACTTTCCGTG CTTGGATGTTGAGCT 480 (57)
2018  AGAAG TCCTA 
Tsukano et al, inv TAAGGGTACTATCGC CGTGAAATTAACCGT 295 (59)
1996  GGCGGA CACACT 
 yopM ATAACTCATCGGGGG GCG TTA TTT ATC CGA 565 
  CAAAAT ATT TAG C 
 caf1 CAGGAACCACTAGC CCCCCACAAGGTTC 171 
  ACATC TCAC 
Radnedge et al, Insertion TGTAGCCGCTAAGCA GGCAACAGCTCAACAC 276 (58)
2001 sequence CTACCATCC CTTTGG 
 Insertion GCATGACCGAAACGT GGATACTTCGCGCATATC 332 
 sequence CATCCTG TTGCC 
 Insertion GGATAACGTTGCAG CCTTCGCCACCTTCAC 250 
 sequence CAGCTTCG CTGC 
 Insertion TCCAAAATCGGAGA CGTTGTTGATGCCGT CA 226 
 sequence ATTACTATGGGC CTTTG 
 23S rRNA CTACCTTAGGACC GAAGGAACTAGGCAAA  
  GTTATAGTTAC ATGGT  
 JS GCAGCTTAGGCTGTC CTATCGCCTGATTGGA 223 
  ATCG GAGG 

caf1, capsular antigen fraction 1; pla, plasminogen activator; inv, invasin; yopM, Yersinia outer protein M.
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the performance of a novel portable reverse transcription 
PCR thermocycler PikoReal to ABI 7300 for the detection of 
Y. pestis. The PikoReal system may be a more efficient alterna‑
tive to detect biothreat agents under field conditions.

When compared to other PCR based methods used for 
detection of Y. pestis, reverse transcription PCR is a sensi‑
tive method that quantifies the number of Y. pestis in biopsy 
specimens through the quantification of bacterial DNA in 

Table II. Sequences of primers and probes for the reverse transcription PCR.

Author, year Gene Primer/probe sequences (5'‑3') Product, bp (Refs.)

Bai et al, 2020 pst Forward: GCGAAGCAAACAGGATTTATTG 116 (40)
  Reverse: GAGGTGCTGTTCTCACTTTATC
  Probe: FAM‑AGCCTCCTTCCCTCGAAGCAT
  ATAATACCC‑BHQ1    
 ypo2088 Forward: TCGGCAACAGCTCAACACCT 107 
  Reverse: ATGCATTGGACGGCATCACG
  Probe: CALRD610‑CGCCCTCGAATCGCT
  GGCCAACTGC‑BHQ2 
 opgG Forward: ACGTGGGCGTGAATTCTCTCAA 126 
  Reverse: GCCGTTGGGATCTCCACCAA
  Probe: QUAS670‐CCTGCGCCCAAGCGCG
  TGGG‑BHQ2 
 18S rRNA Forward: CAGATACCGCCCTAGTTCTAA 153 
  Reverse: GTT TCA GCT TTG CAA CCA TAC
  Probe: HEX‑TCATCGGAGGAACTTCGGC
  GGATC‑BHQ1 
Riehm et al, 2011 pst Forward: TACGGTTACGGTTACAGCAT  (72)
  Reverse: GGTGATCCCATGTACTTAACA
  Probe: 6FAM‑ACCTGCTGCAAGTTTACC
  GCCTTTGG‑BBQ  
 Ymt  Forward: AGGACCTAATATGGAGCATGAC  
  Reverse: CTAACAAAGCCTCAATAATCCA
  Probe: 6FAM‑TCCAAGCACTCACGAGA
  TCTTGCTAA‑BBQ  
Liu et al, 2016 caf1 Forward: CCACTGCAACGGCAACTCTT 71 (75)
  Reverse: TGTAATTGGAGCGCCTTCCT
  Probe: QUAS705‑TTGAACCAGCCCGCAT
  CACTCTTACA‑BHQ3 
Woron et al, 2006 caf1 Forward: GCAACTGCTAATGCGGCAGAT 176 (98)
  Reverse: CCTGTTTTATAGCCGCCAAGAG
  Probe: TAMRA‑TGCAAGCACCACTGC
  AACGGCAAC‑BHQ1 
 pla Forward: GCTTTATGACGCAGAAACAGGA 270 
  Reverse: AACCAGCCTTTCACATTGAGGT
  Probe: JOE‑TGGACGTCTCTGGCTTCC
  GGTC‑BHQ2 
 entF3 Forward: AACGACGGCATTCACGGTA 122 
  Reverse: TGGTGATGAGTTGGACGTTAGG
  Probe: ROX‑CGGCCAAAATGGCGTGAT
  AAATACCTT‑BHQ1 
Tomaso et al, 2003 pla Forward: GTAATAGGTTATAACCAGCGCTT 232 (79)
  Reverse: AGACTTTGGCATTAGGTGTG
  Probe: HEX‑ATGCCATATATTGGACTTG
  CAGGCCAGT‑BHQ1 

caf1, capsular antigen fraction 1; pla, plasminogen activator.
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real time. However, it may not be as sensitive as nested PCR. 
Additionally, the application of reverse transcription PCR 
is usually based on the commercial kits, so it will be more 
expensive, especially when two genes are targeted.

4. Multiplex PCR

Multiplex PCR is a type of PCR technique which amplifies 
more than one target DNA in one reaction system at one 
time. Elsholz et al (94) designed a multiplex PCR method for 
the parallel detection of a panel of the pathogens, including 
B. anthracis, Y. pestis, F. tularensis and ortho pox viruses 
(genus). Stenkova et al (95) show that the multiplex PCR 
provides an improved method for detection of the Yersinia 
genus with identification of pathogenic species (Y. pestis, 
Y. pseudotuberculosis, Y. enterocolitica). Stevenson et al (96) 
further detect f lea‑associated microorganisms, such as 
Bartonella strains and Y. pestis, in prairie dogs and their fleas 
using multiplex PCR. Additionally, the multiplex PCR can be 
used to detect and identify Y. pestis using multiplex primers, 
including caf1, yopM, pla and inv genes (97). Woron et al also 
reported the 4‑target multiplex reverse transcription PCR 
assay for Y. pestis (98).

The multiplex PCR assay can successfully identify 
Y. pestis with high sensitivity (99). Vanlalhmuaka et al (100) 
developed a multiplex PCR‑based reverse line blot macroarray 
for simultaneous detection and characterization of four 
pathogens, including B. anthracis, Y. pestis, B. melitensis and 
B. pseudomallei. This assay is able to detect 8x102 cfu/ml for 
Y. pestis. Similarly, Batra et al (101) describe a sensitive and 
specific multiplex PCR assay for the simultaneous detection of 
B. anthracis, Y. pestis, B. pseudomallei and Brucella species. 
The sensitivity in spiked blood samples was 50 colony forming 
units (cfus)/25 µl reaction for the detection of Y. pestis.

Multiplex PCR demonstrates high specificity and reli‑
ability (102). Wilson et al (103) developed a multiplexed 
PCR‑coupled liquid bead array for the detection of Y. pestis. 
The assay correctly identified the presence of pathogen with low 
material costs. Tran et al (104) detected Y. pestis DNA in dental 
pulp specimens collected from graves with high throughput 
multiplex PCR, confirmed the outbreaks of plague in medieval 
Venice. Melo et al (105) show that the multiplex‑PCR technique 
is a valuable tool for the plague control programme. A multiplex 
oligonucleotide ligation‑PCR has also been developed for the 
detection of Y. pestis, representing considerable potential in the 
field of diagnostics and surveillance (106). A previous study 
also showed that there was no significant difference in detection 
rates between blood culture, singleplex PCR and multiplex PCR 
within the Y. pestis model (107).

Multiplex PCR can be a powerful tool for the simultaneous 
quantification of more than one pathogen in a single reaction 
by combination of primers and probes. The advantages of this 
method include ease of sample collection, improvement in 
amplification efficiency and reduction of laboratory time. This 
technique is more suitable for screening of pathogenic bacteria.

5. Nested and semi‑nested PCR

The nested and semi‑nested PCR assays have advantages of 
high sensitivity and easy applicability for the detection of 

Y. pestis in various samples. Trebesius et al (108) present the 
semi‑nested PCR approach based on 16S and 23S rDNAs 
with respect to diagnosis of plague. A single‑tube nested‑PCR 
technique targeting the caf1 gene was evaluated for plague 
diagnosis, which showed more sensitive than conventional 
PCR (109). Glukhov et al (110) develop a nested PCR method 
to distinguish the culture of Y. pestis from cultures of other 
microorganism, demonstrating a higher sensitivity and speci‑
ficity than standard PCR.

6. Other PCR‑based assays

A microchip PCR array instrument was developed for rapid 
detection of Y. pestis with the detection limits of 105‑107 
organisms/L (111). Pingle et al (112) developed a PCR‑ligase 
detection reaction‑capillary electrophoresis assay for the iden‑
tification of pathogens, including Y. pestis. Jacob et al (113) 
describe the identification of highly pathogenic bacteria 
using an assay coupling biothreat group‑specific PCR with 
electrospray ionization mass spectrometry. Song et al (114) 
also developed a SNP‑based multiplexed oligonucleotide 
ligation‑PCR for rapid Y. pestis detection and antibiotic resis‑
tance characterization. Souza et al (115) developed a method 
to differentiate Yersinia species using high‑resolution melting 
analysis. Jeng et al (116) further reported a reverse transcrip‑
tion‑PCR‑electrospray ionization mass spectrometry assay 
for distinguishing biothreat agents, including B. anthracis, 
Y. pestis, F. tularensis, Brucella spp., Burkholderia spp. and 
R. prowazekii. Other PCR‑based assays have been used for 
detection of Y. pestis, such as ligation‑mediated PCR, suicide 
PCR, immuno‑PCR and viability PCR (117‑123).

7. Sampling and sample treatment

The sensitivity limit of PCR depends on the method used for 
preparing the sample (124) and the presence of PCR inhibitors 
that are often found in biological samples (125). A previous 
study showed that some components in the tissues can inhibit 
PCR (126). Leal et al (127) found that the spleen suspension 
of animals experimentally infected with Y. pestis can be used 
as PCR amplification template without DNA extraction. The 
sensitivity and specificity were enhanced by amplification 
after the second‑round PCR. Afanas'ev et al (128) treated 
the samples of plague‑infected fleas with an affine sorbent 
prior to PCR analysis. They found that the use of magnoim‑
munosorbent prevents the inhibitory effect of flea tissues and 
makes it possible to have a specific concentration of plague 
microbial DNA. The high‑quality DNA before PCR gene 
amplification is essential for the diagnostic of pathogenic 
bacteria. Coyne et al (129) evaluate the Schleicher and Schuell 
IsoCode Stix DNA isolation device and the Qiagen QIAamp 
DNA Mini kit for isolating Y. pestis DNA from serum and 
whole‑blood samples. They find that the two methods achieve 
comparable detection limits. Dauphin et al (130) evaluate five 
commercially available DNA extraction kits. TaqMan reverse 
transcription PCR analysis revealed that the MasterPure kit 
was best extraction method for Y. pestis suspensions and spiked 
environmental samples. Gilbert et al (131) show that various 
methods of tooth manipulation can influence the PCR‑based 
detection of Y. pestis DNA in human teeth from European 
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excavations of putative plague victims. They use a novel 
contamination‑minimizing embedding technique to reduce 
the levels of environmental bacterial DNA presented in DNA 
extracts. Hong‑Geller et al (132) evaluate the sample recovery 
efficiencies of two collection methods (swabs and wipes) for 
Y. pestis from nonporous surfaces. They found that collection 
efficiency was surface‑dependent, indicating the importance 
of surface interactions in pathogen detection.

8. Perspective and challenge

The developed approach based on PCR is applicable for 
identifying and confirming Y. pestis (133,134). This system 
also allows for effective differentiation of Yersinia strains 
of various subspecies. In addition, the PCR assay is able to 
determine bacterial susceptibility to antibiotics and prominent 
virulence markers of Y. pestis. Compared with traditional 
techniques, PCR‑based is simple, rapid, highly sensitive and 
specific and it has proven useful in application as a diagnostic 
strategy for routine plague surveillance of epidemics. However, 
the PCR inhibitors may be present in samples. The suboptimal 
field conditions, sample recovery efficiency and DNA extrac‑
tion quality directly influence the sensitivity and specificity 
of most PCR‑based methods. Therefore, future studies should 
focus on the standardization of sample processing.
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