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Abstract. Age‑related hearing loss (ARHL) is the most 
common cause of hearing loss in the elderly. Ubiquitin 
carboxyl‑terminal hydrolase L1 (UCHL1) is a deubiquiti‑
nating enzyme involved in several types of human disease. 
The present study aimed to investigate the effect of UCHL1 
on a hydrogen peroxide (H2O2)‑induced ARHL model in 
cochlear hair cells and uncover its underlying mechanism. 
Reverse transcription‑quantitative (RT‑q)PCR and western 
blot analysis were used to assess UCHL1 expression in 
HEI‑OC1 cells exposed to H2O2. Following UCHL1 overex‑
pression in H2O2‑induced HEI‑OC1 cells, cell activity was 
assessed by Cell Counting Kit‑8 assay. The content of oxida‑
tive stress‑associated markers including superoxide dismutase 
(SOD), glutathione peroxidase (GSH‑Px) and reactive oxygen 
species (ROS ) was measured using corresponding commer‑
cial kits. Cell apoptosis was evaluated by TUNEL assay 
and western blot analysis. Cell senescence was assessed by 
senescence‑associated β‑galactosidase staining and western 
blot analysis. RT‑qPCR and western blot analysis were applied 
to measure mRNA and protein expression levels, respectively, 
of specificity protein 1 (Sp1) in H2O2‑treated HEI‑OC1 cells. 
In addition, the association between UCHL1 and Sp1 was veri‑
fied by luciferase reporter and chromatin immunoprecipitation 
(ChIP) assay. The mRNA and protein expression levels of 
UCHL1 were also determined in Sp1‑overexpressing cells by 
RT‑qPCR and western blot analysis, respectively. Following 
Sp1 overexpression in UCHL1‑overexpressing H2O2‑treated 

HEI‑OC1 cells, cell activity, oxidative stress, apoptosis and 
senescence were assessed. Finally, the expression levels of 
NF‑κB signaling‑related proteins p‑NF‑κB p65 and NF‑κB 
p65 were detected using western blot analysis. The results 
showed that UCHL1 was downregulated in H2O2‑treated 

HEI‑OC1 cells. In addition, UCHL1 overexpression enhanced 
cell viability and promoted oxidative damage, apoptosis and 
senescence in H2O2‑induced HEI‑OC1 cells. Furthermore, Sp1 
was upregulated in H2O2‑treated HEI‑OC1 cells. Additionally, 
luciferase reporter and ChIP assays demonstrated that Sp1 
interacted with the UCHL1 promoter to inhibit UCHL1 tran‑
scription. Sp1 overexpression reversed the effect of UCHL1 
overexpression on cell viability, oxidative stress, apoptosis, 
senescence and activation of the NF‑κB signaling pathway 
in H2O2‑exposed HEI‑OC1 cells. Collectively, the results 
suggested that UCHL1 transcriptional suppression by Sp1 
protected cochlear hair cells from H2O2‑triggered senescence 
and oxidative damage.

Introduction

Age‑related hearing loss (ARHL) is characterized by bilat‑
erally symmetric auditory dysfunction caused by aging 
and degeneration of the auditory system, the severity of 
which is associated with increasing age  (1,2). ARHL is 
commonly characterized by decreased hearing ability for 
high frequencies that gradually include lower ones (2). It 
has been reported by the World Health Organization that 
>460 million individuals worldwide have hearing disorders, 
while by 2025 70‑80% of individuals aged >65 years may 
have ARHL (3,4). Accumulating evidence has suggested that 
the development of ARHL is associated with social isola‑
tion, depression, anxiety and cognitive impairment  (5,6). 
Therefore, early detection, intervention and delay of the 
occurrence and development of ARHL are of importance 
for the elderly population.

The ubiquitin‑proteasome system is a key pathway 
involved in the degradation of cell protein and maintenance 
of normal deubiquitinating enzyme (DUB)‑dependent 
cellular function (7‑9). Ubiquitin carboxyl‑terminal hydro‑
lase L1 (UCHL1, also called PARK5), belonging to the DUB 
family, is primarily involved in protein stability in cells via 
regulating the ubiquitin/proteasome pathway (10). Emerging 
evidence has indicated that UCHL1 is aberrantly expressed 
in age‑associated diseases, including Parkinson's and 
Alzheimer's disease (11,12). More importantly, a recent study 
demonstrated that UCHL1 is downregulated in the cochlea 
of ARHL mice (13). Nonetheless, the effects of UCHL1 on 
ARHL remain unclear.
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Specificity protein 1 (Sp1) is a member of the SP/Krüppel-
like factor (KLF) transcription factor family, which is widely 
expressed in human cells under normal conditions and is 
involved in numerous cell processes, including cell prolifera‑
tion, apoptosis, differentiation and transformation (14). Recent 
literature has elucidated that Sp1 mediates cochlear cell apop‑
tosis in hearing loss models (15,16). Furthermore, it has been 
also reported that NF‑κB participates in the pathogenesis of 
ARHL via interaction with immune‑associated genes (17).

The present study aimed to evaluate the role of UCHL1 in 
ARHL and reveal the association between UCHL1, Sp1 and 
NF‑κB signaling in ARHL.

Materials and methods

Bioinformatics analysis. The PROMO database (alggen.lsi.upc.
es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3/) was 
used to predict the association between UCHL1 promoter and Sp1.

Cell culture and treatment. Murine cochlea hair cells 
(HEI‑OC1; cat. no.  BFN60808695), obtained from 
BLUEFBIO, were cultured in DMEM supplemented with 10% 
FBS (both Shanghai ExCell Biology, Inc.) at 33˚C with 10% 
CO2.  To establish an in vitro ARHL model, HEI‑OC1 cells 
were exposed to 1 mM hydrogen peroxide (H2O2) for 2 h at 
33˚C, as previously described (18,19).

Reverse transcription‑quantitative (RT‑q)PCR. Total RNA 
was extracted from HEI‑OC1 cells (6‑well plates at a density 
of 6x104 cells per well) using TRIzol® reagent (Invitrogen) 
and cDNA was synthesized using the AffinityScript cDNA 
synthesis kit (Agilent Technologies) according to the manufac‑
turer's instructions. qPCR was performed on a LightCycler 480 
PCR instrument (Roche Diagnostics) using the AceQ® qPCR 
SYBR Green Master Mix (Vazyme Biotechnology Co. Ltd.). 
The following thermocycling conditions were used for qPCR: 
Pre‑denaturation at 95˚C for 1 min, followed by 40 cycles of 
denaturation at 95˚C for 15 sec, annealing at 60˚C for 40 sec and 
extension at 72˚C for 15 sec. The changes in gene expression 
levels were assessed using the 2‑ΔΔCq method (20). The following 
primer pairs were used for qPCR: UCHL1, forward, 5'‑AGG​
GAC​AGG​AAG​TTA​GCC​CTA‑3' and reverse, 5'‑AGC​TTC​TCC​
GTT​TCA​GAC​AGA‑3'; Sp1 forward, 5'‑CCT​GGC​ATC​CCA​
CCA​GAG​TA‑3' and reverse, 5'‑GTG​CAA​GGA​GCT​GAT​CCC​
AA‑3' and β‑actin forward, 5'‑GTT​GGA​GCA​AAC​ATC​CCC​
CA‑3' and reverse, 5'‑CGC​GAC​CAT​CCT​CCT​CTT​AG‑3'.

Western blot analysis. Total protein was extracted from 
HEI‑OC1 cells (1x106 cells) using RIPA lysis buffer (Shanghai 
Yisheng Biotechnology Co., Ltd.) and the protein concentra‑
tion was determined using a BCA protein assay kit (Beijing 
Solarbio Science & Technology Co., Ltd.). The proteins were 
transferred onto PVDF membranes (30 µg/lane) following 
separation by SDS‑PAGE on a 10% gel. Following blocking 
with 5% skimmed milk at room temperature for 1  h, 
membranes were first incubated with primary antibodies at 
4˚C overnight and then with a goat anti‑rabbit horseradish 
peroxidase‑conjugated secondary antibody (cat. no. ab205718; 
1:2,000; Abcam) for 1  h at room temperature. The ECL 
Western Blot kit (Jiangsu CoWin Biotech Co., Ltd.) was used 

to develop the immunoreactive signals and protein band inten‑
sity was calculated using Image‑Pro Plus software (version 
6.0; Media Cybernetics, Inc.). The primary antibodies were 
as follows: Anti‑UCHL1 (cat. no. ab108986; 1:1,000; Abcam), 
anti‑B cell lymphoma‑2 (Bcl‑2; cat. no. ab182858; 1:2,000; 
Abcam), anti‑Bcl‑2 associated  X (Bax; cat. no.  ab32503; 
1:1,000; Abcam), anti‑p16 (cat. no. ab51243; 1:1,000; Abcam), 
anti‑p21 (cat. no.  ab109199; 1:1,000; Abcam), anti‑Sp1 
(cat. no.  ab227383; 1:1,000; Abcam), anti‑phosphorylated 
(p)‑NF‑κB p65 (cat. no. ab76302; 1:1,000; Abcam), anti‑NF‑κB 
p65 (cat. no. ab32536; 1:1,000; Abcam) and anti‑β‑actin (cat. 
no. ab8227; 1:1,000; Abcam).

Plasmid t ransfect ion. The recombinant plasmids 
pcDNA3.1‑UCHL1 (Oe‑UCHL1) and pcDNA3.1‑Sp1 
(Oe‑Sp1), as well as the empty vector pcDNA3.1 negative 
control (Oe‑NC), were obtained from Sangon Biotech Co., 
Ltd. HEI‑OC1 cells seeded into six‑well plates at a density 
of 5x105 cells/well were transfected with 5 µg plasmids using 
Lipofectamine®  2000 (Life Technologies; Thermo Fisher 
Scientific, Inc.) at 37˚C for 48 h, according to the manufac‑
turer's recommendation. The subsequent experiments were 
performed at 48 h following cell transfection.

Cell Counting Kit‑8 (CCK‑8) assay. To assess cell viability, 
a CCK‑8 kit (Abnova) was used according to the manufac‑
turer's instructions. Briefly, HEI‑OC1 cells were seeded into 
96‑well plates at a density of 5x103 cells/well and treated with 
10 µl CCK‑8 solution at 37˚C for 2 h. Subsequently, optical 
density (OD) at a wavelength of 450 nm was measured using a 
microplate reader (Infinite M200; Tecan Group, Ltd.).

Evaluation of superoxide dismutase (SOD), glutathione 
peroxidase (GSH‑Px) and reactive oxygen species 
(ROS). HEI‑OC1 cells were seeded into 96‑well plates 
(5x103  cells/well). Following cell lysis in 300  µl lysis 
buffer (0.1% SDS, 0.5% Triton X‑100, 20  mM Tris‑HCl, 
pH 8.1), protein concentration was measured using a BCA 
protein assay kit (Bio Basic, Inc.). Assay kits for SOD (cat. 
no. A001‑1‑2) and GSH‑Px (cat. no. A005‑1‑2) were obtained 
from Nanjing Jiancheng Bioengineering Institute and used 
according to the manufacturer's instructions. The OD values 
at a wavelength of 450 nm were determined using a microplate 
reader (Infinite M200; Tecan Group, Ltd.). To measure ROS 
accumulation, HEI‑OC1 cells seeded into 24‑well plates were 
treated with 10 µΜ dichloro‑dihydro‑fluorescein diacetate 
(MilliporeSigma) at 37˚C for 30 min in the dark followed by 
washing with serum‑free DMEM three times. ROS genera‑
tion was assessed by flow cytometry (Merck KGaA) using 
FACSAria (BD Biosciences) using the corresponding kit (cat. 
no. ab113851; Abcam) according to the manufacturer's instruc‑
tions. The data were viewed in FlowJo software (version 10; 
FlowJo, LLC).

TUNEL assay. HEI‑OC1 cells were fixed with 4% parafor‑
maldehyde for 30 min at room temperature and were then 
treated with 0.1% Triton X‑100 for 5 min at room temperature. 
TUNEL assay was performed using TUNEL reagent (cat. 
no. MK1013; Wuhan Boster Biological Technology, Ltd.) for 
60 min at 37˚C according to the manufacturer's instructions. 
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Cell nuclei were labeled with 10 mg/ml DAPI for 5 min at 
room temperature in the dark and images were captured from 
four random fields under a fluorescence microscope (LSM800; 
Carl Zeiss AG) after Antifade Mounting Medium (Beyotime 
Institute of Biotechnology) was added to the sections.

Senescence‑associated‑β‑galactosidase (SA‑β‑gal) staining. 
Briefly, HEI‑OC1 cells were seeded in six‑well plates at a 
density of 5x104 cell/well. HEI‑OC1 cells at ~80% confluency 
plated into 6‑well plates were treated with 4% formaldehyde 
for 15 min at room temperature. Following washing with 
PBS, cells were incubated with SA‑β‑gal staining solution 
(cat. no. K320‑250; BioVision, Inc.) overnight at 37˚C without 
CO2. Finally, stained cells from 3 random fields of view were 
observed under a light microscope (Carl Zeiss AG).

Luciferase reporter assay. Wild‑type (WT; 5'‑CCC​GCC​
CCG‑3') or mutant (MUT; 5'‑CAA​AAA​AAC‑3') UCHL1 
promoter were cloned into the pGL3 Basic vector (Promega 
Corporation). Cells (5x105) were seeded in 24‑well plates 

for 24 h at 37˚C and were transfected with these plasmids as 
well as with Oe‑Sp1 and Oe‑NC using Lipofectamine® 2000 
(Life Technologies; Thermo Fisher Scientific, Inc.) at 37˚C. 
After 48 h transfection, the luciferase activity was measured 
using the Dual‑Luciferase Reporter Gene Assay kit (Shanghai 
Qcbio Science & Technologies Co., Ltd.) according to the 
manufacturer's instructions. The relative luciferase activity 
was normalized to that of Renilla luciferase.

Chromatin immunoprecipitation (ChIP) assay. ChIP assay 
was performed using the ChIP kit (Abcam). Briefly, 1% 
formaldehyde was added to HEI‑OC1 cells for 10 min at 
room temperature. The fixed cells were washed twice with 
phosphate‑buffered saline and were lysed using a lysis buffer 
(0.1% SDS, 0.5% Triton X‑100, 20 mM Tris‑HCl, pH 8.1) 
that contained 150 mM NaCl and a protease inhibitor, after 
which chromatin fragments were obtained using sonication 
using a 10 sec on and 10 sec off mode for 12 cycles at 4˚C. 
Following centrifugation at 13,000 x g for 10 min at 4˚C, the 
DNA fragments were incubated with antibodies against Sp1 

Figure 1. UCHL1 elevation improves the viability of H2O2‑treated HEI‑OC1 cells. (A) RT‑qPCR and (B) western blot analysis of UCHL1 expression in 
H2O2‑insulted HEI‑OC1 cells. Analysis of overexpression efficacy of pcDNA3.1‑UCHL1 recombinant plasmid via (C) RT‑qPCR and (D) western blotting. 
(E) Viability of H2O2‑exposed HEI‑OC1 cells was evaluated by Cell Counting Kit‑8 assay. **P<0.01 and ***P<0.001 vs. control. #P<0.05 vs. H2O2 + Oe‑NC. 
UCHL1, ubiquitin carboxyl‑terminal hydrolase L1; RT‑qPCR, reverse transcription‑quantitative PCR; H2O2, hydrogen peroxide; Oe‑NC, overexpression 
negative control.
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(cat. no. ab227383; 1:200: Abcam) or IgG (cat. no. ab6702; 
1:40; Abcam) for 2 h at 4˚C. The abundance of Sp1 on the 
UCHL1 promoter was measured by PCR as aforementioned. 
The sequence of oligonucleotides flagging the Sp1 binding site 
in the UCHL1 promoter was 5'‑CCC​GCC​CCC‑3'.

Statistical analysis. All statistical analyses were performed 
using GraphPad Prism version 8 software (GraphPad Software, 
Inc.). Continuous variables are expressed as the mean  ± 
standard deviation from three independent experiments. The 
differences between two groups were compared using unpaired 
Student's t test, while those between multiple groups were by 
one‑way ANOVA followed by Tukey's post hoc test. P<0.05 
was considered to indicate a statistically significant difference.

Results

UCHL1 overexpression enhances the viability of H2O2-
treated HEI‑OC1 cells. To evaluate the role of UCHL1 in 

H2O2‑induced HEI‑OC1 cells, expression levels of UCHL1 
were measured. RT‑qPCR and western blot analysis showed 
that UCHL1 was downregulated in H2O2‑treated HEI‑OC1 
cells (Fig. 1A and B). To determine the effect of UCHL1 on 
H2O2‑treated HEI‑OC1 cells, UCHL1 was overexpressed 
following cell transduction with Oe‑UCHL1 plasmid. The 
overexpression efficiency was verified via RT‑qPCR and 
western blot analysis (Fig. 1C and D). Furthermore, CCK‑8 
assay demonstrated that treatment with H2O2 diminished 
HEI‑OC1 cell viability. However, UCHL1 overexpression 
increased the viability of HEI‑OC1 cells exposed to H2O2. 
These findings indicated that UCHL1 protected HEI‑OC1 
cells from H2O2‑triggered cell injury.

UCHL1 overexpression mitigates H2O2‑mediated oxidative 
injury and apoptosis in HEI‑OC1 cells. Contents of the 
oxidative stress‑related markers SOD, GSH‑Px and ROS 
were measured using the corresponding kits. The results 
revealed that exposure to H2O2 decreased SOD and GSH‑Px 

Figure 2. UCHL1 upregulation mitigates H2O2‑mediated oxidative injury and apoptosis in HEI‑OC1 cells. (A) Detection of levels of oxidative stress 
markers using the corresponding kits. (B) TUNEL assay estimated the apoptosis of H2O2‑exposed HEI‑OC1 cells. Magnification, x200. (C) Quantification 
of cell apoptotic rate. (D) Western blot analysis of expression of apoptosis‑associated factors. ***P<0.001 vs. control. ##P<0.01 and ###P<0.001 vs. H2O2 + 
Oe‑NC. SOD, superoxide dismutase; GSH‑Px, glutathione peroxidase; ROS, reactive oxygen species; Bcl‑2, B cell lymphoma‑2; H2O2, hydrogen peroxide; 
Oe‑NC, overexpression negative control.
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levels but increased ROS activity. However, UCHL1 overex‑
pression increased SOD and GSH‑Px levels and attenuated 
ROS activity in H2O2‑treated HEI‑OC1 cells (Fig.  2A). 
Furthermore, TUNEL assay showed that UCHL1 amelio‑
rated H2O2‑induced HEI‑OC1 cell apoptosis (Fig. 2B and C). 
In addition, western blot analysis revealed that cell exposure 
to H2O2 downregulated Bcl‑2 and upregulated Bax, which 
were reversed by UCHL1 overexpression (Fig. 2D). Overall, 
these results suggested that UCHL1 exerted an inhibitory 

effect on H2O2‑triggered oxidative stress and apoptosis in 
HEI‑OC1 cells.

UCHL1 overexpression inhibits H2O2‑induced HEI‑OC1 cell 
senescence. SA‑β‑gal staining illustrated that the increased 
number of SA‑β‑gal‑positive H2O2‑treated HEI‑OC1 cells was 
decreased following UCHL1 overexpression (Fig. 3A). In addi‑
tion, UCHL1 overexpression suppressed the H2O2‑mediated 
enhanced expression levels of p16 and p21 (Fig. 3B). These 

Figure 3. Overexpression of UCHL1 halts H2O2‑triggered HEI‑OC1 cell senescence. (A) SA‑β‑gal staining indicating cell senescence. Magnification, x100. 
(B) Western blot analysis of expression of senescence‑associated factors. ***P<0.001 vs. control. ###P<0.001 vs. H2O2 + Oe‑NC. UCHL1, ubiquitin 
carboxyl‑terminal hydrolase L1; H2O2, hydrogen peroxide; Oe‑NC, overexpression negative control; SA‑β‑gal, senescence‑associated β‑galactosidase.
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results indicated that the H2O2‑mediated HEI‑OC1 cell 
senescence was attenuated by UCHL1 overexpression.

Sp1 suppresses transcription of UCHL1. The PROMO data‑
base revealed that the UCHL1 promoter interacted with the 
Sp1 transcription factor. RT‑qPCR and western blot analysis 
revealed that Sp1 was upregulated in H2O2‑induced HEI‑OC1 
cells (Fig. 4A and B). Following Sp1 overexpression by cell 
transduction with Oe‑Sp1 plasmid (Fig. 4C and D), luciferase 
reporter assay showed that Sp1 overexpression diminished 
the luciferase activity of UCHL1‑WT compared with 
UCHL1‑MUT (Fig. 4E). ChIP assay showed that UCHL1 was 
precipitated following incubation of nuclear extracts with Sp1 
antibody (Fig. 4F). Additionally, Sp1 overexpression decreased 
expression levels of UCHL1 (Fig. 4G and H). Collectively, 
the aforementioned findings demonstrated that Sp1 was a 
transcriptional inhibitor of UCHL1.

Sp1 overexpression abrogates the protective effect of UCHL1 on 
H2O2‑induced HEI‑OC1 cell injury. To uncover the association 
between Sp1 and UCHL1 in H2O2‑treated HEI‑OC1 cells, func‑
tional experiments were performed in H2O2‑induced HEI‑OC1 
cells co‑transduced with Oe‑UCHL1 and Oe‑Sp1 plasmids. 

CCK‑8 assay revealed that UCHL1 restored the suppressed 
viability of H2O2‑induced HEI‑OC1 cells. However, this effect 
was reversed by Sp1 overexpression (Fig. 5A). The enhanced SOD 
and GSH‑Px activity, as well as the reduced ROS levels mediated 
by UCHL1 overexpression in H2O2‑induced HEI‑OC1 cells, were 
restored following Sp1 overexpression (Fig. 5B). In addition, the 
attenuated H2O2‑induced HEI‑OC1 cell apoptosis mediated by 
UCHL1 overexpression was further increased in cells co‑trans‑
fected with Oe‑Sp1 plasmid (Fig. 5C). This was further verified 
by western blot analysis, showing that Sp1 overexpression abro‑
gated the enhanced Bcl‑2 and decreased Bax expression levels 
in H2O2‑exposed HEI‑OC1 cells co‑transduced with Oe‑UCHL1 
plasmid (Fig. 5D). Additionally, SA‑β‑gal staining and western 
blot analysis demonstrated that the decreased number of 
SA‑β‑gal‑positive cells, as well as p61 and p21 downregulation 
triggered by UCHL1 overexpression in H2O2‑induced HEI‑OC1 
cells, were reversed by Sp1 overexpression (Fig. 5E and F). 
Notably, UCHL1 overexpression restored the H2O2‑induced 
p‑NF‑κB p65 upregulation, which was further abolished by Sp1 
elevation (Fig. 5G). Taken together, these findings indicated that 
UCHL1, negatively regulated by Sp1, promoted H2O2‑mediated 
cell injury, oxidative stress, apoptosis and senescence, and modu‑
lated NF‑κB signaling in HEI‑OC1 cells.

Figure 4. Sp1 suppresses transcription of UCHL1. (A) RT‑qPCR and (B) western blot analysis Sp1 expression in H2O2‑insulted HEI‑OC1 cells. Analysis 
of overexpression efficacy of Oe‑Sp1 plasmid by (C) RT‑qPCR and (D) western blotting. ***P<0.001 vs. control. (E) Luciferase reporter assay verified the 
luciferase activity of UCHL1‑WT and UCHL1‑MUT. ***P<0.001 vs. Oe‑NC. (F) Chromatin immunoprecipitation assay identified the accumulation of UCHL1 
promoter in Sp1 antibody. ***P<0.001 vs. input. (G) RT‑qPCR and (H) western blot analysis of UCHL1 expression after Sp1 was overexpressed. ***P<0.001 
vs. control. UCHL1, ubiquitin carboxyl‑terminal hydrolase L1; Sp1, specificity protein 1; RT‑q, reverse transcription‑quantitative; H2O2, hydrogen peroxide; 
Oe‑NC, overexpression negative control; WT, wild‑type; MUT, mutant.
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Figure 5. Overexpression of Sp1 abrogates the protective role of UCHL1 in H2O2‑induced HEI‑OC1 cell injury. (A) Viability of H2O2‑exposed HEI‑OC1 cells 
evaluated by CCK‑8 assay. (B) Detection of the levels of oxidative stress markers using corresponding kits. (C) TUNEL assay of apoptosis of H2O2‑exposed 
HEI‑OC1 cells. Magnification, x200. (D) Western blot analysis of expression of apoptosis‑associated factors. (E) SA‑β‑gal staining analysis of cell senescence. 
Western blot analysis of expression of (F) senescence‑ and (G) NF‑κB signaling‑associated factors. ***P<0.001 vs. control. ##P<0.01 and ###P<0.001 vs. H2O2. 
∆P<0.05, ∆∆P<0.01 and ∆∆∆P<0.001 vs. H2O2 + Oe‑UCHL1 + Oe‑NC. UCHL1, ubiquitin carboxyl‑terminal hydrolase L1; Sp1, specificity protein 1; SOD, super‑
oxide dismutase; GSH‑Px, glutathione peroxidase; ROS, reactive oxygen species; Bcl‑2, B cell lymphoma‑2; p‑, phosphorylated; Oe‑NC, negative control; 
SA‑β‑gal, senescence‑associated β‑galactosidase.
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Discussion

ARHL is a common clinical condition with complicated 
pathogenesis (21). Globally, more than 500 million people have 
ARHL (18). Cochlear hair cells are mechanoreceptors of the 
auditory system and their loss is a predominant factor contrib‑
uting to hearing loss (22). Apoptosis is a type of programmed cell 
death and accelerated cochlear hair cell apoptosis is considered 
a key factor leading to ARHL (23). Oxidative stress promotes 
cell or tissue damage caused by the imbalance between ROS 
production and elimination (24). A growing body of evidence 
has suggested that oxidative stress is associated with hearing 
loss and cochlear hair cell injury (23,25). A previous study 
suggested that cell senescence is a permanent and inevitable 
state of cell cycle arrest caused by ROS‑mediated oxidative 
stress injury (26). H2O2 has been used to induce premature 
senescence in vascular endothelial cells  (27) and keratino‑
cytes (28). Therefore, in the present study, 1 mM H2O2 was 
utilized to induce cochlear hair cell senescence. Cell apoptosis, 
oxidative stress and senescence were investigated to uncover 
the underlying mechanism of ARHL.

UCHL1 is a key component of the ubiquitin‑dependent 
protein degradation system, which is a highly conserved pathway 
involved in removal of damaged or misfolded proteins to prevent 
protein accumulation and maintain normal cell function (29). 
A recent study showed that UCHL1 is downregulated in the 
cochlea of ARHL mice (13). Additionally, UCHL1 regulates 
expression of ubiquitin proteasome system (UPS)‑associated 
proteins to modify the aging process in the auditory cortex (30). 
Another study demonstrated that UCHL1 silencing facilitates 
autophagy‑dependent auditory cell death following treatment 
with gentamicin  (31). The results of the present study also 
revealed that UCHL1 was downregulated in H2O2‑treated 
murine cochlea hair cells (HEI‑OC1). Furthermore, UCHL1 
overexpression effectively mitigated the loss of cell viability 
triggered by exposure of HEI‑OC1 cells to H2O2. ROS comprise 
oxygen radicals, the level of which may reflect the degree of 
oxidative stress (32). It has been reported that the antioxidant 
enzymes SOD and GSH‑Px eliminate excess ROS levels during 
the metabolic process to maintain balance (33). As expected, 
in the present study, cell exposure to H2O2 reduced SOD and 
GSH‑Px levels but enhanced ROS activity. However, these 
effects were restored after UCHL1 overexpression, suggesting 
that UCHL1 could protect HEI‑OC1 cells against H2O2‑induced 
oxidative injury. Similarly, H2O2‑induced HEI‑OC1 cell 
apoptosis was also restored by UCHL1 overexpression. This 
was further supported since Bcl‑2 downregulation and Bax 
upregulation in H2O2‑treated HEI‑OC1 cells were both reversed 
by UCHL1 overexpression. Furthermore, p16 and p21 serve a 
key role in regulating cellular senescence (34). Here, UCHL1 
overexpression alleviated H2O2‑induced cell senescence and 
decreased the H2O2‑enhanced p16 and p21 expression levels in 
HEI‑OC1 cells.

As a widely investigated transcription factor, Sp1 activates 
or inactivates the transcription of several genes encompassing 
putative CG‑rich Sp‑binding sites in their promoters (35‑36). 
Bioinformatics analysis using the PROMO database predicted 
that Sp1 bound to the UCHL1 promoter. Additionally, Sp1 was 
upregulated in H2O2‑induced HEI‑OC1 cells. The strong affinity 
of Sp1 with the promoter region of UCHL1 was verified by 

luciferase reporter and ChIP assays. The results demonstrated 
that UCHL1 expression was negatively regulated by Sp1. 
Emerging evidence has suggested that Sp1 is involved in diverse 
biological events, including embryonic development, cell prolif‑
eration, death, senescence and angiogenesis (36). Consistent with 
the aforementioned findings, the experimental data of the current 
study also demonstrated that the effects of UCHL1 on viability, 
oxidative stress, apoptosis and senescence of H2O2‑induced 
HEI‑OC1 cells were counteracted by Sp1 overexpression.

NF‑κB signaling is key in the development of ARHL (17). 
Furthermore, UCHL1 is considered a downstream protein of 
NF‑κB signaling (37) and is involved in numerous human diseases 
by regulating NF‑κB signaling (38,39). Xue et al (40) demonstrated 
that Sp1 is a regulator of NF‑κB signaling in osteoarthritis. The 
results of the present study showed that the activation of NF‑κB 
signaling mediated by exposure of HEI‑OC1 cells to H2O2 was 
inhibited by UCHL1 overexpression. This effect of UCHL1 on 
NF‑κB signaling was abrogated by Sp1 overexpression.

In conclusion, the present study suggested that UCHL1, 
negatively regulated by Sp1, could promote H2O2‑mediated 
cell injury, oxidative stress, apoptosis and senescence and 
inhibit NF‑κB signaling in an in vitro model of ARHL. To 
the best of our knowledge, this is the first study to report the 
role of UCHL1, as well as the association between UCHL1 
and Sp1 in an H2O2‑induced ARHL model in cochlear hair 
cells. Taken together, the results of the present study supported 
the efficacy of a novel targeted therapy for ARHL based on 
an UCHL1‑mediated molecular mechanism. However, further 
studies in an in vivo animal model should be performed to 
verify the role of UCHL1 in ARHL and changes in the expres‑
sion levels of UCHL1 and Sp1. In addition, how changes in 
expression of downstream factors of NF‑kB signaling regulate 
UCHL1 expression should be further investigated.
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