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Abstract. Melanoma, which evolves from melanocytes, is 
the most malignant skin cancer and is highly fatal, although 
it only accounts for 4% of all skin cancers. Numerous studies 
have demonstrated that melanoma has a large tumor muta‑
tional burden, which means that melanoma has great potential 
to achieve immune evasion. Tumor‑associated macrophages 
(TAMs) are an important component of both the immune 
system and tumor microenvironment. Several studies have 
demonstrated their double‑edged sword effects on melanoma. 
The present review focuses on the role of TAMs in melanoma 
development, including regulation of proliferation, invasion, 
metastasis, angiogenesis and chemical resistance of mela‑
noma. Furthermore, the existing mechanisms of action of the 
TAM‑targeting treatments for melanoma are reviewed. More 
broadly, the weak points of existing research and the direction 
of future research are finally identified and described.
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1. Introduction

Melanoma evolves from melanocytes, which are mainly 
melanin‑producing cells, is the most malignant skin cancer 
and is highly fatal, although it only accounts for 4% of all skin 
cancers (1). Globally, it affected 324,600 individuals in 2020, 
resulting in 57,000 deaths (2). A report from 2017 estimated 
that melanoma would result in 20,000 new cases annually 
in mainland China (3). According to annual reports on the 
status of cancer in the United States published in 2020, the 
incidence of melanoma is increasing continuously regardless 
of gender (4,5).

Although current therapies, including immune checkpoint 
treatment, targeted therapies, radiotherapy and chemotherapy, 
have resulted in a sustained reduction in the death rates of 
melanoma (6.1% annually) (4), treatments for melanoma 
still have room for advancement due to drug resistance (6). 
Numerous studies have demonstrated that melanoma has 
a large tumor mutational burden, meaning that melanoma 
has great potential to achieve immune evasion (7‑9). Thus, 
the understanding of the detailed mechanism underlying 
immunosuppression in melanoma has become increasingly 
important. It is now widely accepted that the tumor micro‑
environment (TME), the complex ecosystem in which tumor 
cells reside and interact with various types of cells (10), 
has an important impact on tumor progression and drug 
resistance (11).

Macrophages are an important component of both the 
immune system and TME (12), and their infiltration into 
the tumor is associated with poor prognoses in most solid 
tumors (13‑18). A number of studies have reported their 
double‑edged sword effects on melanoma (19‑21). As innate 
immune cells, macrophages can kill tumor cells via different 
extracellular mechanisms through phagocytosis, antigen 
presentation and T cell regulation, resulting in early tumor cell 
elimination (22,23). Along with tumor progression, the M2‑type 
polarization of macrophages is induced by various signaling 
factors from the tumor and other stromal cells to promote 
tumor progression and threaten the life of the patient (22,23). 
The present review discusses the tumor‑suppressive roles, 
tumor‑promoting roles and potential clinical applications of 
macrophages in melanoma.
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2. Overview of macrophages in the TME

Inflammation is an outstanding hallmark of cancer and is 
important for promoting tumor progression (10). For a number 
of cancer types, inflammation is an enabling characteristic that 
precedes malignant transformation with a subsequent shift to 
immunosuppressive TMEs (24).

Macrophages have different origins. The monocyte‑macro‑
phage lineage derives from precursor cells in the bone marrow 
and is driven by granulocyte‑macrophage colony‑stimulating 
factor (GM‑CSF) (25). Tissue‑resident macrophages with the 
ability to self‑maintain originate from the yolk sac or fetal liver 
precursors during fetal development and show specialized 
phenotypes depending on the specific organ (26,27). TAMs 
are considered to be derived from both circulating monocytes 
and tissue‑resident populations (28,29).

In regard to the phenotypic trait, macrophages can be 
classified into two categories: Classically activated (M1) 
and alternatively activated (M2) macrophages (Fig. 1). M1 
macrophages can activate the adaptive immune system and 
are characterized by high expression levels of IL‑12 and 
major histocompatibility complex class II, and low expression 
levels of IL‑10 and arginase (30). M2 macrophages highly 
express the following: Arginase 1, a member of the arginase 
family; CD206, an important pattern recognition receptor 
and endocytic receptor in the innate immune system; IL‑10, a 
well‑recognized inflammatory and immunosuppressive factor; 
C‑C motif chemokine ligand (CCL) 17; and CCL22, which can 
attract immune cells to specific locations (31). In the TME, M1 
macrophages have antitumor abilities due to pro‑inflammatory 
responses and the ability to produce pro‑inflammatory factors 
such as IL‑6, IL‑12, C‑X‑C motif chemokine ligand 10 and 
tumor necrosis factor (TNF), whereas M2 macrophages have 
pro‑tumor abilities (32,33). Among these, M2 macrophages 
are similar to TAMs in their phenotypic trait. Studies have 
demonstrated that the presence of TAMs is associated with 
poor survival in various tumor types (13,14,34). However, a 
number of studies have reported that various subtypes of 
macrophages exist, some of which spread along the spectrum 
of macrophage phenotypes and have distinct functions (35,36). 
This reflects the complexity of the TME. During the process 
of tumor development and aggravation, macrophages, as 
compartments of intratumor heterogeneity, also evolve under 
selective pressure, such as low pH, hypoxia, oxidative stress 
and nutritional deprivation (37).

Macrophages participate in tumor progression by inter‑
acting with both tumor and other stromal cells. Tumor cells 
and other malignant structures reverse the function of macro‑
phages. It will become an adjunct to the tumor. Macrophages 
can promote tumor proliferation, angiogenesis, immune 
evasion, invasion and metastasis (38). Thus, an increasing 
number of studies have been performed to improve the 
treatment of patients with tumors by restoring tumor‑killing 
abilities, reshaping the plasticity of TAMs from M2 into M1, 
or depleting M2 macrophages (39,40).

3. Double‑edged sword effect of TAMs in melanoma

As previously mentioned, TAMs can be classified into two 
categories, M1 and M2, which have the opposite effect on 

tumor development. In this section, the tumor‑promoting 
and tumor‑suppressing effects of M2 and M1, respectively, 
are reviewed with a focus on their role in regulating the 
proliferation, invasion, metastasis, angiogenesis and chemical 
resistance of melanoma (Table I).

Regulating tumor proliferation, invasion and metastasis. 
M1 polarization of macrophages inhibits the proliferation 
of melanoma (41). By contrast, an increased number of M2 
macrophages promotes melanoma growth (42). Furthermore, a 
study found that macrophages deficient in integrin β3 induced 
the polarization of M2 macrophages to promote melanoma 
growth (43). The results of the survival analysis of patients 
with melanoma treated with isolated hepatic perfusion also 
indicated that M1 macrophages, rather than M2 macrophages, 
were associated with longer overall survival, which is due to 
the inhibition of melanoma growth by M1 macrophages (44). 
In terms of invasion and migration of melanoma, Kou et al (45) 
reported that increased expression of Connexin 43, a vital gap 
junction protein in the TME, induced M1 polarization, thereby 
inhibiting the invasion and migration of melanoma cells in vitro. 
However, another study (46) demonstrated that M2 macro‑
phages lacking tripartite motif 59 (TRIM59), which belongs to 
the TRIM family of proteins (47), promoted melanoma migra‑
tion and invasion in a Transwell assay. Further research has 
demonstrated that M2 macrophages lacking TRIM59 promote 
the expression of MMP‑9 and mucosal vascular addressin cell 
adhesion molecule 1, which are related to the invasion and 
migration of melanoma cells (46). In vivo models have been 
widely used to investigate the metastatic ability of melanoma. 
Park et al (48) established a xenogeneic model by planting 
melanoma cells overexpressing IL‑9 in mice and found that 
the level of lung metastasis of melanoma was lower than that 
of the wild‑type melanoma cells. M1 macrophages in the lungs 
and spleen were increased. Through in vitro experiments, this 
study also demonstrated that the IL‑9‑induced cytotoxicity 
in M1 macrophages was enhanced. However, to the best of 
our knowledge, the inhibitory effect of M1 macrophages on 
melanoma has not been directly confirmed in vivo, which is a 
limitation of current research. Eliminating M1 macrophages 
in mice or using immunodeficient mice may be helpful to 
further verify these results.

Furthermore, crosstalk between TAMs and other immune 
cells is also an important mechanism that affects tumor prolif‑
eration, invasion and metastasis (49). Nuclear factor of activated 
T cells (NFAT1) is a transcription factor that can bind to IL‑2 
and regulate its expression, thereby promoting T cell activa‑
tion (50). Notably, NFAT1 has been demonstrated to increase 
the infiltration of M2‑TAMs, thereby serving a critical role in 
enhancing TAM‑mediated promotion of growth and metas‑
tasis in malignant melanoma (51). However, the activation of 
natural killer T cells promotes the polarization of M1‑TAMs, 
inhibiting the growth of melanoma (52). Notably, the informa‑
tion exchange between melanoma cells and macrophages also 
serves an important role in the progression of melanoma (53). 
Gerloff et al (54) reported that melanoma delivered microRNA 
(miR)‑125b‑5p into macrophages through exosomes in vitro. 
Subsequently, miR‑125b‑5p is combined with lysosomal acid 
lipase A in macrophages, which in turn contributes to M2 
macrophage polarization (54). Since exosomes can carry the 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  24:  640,  2022 3

genetic molecules of the source cell, they may also serve an 
important role in cancer suppression. However, this possibility 
requires further exploration.

Regulating angiogenesis in melanoma. The present review 
further explores the role of TAMs in angiogenesis in mela‑
noma. Increased M2 polarization of TAMs has been found 
to stimulate tumor angiogenesis, leading to tumor progres‑
sion (55). By contrast, M1‑like TAMs trigger immune 
responses and normalize irregular tumor vascular networks, 
which sensitize cancer cells to chemotherapy and radiotherapy 
and further suppress tumor growth (56). This specific mecha‑
nism can be attributed to the induction of GM‑CSF expression 
in endothelial cells by melanoma exosomes, thereby enhancing 
the activity of hypoxia‑inducible factor‑2α (HIF‑2α) in 
M2‑like TAMs. HIF‑2α further attenuates VEGF activity 

by inducing the production of soluble VEGFR‑1, promoting 
improved tissue and vasculature patency, which favors tumor 
growth (57). However, the results of the studies performed so 
far are controversial. Jarosz‑Biej et al (56) analyzed the tissues 
of 43 patients with melanoma and found that a higher blood 
vessel density was positively associated with an increased 
number of M1‑like TAMs.

Regulating the resistance to melanoma treatment. Recent 
research has also indicated that macrophages serve a role in 
melanoma resistance (58,59). Due to the different phenotypes 
of macrophages, these can promote resistance in melanoma 
on one hand and also improve the efficacy of drugs in the 
treatment of melanoma on the other hand (60). Durable 
responses in melanoma treatment have been achieved with 
immunotherapies that target immune checkpoint molecules, 

Figure 1. Classification of TAMs and their dual roles in tumors. TAM, tumor‑associated macrophage; LPS, lipopolysaccharide; CCL17, C‑C motif chemokine 
ligand 17.
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such as cytotoxic T‑lymphocyte antigen 4 (CTLA4) (61‑63) 
and programmed cell death protein 1 (PD‑1) (64,65). However, 
25% of patients with melanoma who have shown an objective 
response to PD‑1 blockers also develop resistance (66). This 
finding has prompted scientists to explore the mechanism of 
melanoma resistance to PD‑1 inhibitors (67,68). Melanoma 
resection specimens, which have been collected from patients 
with refractory metastatic melanoma who were treated with 
nivolumab, a PD‑1 inhibitor for immunotherapy, exhibit 
high expression levels of IL‑34. Importantly, high expression 
levels of IL‑34 have been found to be positively associated 
with increased frequencies of M2‑polarization TAMs (69). 
This finding suggests that M2‑TAMs may be related to 
melanoma resistance to PD‑1 inhibitors. In vitro experi‑
ments performed by Liu et al (58) further demonstrated that 
melanoma cell‑derived exosomes carrying relatively large 
amounts of programmed death‑ligand 1 (PD‑L1) could 

induce M2 macrophages polarization, eventually resulting in 
anti‑PD‑1/PD‑L1 therapy resistance. Furthermore, another 
study has demonstrated that blocking the binding of G 
protein‑coupled receptor 4 on TAM to its ligand R‑spondin 
1‑4 can reduce the polarization of M2 macrophages on the 
one hand, and promote the polarization of M1 macrophages 
on the other hand, further improving the efficacy of PD‑1 
immunotherapy in melanoma treatment (70). Notably, 
interactions among immune cells may also be involved 
in melanoma resistance. In particular, myeloid‑derived 
suppressor cells interact with autoimmune macrophages and 
inhibit the cell surface expression of CD40 and the produc‑
tion of IL‑27 (19). Furthermore, low CD40/IL‑27 signaling in 
tumors is associated with high TAM infiltration and immune 
checkpoint blockade (ICB) therapy resistance in both murine 
and human melanoma (19). In addition to ICB, macrophages 
have also been found to serve a role in the resistance of 

Table I. Double‑edged sword effect of TAMs in melanoma.

 TAM
First author/s, year Classification Mechanisms Effects (Refs.)

Johansson et al, 2020 M1 Increased expression of Cx43 to Inhibiting the invasion and migration (44)
  induce M1 polarization
Kou et al, 2017 M2 TRIM59 loss in M2 macrophages Promoting the invasion and migration (45)
Tian et al, 2019 M1 IL‑9‑induced cytotoxicity of M1 Decreasing metastatic ability (46)
  macrophages
Shoshan et al, 2016 M2 NFAT1 binds to IL‑2 and regulates Increasing metastatic ability (50)
  its expression, thereby promoting 
  T cell activation
Liu et al, 2018 M1 Activation of NKT cells promotes Inhibiting the growth of melanoma (51)
  the polarization of M1‑TAMs
Paul et al, 2019 M2 Exosomal miR‑125b‑5p combines Inhibiting the growth of melanoma (52)
  with LIPA in macrophages to induce 
  M2 polarization
Yamada et al, 2016 M1 Unknown Triggering the immune response (55)
   and normalizing irregular tumor 
   vascular network
Jarosz‑Biej et al,  M2 Melanoma exosomes enhance Promoting vasculature for better (56)
2018  HIF‑2α activity in M2‑like TAMs reconstruction
Ribas et al, 2016 M2 High IL‑34 expression Inducing melanoma resistance (66)
   to PD‑1 inhibitors
Han et al, 2018 M2 Exosomal PD‑L1 induces M2 Results in anti‑PD‑1/PD‑L1 therapy (69)
  macrophage polarization resistance
Liu et al, 2021 M1 Blocking the binding of Lgr4 and its Improving the efficacy of PD‑1 (58)
  ligands R‑spondin 1‑4 on TAMs to  immunotherapy
  induce the polarization of M1 
  macrophages
Heldin et al, 2012 M1 Blockade of TGF‑βR to Increasing the efficacy of (71)
  induce M1‑TAMs doxorubicin chemotherapy

Cx43, connexin 43; HIF‑2α, hypoxia‑inducible factor 2α; Lgr4, leucine rich repeat containing G protein‑coupled receptor 4; LIPA, lyso‑
somal acid lipase; miR, microRNA; NFAT1, nuclear factor of activated T cell transcription factor 1; NKT cells, natural killer T cells; PD‑1, 
programmed cell death protein 1; PD‑L1, programmed death‑ligand 1; TAM, tumor‑associated macrophage; TGF‑βR, TGF‑β receptor; 
TRIM59; tripartite motif‑containing 59.
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melanoma to chemotherapeutics. It has been reported that the 
combination of transforming growth factor‑β (TGF‑β) and 
TGF‑β receptor (TGF‑βR) contributes to the drug resistance 
and invasiveness of tumor cells and weakens the antitumor 
immune response (71). A study has demonstrated that the 
blockade of TGF‑βR can trigger reprogramming into an anti‑
tumor M1‑TAM phenotype, thereby increasing the efficacy 
of doxorubicin chemotherapy (72). Macrophages have also 
been demonstrated to secrete TNFα, inducing melanoma 
resistance to MAPK pathway inhibitors (59). The aforemen‑
tioned studies indicate that macrophages may be involved in 
melanoma resistance to multiple drugs. Further research is 
required to explore the mechanism by which macrophages 
cause drug resistance.

4. TAM‑targeting therapies in melanoma

Targeting TAMs can improve antitumor immune 
responses (73). Given these profound effects exerted by 
macrophages on the progression of melanoma and several 
other tumors, targeting macrophages is considered a prom‑
ising potential therapeutic strategy. Conventional therapies, 
including surgery, chemotherapy, radiotherapy and targeted 
therapy, in addition to reducing or reprogramming TAMs, are 
the two primary approaches to melanoma treatment (74). The 
current TAM‑related approaches for melanoma treatment are 
described subsequently (Fig. 2).

Reducing the number of TAMs in melanoma: Deleting or 
inhibiting recruitment. Direct deletion of TAMs is an attractive 
option based on the idea that removing a tumor would improve 
the prognosis of a patient with melanoma. For instance, 
colony‑stimulating factor 1 receptor (CSF1R) can control the 
differentiation, proliferation and survival of macrophages (75), 
and is present in the vast majority of macrophages. Targeting 

CSF1R seems to be an effective method for depleting 
TAMs in tumors, therefore, it has been studied in different 
tumors (74). In some tumor types, clinical trials have indicated 
that targeting CSF1R, or combining it with other therapies, 
can result in improved treatment outcomes (74). In addition, 
there is currently a clinical trial targeting the CSF1R axis 
in melanoma; this is, howwver, unable to provide definitive 
conclusions at this time (76).

Reducing the number of TAMs in the TME by inhibiting 
their recruitment is another approach to melanoma treat‑
ment (77). For example, the CCL2‑C‑C motif chemokine 
receptor 2 axis often recruits monocytes, causing TAM expan‑
sion, and inhibition of CCL2 can delay tumor progression in a 
number of experimental tumor models, including melanoma. 
However, the studies on this approach are insufficient, and 
more evidence is required.

Activating macrophages in melanoma. It has been confirmed 
that among the tumor cells, TAMs can have antitumor effects 
and suppress tumor growth by activating immune responses, 
although other TAMs promote tumors (78). This suggests that 
TAMs are flexible and reprogramming them to treat tumors 
would be a reasonable therapeutic approach. Several studies have 
focused on this topic (79,80). Evidence has demonstrated that 
melanoma cells can block macrophage activation by suppressing 
toll‑like receptor (TLR) signaling (81). A clinical study has been 
performed to test the efficiency and safety of TLR7 ligands (852A) 
in the treatment of melanoma (82). Combining an agonist of TLR 
(3M‑052 for TLR7/8), which polarizes macrophages towards a 
pro‑inflammatory phenotype, with a checkpoint blockade is 
more efficient than a checkpoint blockade alone in the treatment 
of B16‑F10 melanomas (82). Targeting the macrophage receptor 
with collagenous structure (MARCO) with anti‑MARCO 
antibodies could also improve the efficiency of immunotherapy 
(anti‑CTLA4) in a B16 melanoma mouse model (83).

Figure 2. Potential strategies for treating melanoma by targeting macrophages. (Left) Depleting TAMs by regulating CSF1R receptors, thereby interfering with 
tumor killing by CD8+ T cells. (Middle) Enhanced tumor killing by CD8+ T cells by reprogramming TAMs to promote M1‑type polarization of macrophages. 
(Right) Regulation of tumor killing by CD8+ T cells by targeting functional molecules of TAMs. This figure has been adapted from Fig. 1C of the article 
‘Targeting Tumor‑Associated Macrophages as a Potential Strategy to Enhance the Response to Immune Checkpoint Inhibitors’ (100). Front. Cell Dev. Biol., 
04 April 2018 | https://doi.org/10.3389/fcell.2018.00 © 2018 Cassetta and Kitamura. ARG1, arginase 1; CSF1R, colony‑stimulating factor 1 receptor; FcγR, 
Fc‑γ receptor; HDAC, histone deacetylase; MARCO, macrophage receptor with collagenous structure; PLX3397, pexidartinib; TAM, tumor‑associated 
macrophage.
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Among various stimulating factors, GM‑CSF is widely 
known to induce macrophages to become tumoricidal not only 
in melanoma but also in various other tumors, and has been 
approved for the treatment of unresectable stage IIIB‑IVM1a 
melanoma under certain circumstances (in those who received 
treatment with GM‑CSF as part of combination therapy or in an 
adjuvant setting) (84). For example, GM‑CSF combined with 
ipilimumab resulted in longer overall survival and lower toxicity, 
but no difference in progression‑free survival was observed (85). 
By using an indirect treatment comparison in melanoma, a 
systematic review has revealed that GM‑CSF shows improved 
therapeutic effects compared with glycoprotein peptide vaccines 
and is at least as good as dacarbazine (86). However, the tumori‑
cidal role of GM‑CSF may also not be related to macrophages, 
because it is also involved in the development and maturation 
of dendritic cells (DCs) and in the activation and prolifera‑
tion of T cells (87). The different dependencies of GM‑CSF 
on macrophages, DCs and T cells still remain unclear. IFN‑γ, 
monocyte chemoattractant protein‑1, IL‑1β and galectin‑9 have 
also been reported as macrophage activators that inhibit tumor 
growth (88). However, there is still a lack of clinical trials to 
validate treatment options.

Other approaches: Adoptive macrophage therapy. Adoptive 
cellular therapy and chimeric antigen receptor (CAR) T cells 
have achieved marked success in the treatment of lymphoma 
and leukemia, among others (89,90). Therefore, the adoptive 
transfer of engineered active macrophages may also be a 
feasible approach for melanoma treatment. These macro‑
phages may become cytotoxic to tumor cells after artificial 
administration of special drugs, cytokines and even gene 
editing (91,92). In 1974, Fidler (93) demonstrated that intra‑
venous injection of specifically activated macrophages by 
supernatants from lymphocytes can decrease lung metastases 
of melanoma. Another study also demonstrated the efficiency 
of the adoptive transfer of activated macrophages (using 
GM‑CSF or muramyl dipeptide) (94,95). However, this is far 
from any clinical application of adoptive macrophage therapy, 
as the mechanism of action of adoptive macrophage therapy is 
not fully understood. Notably, an increasing number of appli‑
cations of CAR‑macrophages in tumors have been reported. 
Zhang et al (96) developed induced pluripotent stem cells, 
which have been derived from engineered CAR‑macrophages 
that can be used to kill cancer cells. Additionally, 
Chen et al (97) have reported that CAR‑macrophages could 
be used as a novel immunotherapy candidate against solid 
tumors. Furthermore, Klichinsky et al (98) have demonstrated 
that CAR‑macrophages could induce a pro‑inflammatory 
TME and boost antitumor T cell activity in two solid tumor 
xenograft mouse models. However, the application of 
CAR‑macrophages in melanoma has not yet been reported and 
could be a potential future research direction.

5. Conclusion and future perspectives

TAMs can be classified as M1 or M2 macrophages. M1 macro‑
phages can activate the adaptive immune system, whereas M2 
macrophages have pro‑tumor abilities. The present review 
aims to explore the current knowledge on the role of TAMs in 
melanoma development through the regulation of proliferation, 

invasion, metastasis, angiogenesis and chemical resistance of 
melanoma. Macrophage function and polarization are regu‑
lated by multiple TME‑based factors. The TAM‑activating 
molecules listed in Table I are expected to be potential 
candidates for targeted intervention in melanoma progres‑
sion. Interestingly, the crosstalk between TAMs and other 
immune cells is also an important mechanism that affects 
tumor proliferation, invasion and metastasis. Furthermore, 
the participation of exosomes in the polarization process of 
TAMs is expected to become a future research topic. Notably, 
macrophages can adopt different activation states, and the 
repolarization of TAMs into antitumor M1 macrophages is a 
promising therapeutic option.

The present review describes three macrophage‑based 
melanoma treatment strategies: Depletion of TAMs in mela‑
noma, activation of macrophages in melanoma and adoptive 
macrophage therapy. However, the mechanism of action of 
macrophages in melanoma is not yet fully understood. Notably, 
an increasing number of applications of CAR‑macrophages 
have been reported in several tumors, including leukemia (96), 
ovarian cancer (98) and breast cancer (99), but not in mela‑
noma. Therefore, this could be a potential future research 
direction. Further exploration of the role and mechanism of 
TAMs in the occurrence and development of melanoma may 
provide a basis for improved treatment of melanoma.
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