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Abstract. Chronic kidney disease (CKD) is a worldwide 
public health problem. The constantly increasing prevalence 
of CKD requires further research into new additional strate‑
gies in its management. The preferred treatment of end‑stage 
renal disease (ESRD) is renal transplantation. Kidney 
transplant patients benefit from substantial improvement in 
their quality and duration of life. For these to be feasible, the 
long‑term graft and host survival optimization of the renal 
transplant recipient must be ensured and chronic allograft 
dysfunction (CAN) must be prevented. Once an equilibrium 
in the allograft tolerance is established, renal transplanted 
patients would benefit from the withdrawal or the reduction 
of immunosuppression therapy. Identification of early predic‑
tive biomarkers of CAN is essential. Recent publications 
have revealed that in long‑term immune tolerance and graft 
survival several populations of immune cells are involved. 
Starting from the identification of perforin (PRF) in patho‑
logical renal glomeruli and following with the analysis of 
the molecular expression of PRF in renal biopsy samples, it 
appears that serum PRF is one of the potential biomarkers of 
graft dysfunction. Over the years, this protein has captured 
the attention of the medical world, conducting research that 
could potentially lead to the discovery of an innovative 
biomarker. Discovering and understanding the involvement 
of PRF in developing CAN may open up new therapeutic 
pathways that would ensure the survival of the kidney trans‑
plant. In this review the authors examined the structure, the 
role and the present understanding of the mechanisms by 
which serum PRF may be involved in chronic graft dysfunc‑
tion as well as its role as an immune tolerance biomarker for 
chronic dysfunction of the renal graft.

Contents

1. Kidney transplantation in chronic kidney disease
2. Brief immunology of renal transplantation
3. PRF‑granzyme pathway
4. Chronic allograft dysfunction
5. Predictive markers of chronic allograft dysfunction
6. PRF ‘roots’
7. PRF: Structure and genetics
8. Perforinopathies
9. Conclusions

1. Kidney transplantation in chronic kidney disease

Chronic kidney disease (CKD) is a worldwide public health 
problem. The constantly increasing prevalence of CKD 
requires more research into new additional strategies in its 
management. Impaired kidney function is accompanied by 
numerous complications related to water and electrolyte 
balance disorders and accumulation of uremic toxins which are 
physiologically excreted in the urine, as well as increased risk 
of cardiovascular events, thus affecting mortality, morbidity 
and the quality of life of patients with CKD (1).

The prognosis of CKD patients is dependent on the 
progression of renal dysfunction to its total function loss 
and also, on the specific complications of their chronic 
disease (2‑4).

The optimal treatment for renal function impairment is 
kidney transplantation, which ensures a higher quality of life 
and longer survival than maintenance with dialysis, in patients 
with end‑stage renal disease (ESRD). Over the last few years 
the prognosis of kidney transplanted patients has significantly 
improved reaching a graft survival rate of over 92% per 
year (5‑7). Currently, the attention is directed on prolonging 
long‑term graft survival as much as possible. 

A narrative review was performed on articles published 
between 1980 and 2020, which were identified on PubMed, via 
specific mesh terms: ‘Perforin’, ‘kidney’, ‘granzyme’, ‘trans‑
plantation’, ‘graft dysfunction’. Furthermore, citation tracking 
of the studies retrieved was used to identify additional relevant 
articles. Only the articles written in English were evaluated. A 
total of 93 references were introduced.
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2. Brief immunology of renal transplantation

Transplant rejection represents the rejection of a trans‑
plant allograft or transplanted organ. This occurs because 
the graft is accompanied by a series of antigens that the 
immune system of the recipient perceives as non‑self, and 
consequently an immune response (host vs. graft reaction) 
is produced (8).

The mammalian immune system is an extremely complex 
system developed over millions of years as evolved immune 
response of vertebrates against microbial invasion and ensures 
the species continuity. The system could be divided into 
adaptive and innate immunity. Innate immunity represents 
a non‑specific immune system, and the first line of defense 
that involves recruitment and participation of macrophages, 
neutrophils, natural killer (NK) cells, cytokines, certain cell 
receptors and complement components and precedes adaptive 
immunity functioning as secondary signals for lymphocyte 
activation (8).

While the inherited immunity does not involve the recog‑
nition of specific antigens, adaptive immunity involves the 
recognition of a wide range of molecules, the identification of 
different similar structures (high specificity to the pathogen 
agent) and the immune memory (recognition of the aggressor 
at the first contact and specific reaction by an accelerated and 
protective response) (9). The adaptive immune response is 
considered the most important hurdle in organ transplantation.

The main target of the immune response to the graft in 
organ transplantation are the major histocompatibility complex 
molecules (MHC) expressed on the surface of the donor cells; 
this feature is a form of adaptive immunity (9). The MHC is a 
complex of polymorphic genes encoded in a locus situated on 
the short arm of human chromosome 6. MHC protein products 
are expressed on the surfaces of various cells. In humans these 
are called human leukocyte antigens (HLA) and are analo‑
gous to the H‑2 (in mice) and RT1 (in rats) systems (9). Graft 
antigens that serve as the main target of rejection are proteins 
encoded by the MHC genes.

Graft rejection is the result of immune mechanism acti‑
vation due to antigenic differences between MHC I and II 
molecules of the recipient and donor, the latter acting as major 
antigens in the body of the recipient. These molecules present 
a high polymorphism, in particular those of HLA class I 
A and B with at least 200 and 250 alleles, respectively, which 
have been described in the human population while HLA‑C 
and HLA‑DP have a limited polymorphism and thus low 
significance (9,10).

In order to have moderate affinity for their own MHC 
molecules, specifically selected T cells during thymus devel‑
opment recognize portions of protein antigens that have been 
fragmented into peptides bound to MHC class I and II mole‑
cules. T‑cell recognition of the antigen is the main event that 
initiates the effect of immune response mechanisms followed 
by two discrete signals. The first phase (signal 1) is the recog‑
nition of the complex formed by the MHC class II molecule 
and the antigenic peptide by the surface lymphocyte receptor 
(TCR‑CD3) and Th (T helper) fixing to the antigen‑presenting 
cell (APC). The T‑cell receptor is a heterodimer consisting of 
an α polypeptide chain and a β polypeptide chain, which asso‑
ciates on the surface of the T cell, with the CD3 polypeptide 

complex. Signal 2 is received by the CD28 accessory molecules 
that bind to the B7‑1 (CD80) or B7‑2 (CD86) molecule on the 
APC surface (11,12).

Once activated T cells undergo proliferation under the 
influence of mitogenic growth and differentiation factors 
such as interleukin (IL)‑2 and IL‑5, which activate the target 
of rapamycin (TOR) paths; this process requires nucleotide 
synthesis. Cell proliferation and differentiation induce cyto‑
toxicity mediated by the lymphocytes CD8+ T, activating 
B lymphocytes (either directly or depending on Th lympho‑
cytes) to produce antibodies and determine macrophages to 
induce delayed hypersensitivity responses (11,13) (Fig. 1).

Detailed studies of these steps have led to the development 
of targeted immunosuppressive therapies such as IL‑2 receptor 
blockers (basiliximab), mTOR inhibitors (sirolimus and evero‑
limus), nucleotide synthesis inhibitors (mycophenolate) or 
antimetabolites (azathioprine) (14).

In 2014, a new series of small molecules with inhibiting 
PRF function was tested on male CD1 mice after intrave‑
nous administration; the compounds exhibited microsomal 
stability, which may lead to the development of a new 
immunosuppressive therapy (15). In contrast, the induction 
of PRF mRNA was partially blocked by the immunosup‑
pressive drug cyclosporine A, and therefore this therapy has 
been recently avoided due to toxicity in favor of tacrolimus 
administration (16).

3. PRF-granzyme pathway

The main mechanism used by lymphocytes for eliminating 
infected or malignant cells in the host involves granule 
exocytosis which contains PRF and a family of serine ester‑
ases known under the name of granzymes. The fundamental 
basis of the apoptotic pathway PRF‑granzyme, is the synergy 
between its components PRF and granzymes. These molecules 
have distinct roles. PRF pores serve as entrance gates for the 
protease in the targeted cell cytosol allowing granzymes to 
initiate various apoptotic pathways. Although granzymes 
can internalize independent of PRF, when seized into the 
endocytic vesicle lumen, they do not have access to cytosolic 
substrates and remain harmless. Thus, the expression of PRF 
is required for granule‑mediated cytotoxicity, ensuring the 
entry of granzymes into the targeted cells, the latter to induce 
apoptosis (17‑20) [Fig. 2, PRF‑granzyme B pathway adapted 
from (12); T‑cell immune response through the release of 
PRF and granzyme B, which attack target cells, inducing 
apoptosis.].

PRF mRNA was identified in CD8+ cells infiltrating the 
glomerulus of crescentic glomerulonephritis rats. In human 
crescentic glomerulonephritis, both CD4‑ and CD8‑positive 
T lymphocytes are observed in glomeruli (21).

4. Chronic allograft dysfunction

Despite major advances in immunosuppression and transplant 
management, acute and chronic rejection are the main causes 
of kidney graft loss. It was revealed that acute rejection is the 
strongest predictor of subsequent chronic rejection (22).

CAN occurs due to repeated episodes of acute rejec‑
tion, HLA system lack of compatibility, improper 
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immunosuppression, ischemic injury (vascular occlusion 
caused by arterial immune‑mediated thickening and dysfunc‑
tion) with secondary fibrosis and late recovery of renal 
function (23).

Early allograft lesions by the PRF‑granzyme pathway 
could initiate the development of CAN in renal allografts (24). 
CD4+ Th lymphocytes reactive to graft alloantigens produce 
cytokines which induce endothelial and smooth muscle cell 
proliferation and cause occlusion of the vascular lumen. It 
appears that cytotoxic T lymphocytes infiltrated in the renal 
graft induce allogeneic tubular epithelial cell death, via the 
native PRF pathway (25,26).

The diagnosis of chronic rejection is not always made in a 
timely manner, required for the complete recuperation of renal 
function. This problem occurs since kidney damage is detected 
mainly as an increase in serum creatinine and the appearance 
of proteinuria. However, an increase in serum creatinine is a 
late sign of kidney damage, as the compensatory mechanisms 
in the kidneys can maintain the glomerular filtration rate 
(GFR) despite progressive structural damage. Although the 
long‑term survival of allografts is improving, late graft loss 
from CAN remains a clinically significant problem and is the 
second most common cause of late renal allograft loss, after 
death (27). Thus, the identification of early markers associated 
with, or predicting CAN would be clinically useful.

Recurrent or chronic inflammatory processes are common 
in people with CKD and particularly in those with ESRD. This 
is due to numerous underlying factors including the uremic 
environment, high levels of circulating proinflammatory cyto‑
kines, oxidative stress, carbonyl stress, waste of protein energy 
(PEW), and increased incidence of infections (especially 
dialysis access) to mention a few (28).

The acute‑phase response is a major pathophysiological 
phenomenon that accompanies inflammation. With this reac‑
tion, normal homeostatic mechanisms are replaced by new 
established factors that are likely to contribute to defensive or 
adaptive capabilities (29,30).

In patients returning to a dialysis program after acute or 
chronic rejection of the renal transplant but without kidney 
transplant graftectomy performed, a chronic inflammatory 
state was observed, that was reduced by the removal of the 
non‑functional graft (explant) (31).

5. Predictive markers of chronic allograft dysfunction

To date, few studies have been performed on PRF in the 
renal area. In an experimental study, using Wistar‑Kyoto 
(WKY) rats with antiglomerular basement membrane 
(GBM) crescentic glomerulonephritis (GN), PRF protein and 
mRNA expression of PRF were demonstrated in glomeruli 
by immunohistochemistry and in situ hybridization. WKY 
rats treated with anti‑PRF antibodies revealed significantly 
reduced amounts of proteinuria and frequency of crescentic 
glomeruli (21).

There is strong scientific evidence that immunological 
non‑invasive monitoring could be useful in the first 6 months 
after kidney transplantation in particular regarding predic‑
tion of acute rejection episodes (32). It is less clear whether 
CAN is also associated with consistent changes of peripheral 
blood or the urinary cells. Several histological studies have 
demonstrated enhanced expression of granzymes and PRF 
in numerous types of transplanted grafts and their correla‑
tion with acute rejection episodes (33‑40). It appears that the 
urinary mRNA levels of three markers including PRF, gran‑
zyme B and FAS ligand appear to be correlated with acute 
rejection and the increase of serum creatinine (41,42). The 
molecular analysis of the expression of these three molecules 
in renal biopsy samples revealed that only the expression of 
PRF and FAS ligand were correlated with the acute rejec‑
tion while the expression of PRF and granzyme B could 
intensify at a longer time after transplantation, possibly asso‑
ciated with chronic dysfunction (43). In 1997, a concurrent 
RT‑qPCR assessment of PRF, granzyme B and Fas ligand 
revealed a correlation with acute rejection even in cases of 
mild infiltration, with 100% sensitivity and specificity. The 
combined analysis of the expression of Fas ligand, PRF and 
granzyme B genes by quantitative RT‑PCR provided a reli‑
able tool for the diagnosis and management of acute renal 
rejection and antirejection therapy leading to a rapid decrease 
in the expression of these genes (44). Li et al confirmed that 
the mRNA levels of PRF and granzyme B were increased 
in urine samples from patients with acute rejection (42). To 
date, it has been demonstrated that urinary mRNA levels of 
AGT, EGFR and TGF‑β1 may be reliable prediction markers 
of CAN (32,45‑47).

The genetic expression of serum PRF has been revealed to 
be more correlated with acute rejection in renal transplanted 
patients in comparison with granzyme B and Fas ligand thus 
supporting its use as a marker of acute rejection (48). The 
PRF‑granzyme and the Fas ligand are two major pathways 
by which cytotoxic T lymphocytes induce apoptosis in target 
cells (49). The expression of the message into the graft for these 

Figure 1. Graft rejection‑intracellular signaling adapted by Ref (13). Cell 
proliferation under mitogenic growth and differentiation factors of which the 
best characterized are IL‑2 and IL‑5; this leads to cytotoxicity mediated by 
CD4+ and CD8+ T cells which activates B lymphocytes to produce antibodies 
and determine macrophages to induce delayed hypersensitivity responses.
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immune‑activating genes has been revealed to be markedly 
correlated with graft rejection. In a retrospective pilot study, 
140 fine‑needle aspiration biopsy samples from 50 human 
renal allografts were labeled using alkaline phosphatase/alka‑
line anti‑phosphatase immunocytochemistry incorporating 
monoclonal antibodies to PRF, granzyme B, and Fas ligand. 
Positive labeling levels for these markers were compared 
with the initial clinical diagnosis of rejection. Only when all 
three antibodies yielded positive labeling, was the associa‑
tion with the clinical rejection status superior to conventional 
morphological cytology (50).

A recent study on humanized mice, revealed that gran‑
zyme B expression was significantly increased in CD8+ T cells 
in patients with graft rejection, while surviving graft patients 
expressed less granzyme B, as they had an increased 
level of HLA‑G dimer which inhibited cytotoxicity of 
CD8+ T cells (51). The synergy between PRF and granzymes 
is already established. Therefore, a high level of granzymes 
implies a high level of PRF.

Recently, new categories of drugs, such as inhibitors of 
PRF, have aroused the interest of researchers. Tampio et al 
demonstrated that using L‑type amino acid transporter 1 
(LAT1)‑utilizing prodrugs of PRF inhibitors for improved 
administration of brain drug delivery, led to improved phar‑
macological effects, decreased production of cellular apoptosis 
mediators, decreased overall oxidative stress and inflammation 
in the brain, and from the periphery, increasing cell survival (52).

6. PRF ‘roots’

In the evolution of PRF there were complex models of events 
of birth and death including duplication/pseudogenization to 

mammals, multiple amplifications and losses in reptiles and 
fish as well and a case of partial duplication with a new begin‑
ning codon to fish. Approximately 500 million years ago, the 
primordial PRF gene evolved, around the same time as T‑cell 
receptor antigen recognition based on the major histocom‑
patibility complex. As it is absent from primitive chordates 
and invertebrates, cytotoxic cells from these lineages must 
have a different cytotoxic effector molecule or mechanism. 
Orthologs and homologues of human PRF have been identi‑
fied in almost all species. Research has shown that in species 
prior to Gnathostomata (Euteleostomi) the PRF gene did not 
exist which suggests that cytotoxic cells of prior species have 
another mechanism or different means for killing targeted 
cells. In addition, there is evidence that PRF originated 
from the duplication of the ancient gene MPEG1 and shares 
a common ancestor with functionally related complement 
proteins (53,54).

7. PRF: Structure and genetics

PRF is a 67‑kDa pore‑forming protein, stored and released 
from the secretory granules (SG) of the cytotoxic lympho‑
cytes which leads to osmotic lysis of the membrane of target 
cells and subsequently allows proapoptotic granzymes 
(serine proteases which split the peptide connections of 
proteins) with broad specificity to enter the targeted cells and 
activate the cell death program. PRF expression is increased 
in the activated CD8+ cells, αγ T cells, in subpopulations of 
activated CD4+ T cells, and NK cells (but with a high and 
stable incorporation in NK cells) (17,19,55‑58). In addition, 
PRF expression may be stimulated in some activated CD4+ 
cells (59,60).

Figure 2. PRF‑granzyme B pathway adapted from Ref (12). T‑cell immune response through the release of PRF and granzyme B, which attack target cells, 
inducing apoptosis. PRF, perforin.
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In mammals, PRF is encoded by the PRF1 gene expressed 
in cytotoxic lymphocytes and regulatory T cells. PRF1 
transcription is the main mechanism that determines PRF 
expression in cytotoxic T lymphocytes and NK cells. While 
PRF is uniformly expressed by mature NK cells as a result 
of spontaneous stimulation of constitutive gene transcrip‑
tion, its expression in peripheral T cells requires gene 
activation (17,58,61‑64).

Locus control position is essential for PRF1‑specific 
activity (NK and cytotoxic cell activation). A heterochro‑
matin‑dependent regulation could allow certain exogenous 
stimuli and certain endogenous controlling of the transcrip‑
tion factors to induce PRF1 transcription in other types 
of cells (59). In 2006, a study conducted by Pipkin and 
Lichtenheld identified the locus control region for perforin 
of 150 Kb of cis action sequences which leads to the physi‑
ological PRF1 transcription, comprising 16 hypersensitive 
DNase I (DHS) sites, four of them necessary for PRF 
expression (17,65). PRF was identified for the first time 
in 1983 and it was cloned from an expression library by a 
cross reaction of the C9 antibody (59,66‑71). Fine‑resolution 
comparisons by direct sequence comparisons have revealed 
a similarity between the two proteins (C9 and PRF), that 
contain in the middle part of their sequences a short region 
called membrane‑attack complex/PRF (MACPF) (59,72,73). 
Both proteins polymerize in tubular complexes able to deter‑
mine lysis of the membrane insertion acting as large and 
voltage‑independent transmembrane channels. Initial studies 
have revealed that while C9 polymerizes in physiological 
conditions requiring the assembly of complex C5b‑8 into the 
receptor, the functional activity of PRF in the phospholipid 
membrane is calcium‑dependent (67,74,75). After exocytosis, 
granules from the killer cells releasing PRF and granzymes 
are exposed to immune synapses rich in calcium and neutral 
pH (59,64). The PRF monomers bind to calcium by its 
C2 domain acquiring the capacity of bounding lipids to the 
targeted cell membrane and then to merge in transmembrane 
pores of up to 100 Å, which allows granzymes access to the 
protein substrates involved in apoptosis (59,76‑78).

8. Perforinopathies

It is recognized that the residual function of the 
PRF‑dependent cytotoxic cells causes transplant rejection 
of allogenic stem cells, allografts and solid organs. At the 
opposite pole defects of the cytotoxic path and PRF deficiency 
(failure to deliver PRF) lead to disorders called perforinopa‑
thies including familial haemophagocytic lymphohistiocytosis 
(FHL), viral infections and the predisposition to develop 
haemato‑oncological diseases (12,79‑83). Voskoboinik et al 
have proposed the term of perforinopathies in order to define 
a spectrum of immune‑mediated disease responses associated 
with monoallelic mutations in genes related to FHL (84).

The complete absence of the PRF function results into 
FHL, an immunoregulatory disease that appears in childhood 
and is characterized by uncontrolled activation of CPA and 
CD8+ T lymphocytes with secondary accumulation of T cells. 
Recently it was discovered that the partial loss of PRF function 
is strongly associated with FHL and a series of hematological 
disorders that appear later in childhood or in adolescence. In 

addition, PRF functionality is essential for cytotoxic lympho‑
cytes in humans since harmful mutations in PRF1 leads to 
FHL2 representing 30‑60% of FHL cases (59,79,85).

PRF and CD107a tests are more sensitive and have a similar 
specificity compared with NK cytotoxicity test and would be 
able to enhance FHL screening (86).

Relative recent studies have revealed that UVB and 
UVA radiations induce accumulation of granzyme B in 
human keratinocytes. In addition, granzyme B secondary to 
UVB radiation mediates cytotoxicity of keratinocytes, while in 
UVA irradiation it increases the ability of the keratinocyte to 
degrade matrix extracellular components; these observations 
could be the basis of photoaging and photocarcinogenicity 
domain (87,88).

While cancer therapy has begun to use ‘suicide genes’ to 
induce cell apoptosis, the role of vaccination with apoptotic 
cells, either immune stimulatory or immune suppressive is 
still debated. Recently a new technology called cytolytic DNA 
technology has been developed, using a vaccine which encodes 
truncated PRF incorporated in a bicistronic DNA vector that 
activates dendritic cells thus stimulating the CD8+ T‑cell 
response against HIV and HCV reducing the viral loads 
similar to traditional vaccines (89‑92).

PRF has gained the attention of cardiology researchers, 
proving to date, that patients with left ventricular dysfunction 
have PRF‑positive infiltration of heart cells and that PRF could 
be an adverse predictor of long‑term mortality in patients with 
inflammatory cardiomyopathy (93).

9. Conclusions

PRF is a pore‑forming protein vital for cytotoxic effector 
function and has an indispensable role in granzyme‑mediated 
apoptosis. It is responsible for endothelial damage and plays a 
role in the pathogenesis of numerous inflammatory diseases 
and targets cell apoptosis.

Over the last few years, the study of serum PRF and its 
role in inflammatory and neoplastic diseases has captured 
the attention of the medical world. To date, few studies have 
reported the correlation between serum or urinary PRF, gran‑
zyme and ligand FAS with acute transplant rejection. Further 
studies are required to clarify the role of PRF as a potential 
early biomarker with a predictive role in chronic allograft 
rejection.

Advances in immunosuppressive therapy, in order to 
maintain kidney transplantation and avoid rejection, have led 
to decreased rejection rates. However, these agents are not 
deprived of side effects.

The residual function of PRF‑dependent cytotoxic cells 
causes transplant rejection of allogenic stem cells, the allograft 
and solid organs. A deep understanding of the role of PRF 
in inducing allograft rejection is necessary for the develop‑
ment of new targeted post‑transplant therapies. Highly specific 
inhibitors of PRF function, are thus of interest as selective 
immunosuppressive drugs.

The practical use of PRF expression has already been 
demonstrated in various medical fields. Demonstrating the 
utility of PRF as a predictive marker of CAN, such as with PRF 
inhibitors, would have treatment implications that could mark 
the beginning of a new era in immunosuppressive therapy.
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