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Abstract. Idiopathic pulmonary fibrosis (IPF) is a progres‑
sive, irreversible and fatal interstitial lung disease of unknown 
cause, with a median survival of 2‑3 years. Its pathogenesis is 
unclear and there is currently no effective treatment for IPF. 
Approximately two‑thirds of patients with IPF are >60 years 
old, with a mean age of 66 years, suggesting a link between 
aging and IPF. However, the mechanism by which aging 
promotes development of PF remains unclear. Senescence of 
alveolar epithelial cells and lung fibroblasts (LFs) and their 
senescence‑associated secretion phenotype (SASP) may 
be involved in the occurrence and development of IPF. The 
present review focus on senescence of LFs and epithelial 
and stem cells, as well as SASP, the activation of profibrotic 
signaling pathways and potential treatments for pathogenesis 
of IPF.
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1. Introduction

Pulmonary fibrosis (PF) is caused by factors including toxic, 
autoimmune, drug‑induced, traumatic injury and infectious 
diseases. As a result, a ‘reparative response’ involving both 
fibroblasts and myofibroblasts of lung tissue may be trig‑
gered (1). In certain cases, the failure to establish normal tissue 
repair in damaged lung results in marked alveolar disorganiza‑
tion with imbalanced epithelial cell proportions, endothelial 
cell loss or migration to incorrect locations. Furthermore, 
sustained alveolar epithelial cell proliferation (AECs), repeated 
injury and interstitial fibroblast proliferation with concomitant 
deposition of collagenous extracellular matrix (ECM) result 
in increased fibrogenesis (1). Idiopathic PF (IPF) is a chronic 
progressive interstitial lung disease of unknown origin. 
Histologically, IPF is characterized by massive accumulation 
of fibroblasts, myofibroblasts, AECs and macrophages and a 
significant deposition of ECM (2). A previous review showed 
that AECs, as the main source of pro‑fibrogenic cytokines in 
IPF, express a variety of cytokines and growth factors, which 
can promote the migration, proliferation and accumulation 
of extracellular matrix of fibroblasts; these are key events 
of cell dysfunction in PF, which involve abnormal wound 
healing and participate in the formation of patchy fibroblast 
myofibroblast lesions in the pathogenesis of IPF (3). AECs are 
damaged by pathogenic microorganisms, dust, drugs, chemi‑
cals and oxygen free radicals which, when coupled with risk 
factors such as aging and genetics, may decrease the ability 
of alveolar epithelial type II (ATII) cells and lung fibroblasts 
(LFs) to repair damage to the lung (4,5). LFs proliferate 
locally, migrate to the injury site and differentiate into myofi‑
broblasts, which produce a large amount of ECM and exhibit 
contractile function. AS myofibroblasts typically vanish after 
successful repair; dysregulation of the normal repair process 
can lead to persistent myofibroblast activation (5). Therefore, 
decreasing fibroblast activation can limit the progression of 
fibrosis (5). Myofibroblast apoptosis is key for normal regres‑
sion of the wound repair response and impaired myofibroblast 
apoptosis is associated with tissue fibrosis (6). Furthermore, 
depletion of myofibroblasts by apoptosis is key for normal 
wound healing. However, this process does not occur in the 
fibroblast foci of IPF (6), as patients with IPF have abnormal 
repair processes, including decreased mesenchymal stem cell 
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(MSC) proliferation, differentiation and repair capacity. These 
changes lead to scarring and subsequent respiratory failure (6). 
Accordingly, the primary clinical manifestations of IPF are 
progressive dyspnea, decreased lung function and respira‑
tory failure and death. IPF mostly occurs in middle‑aged and 
elderly people, and aging is a risk factor for IPF (6). LFs and 
AECs are senescent in lung tissue of patients with IPF and 
lung fibrosis animal models (7,8). Bone marrow (B‑)MSCs are 
depleted, indicating that cellular senescence is associated with 
pathogenesis of IPF (7).

Aging is an underlying decline in age‑related physiological 
function, leading to increased age‑associated mortality and 
reduced reproductive capacity (9). Cellular senescence is 
irreversible stagnation of the cell cycle, resulting in loss of 
intercellular transport and communication and age‑associated 
intrinsic cellular functions, such as cell division and replica‑
tion (9,10). There are two types of cell senescence: Replicative 
and premature. Replicative senescence is caused by telomerase 
damage (10), not by telomere length, whereas premature 
senescence is caused by stress, oncogenes and loss of tumor 
suppressor factors (11). The key characteristic of aging is 
secretion of a large number of mediators during the stagna‑
tion of the cell cycle. These mediators are collectively known 
as the senescence‑associated secretory phenotype (SASP) 
protein (12). Two primary aging signaling pathways induce 
cell senescence (13). The first is the cyclin‑dependent kinase 
inhibitor (p16)/retinoblastoma (Rb) pathway, where p16 can 
competitively bind to CDK4/6 and inhibit its kinase activity, 
thereby decreasing phosphorylation of Rb to prevent activation 
of downstream transcription factors, thus leading to stagnation 
of the cell cycle. The second pathway is p53/cyclin‑dependent 
kinase inhibitor 1 (p21). When cells are stressed, tumor 
suppressor p53 is activated, p21 is upregulated and the phos‑
phorylation of Rb is inhibited, leading to cell cycle arrest (14). 
The mechanisms of aging associated with development of IPF 
are illustrated in Fig. 1.

Studies (3,5,6,15) have shown that AECs (primarily ATII 
cells), fibroblasts and myofibroblasts are involved in the 
occurrence and development of PF. Although pirfenidone and 
nintedanib slow the progression of IPF, the disease continues 
to progress and, to the best of our knowledge, there is no cure 
other than lung transplantation. To the best of our knowledge, 
while IPF is an aging‑related disease, the underlying mecha‑
nism linking aging to IPF remains unclear. The present review 
summarizes research on the pathogenesis and treatment of IPF 
associated with cell aging and provides an important direction 
for the future treatment of PF.

2. Senescence of AECs and IPF

ATII cells play an important role in maintaining pulmonary 
homeostasis and their main functions include proliferation, 
differentiation into ATI cells, secretion of surfactants and 
involvement in biological activities such as pulmonary inflam‑
matory response, immune response, regulation of ECM and 
damage repair (15). As AECs are key cells in the initial phase 
of IPF, sustained and repeated AEC injury leads to abnormal 
changes that promote fibrosis repair. When the alveolar epithe‑
lium is repeatedly damaged, the function and morphology of 
ATII cells change and the basal layer shedding caused by 

aging and apoptosis may reflect the initial destructive events in 
progression of the disease. However, to the best of our knowl‑
edge, the molecular mechanisms involved remain unclear (2). 
Studies (16‑27) have shown that aging and apoptosis of ATII 
cells may be associated with endoplasmic reticulum (ER) 
stress and autophagy as well as telomere damage, mitochon‑
drial dysfunction and epigenetic changes.

ER stress. In IPF, ER stress is observed in AECs (16). Viral 
infection and aging trigger a hyperinflammatory response due 
to expansion of the ER (28). In addition, susceptibility to ER 
stress increases during aging. ER stress initially stimulates an 
adaptive unfolded protein response (UPR) to promote cellular 
survival but, in the case of persistent chronic stress, UPR 
triggers the apoptotic cell death program (16). ER stress is 
associated with fibrosis via cell apoptosis, activation/differen‑
tiation of fibroblasts, epithelial‑mesenchymal transition (EMT) 
and activation or polarization of inflammatory responses (16). 
In the aging lung, ATII cells are particularly sensitive to ER 
stress. ATII cells with knock out of glucose regulatory protein 
(GRP) 78, a key protein of ER stress, show ER stress, injury, 
senescence and decreased differentiation, accompanied by 
abnormal activation of TGF‑β1/SMAD signaling (17). In 
addition, GRP78 is reduced in ATII cells in patients with IPF 
and elderly mice with IPF. These results suggest that GRP78 
reduction is a potential mechanism underlying the association 
between ER stress of aging ATII cells and IPF (17). There is a 
dual role of autophagy under ER stress and crosstalk between 
autophagy and apoptosis is complicated. Furthermore, ER 
stress effectively induces autophagy activation, typically via 
the Bcl‑2 signaling pathway (29). Prolonged or excessive ER 
stress induces apoptosis in epithelial cells through several 
UPR‑dependent downstream mechanisms, including C/EBP 
homologous protein induction, activation of the ER‑bound 
caspase or activation of JNK (30). However, with an increase 
in age, sustained ER stress decreases PTEN‑induced putative 
kinase 1 (PINK1) expression and inhibits autophagy (30,31). 
In brief, autophagy decreases with aging and accelerated aging 
may be attributed to reduced autophagy.

Decreased autophagy. As a cellular protective mechanism, 
autophagy plays an important role in cell homeostasis and 
removal of harmful substances (18). Autophagy can be trig‑
gered by stress factors, such as reactive oxygen species (ROS), 
ER stress and hypoxia. Moreover, insufficient autophagy 
may accelerate senescence in epithelial cells and potentiate 
both EMT and myofibroblast differentiation. Additionally, 
inhibition of autophagy in epithelial cells leads to enhanced 
EMT and fibrosis (19). Expression of multifunctional protein 
p62 and ubiquitinated protein in the lung of patients with 
IPF is increased, indicating insufficient autophagy in lung 
tissue (18,20). Beclin‑1, a key autophagic protein, is down‑
regulated in fibroblasts isolated from patients with IPF (32). 
Conditional knockout of the tuberous sclerosis complex 1 gene 
in mouse epithelial cells renders bleomycin (BLM)‑induced 
mice more prone to PF; this is reversed by activation of 
autophagy by rapamycin (33). Another study (34) has revealed 
that aging mice with loss of autophagic proteins [light chain 
3β(LC3B)‑/‑ and autophagy‑related 4B cysteine peptidase 
(ATG4B)‑/‑] are more susceptible to BLM‑induced lung 
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fibrosis and linked cathepsin A, a binding partner to LC3B. 
In addition, ER stress increased apoptosis of epithelial cells 
in aging mice with loss of autophagic proteins (LC3B‑/‑ and 
ATG4B‑/‑) (34).

Studies (18‑20,32‑34) confirm that autophagy is decreased 
in AECs of patients with IPF. Autophagy deficiency leads to 
epithelial cell dysfunction and promotes PF, while autophagy 
activation enhances the repair ability of epithelial cells and 
inhibits PF. However, the molecular mechanism underlying 
regulation of autophagy and its effect on epithelial cell func‑
tion remains unclear and warrants further investigation.

Telomere attrition. Telomeres are composed of DNA repeti‑
tive sequences and binding proteins that maintain structural 
integrity of chromosomes. The binding proteins consist of the 
protein components telomeric repeat‑binding factor (TRF) 1, 
TRF2, Ras‑related protein Rap1, TRF1‑interacting nuclear 
factor 2, telomere protective protein 1 (TPP1) and protection 
of telomeres 1 gene (35). Telomeric DNA typically contains 
clusters of three or four guanines (for example, 5'‑TTGGGG‑3' 
in tetrahymena and 5'‑TTAGGG‑3' in humans) (35). These 
telomeric repeats are added by the enzyme telomerase. 
Telomerase comprises three parts: Human telomerase RNA 
(hTR); telomerase synergistic protein 1 and hT reverse 
transcriptase(hTRT). Telomerase performs catalytic reverse 
transcription (21). Typically, normal aging is accompanied 
by telomere shortening. However, mutations in the telom‑
erase complex genes hTRT and hTR are found in 8‑15% of 
familial patients with IPF and 1‑3% of sporadic cases; these 
mutations accelerate telomere shortening and cause replicative 
aging of AECs (21‑23). V144M, R865C and R865H mutants 

of hTRT are key because these mutants can explain how the 
hereditary hTERT mutation causes telomere shortening in 
IPF patients, so as to further understand the role of naturally 
occurring telomerase mutations in the pathophysiology of 
some age‑related disease states; in vitro experiments have 
determined that V144 and R865 in hTRT are key residues 
required for the normal function of cell telomerase (36,37). 
Moreover, 98 G→A, 37A→G, 108C→U and 325G→U hTR 
substitution are often noted in familial patients with IPF. 
These mutations are predicted to impair base pairing in a helix 
in the key pseudoknot domain of hTR (21,38). The knockout 
of TRF1 in ATII cells causes severe telomere dysfunction in 
the lung of mice and induces PF by inducing DNA damage 
and upregulating cell cycle suppressor protein p21/p53 (39). 
Similarly, specific knockout of TRF2 in mouse ATII cells is 
characterized by telomere dysfunction, resulting in increased 
p53 and p21 expression. As the ability of ATII cells to 
self‑renew and differentiate is limited, these cells are less able 
to repair BLM‑induced lung damage (40). A recent study (41) 
suggested that a key role in alveolar stem cell dysfunction is 
played by telomere shortening or uncapping, bridging the gap 
in telomere abnormality and fibrotic lung pathology. Failure 
to regenerate alveoli due to alveolar stem cell dysfunction 
may expose lung cells to elevated mechanical tension, which 
may activate the TGF‑β signaling loop to promote the fibrotic 
process (41). In addition, short telomeres signal and activate 
p53, which suppresses phosphatidylglycerol phospholipase C 
(PGC)‑1α and PGC‑1β promoters, leading to mitochondrial 
dysfunction and cell aging (42). These findings indicate that 
telomere shortening serves a key role in the occurrence of IPF.

Mitochondrial dysfunction. Mitochondrial dysfunction drives 
cell senescence. In pathogenesis of IPF, mitochondrial dysfunc‑
tion primarily involves an imbalance in mitochondrial ROS 
levels, mitochondrial DNA changes, mitochondria‑mediated 
reduced autophagy and electron transport chain imbalance. 
Mitochondrial dysfunction is associated with telomere attrition 
and ER stress (24,25,31). Epithelial cell damage is associated 
with increased mitochondrial ROS in lung tissue of patients 
with IPF (24). With aging, mitochondrial function is impaired, 
leading to increased ROS production, which in turn causes 
deterioration of mitochondrial function (24). Changes in mito‑
chondrial DNA metabolism and lack of phagocytosis often 
occur in patients with IPF, leading to increased sensitivity 
to apoptosis (24). Kim et al (25) showed that Klotho protein 
plays a role in protecting AEC mitochondrial DNA integ‑
rity. Knockout of PINK1 in ATII cells of mouse lung tissue 
leads to mitochondrial swelling and dysfunction, impaired 
mitochondrial autophagy and increased susceptibility to 
PF (31). Furthermore, there is evidence of a role played by 
PINK1/parkin RING‑in‑between‑RING (RBR) E3 ubiquitin 
protein ligase‑mediated mitochondrial autophagy in IPF. 
Furthermore, there is growing evidence supporting the role 
played by PINK1‑PARK2‑mediated mitochondrial autophagy 
in IPF (43).

The association between mitochondrial dysfunction and 
low PINK1 expression indicates that PINK1 may serve an 
important role in maintaining the morphology and function of 
mitochondria and selectively degrades damaged mitochondria 
through autophagy (31). Mitochondrial dysfunction occurs 

Figure 1. Mechanisms of aging involved in the development of IPF. Hallmarks 
of cellular senescence are decreased autophagy, telomere attrition, epigenetic 
changes, mitochondrial dysfunction, ER stress and SASP, which contribute 
to the occurrence and development of IPF. Mechanisms in cell senescence 
interact with each other and form a complex network. IPF, idiopathic pulmo‑
nary fibrosis; ER, endoplasmic reticulum; SASP, senescence‑associated 
secretion phenotype. 
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with and further promotes aging, leading to an imbalance in 
the electron transport chain. NAD+ is an electron acceptor 
and oxidant, as well as a cofactor in numerous metabolic 
and signaling pathways. The ratio of NAD+ to NADH is key 
and NAD+ improves mitochondrial function and longevity in 
aging mice. One mechanism by which NAD+ affects PF is 
the regulation of cellular function by regulating the activity 
of sirtuins (SIRTs). Deacetylase SIRT is an NAD+‑dependent 
histone deacetylase (HDAC) and serves an important role in 
transcription, cell cycle regulation and subsequent transla‑
tion and modification (44‑46). Aging decreases expression 
of SIRT3, leading to an increase in acetylation and thereby 
increasing the levels of mitochondrial ROS and DNA 
damage (44). SIRT3 inhibits TGF‑β1 signaling and controls 
myofibroblast transformation (47). Increased expression levels 
of NADPH oxidase 4 (NOX4) have been reported in the 
lung of patients with IPF (48). NOX4 is considered to be a 
mediator of mitochondrial dysfunction (49). NOX4 enzyme 
interacts with mitochondria and affects mitochondrial func‑
tion and production of mitochondrial ROS and SIRT, jointly 
promoting epithelial injury and lung fibrosis (50). NOX4 also 
regulates protein and collagen concentrations of α‑smooth 
muscle actin (α‑SMA) by controlling Smad2/3 and regulating 
platelet‑derived growth factor (PDGF) to induce fibroblast 
migration (48). Telomere shortening is a feature of premature 
aging, partly due to increased mitochondrial ROS (51). There 
is an interaction between mitochondria and ER. ER stress can 
downregulate PINK1 to regulate mitochondrial function and 
increase apoptotic response. Meanwhile, during ER stress, 
the transfer of calcium ions from ER to mitochondria leads to 
mitochondrial swelling (31).

Epigenetic changes. Epigenetic marks are cell‑type specific. 
A previous study revealed that microRNA (miRNA or 
miR)‑34a, miR‑34b and miR‑34c, members of the aging‑asso‑
ciated miR‑34 family, are highly expressed in AECs from 
patients with IPF (26). The deletion of miR‑34a effectively 
improves BLM‑induced epithelial cell senescence in animal 
models (27,52). The mechanism of miR‑34 in IPF may involve 
p53 activation and downregulation of the transcription factor 
early 2 factor to inhibit cell proliferation (26). The activation 
of p53 induces p21, leading to cell cycle arrest by inhibiting the 
expression of cyclin E and CDK2. Cui et al (27) showed that 
miR‑34a is increased in AECs but not in LFs. This suggests 
that miR‑34a expression may be regulated differently in 
different types of lung cell. The role of AECs and SASP in IPF 
is displayed in Fig. 2.

3. Senescence of fibroblasts and IPF

Fibroblasts serve a central role in the fibrotic process. Deposition 
of fibroblasts in the pulmonary interstitium and generation of 
ECM serve a key role in the development of IPF (53). Primary 
LFs isolated from the lung tissue of patients with IPF exhibit 
more senescence compared with age‑matched controls. These 
senescent fibroblasts increase levels of senescence‑associated 
β‑galactosidase, P16, P21, P53 and SASP (5). The pathogenesis 
of fibroblast senescence in IPF remains unclear but mitochon‑
drial dysfunction, telomere shortening, epigenetic changes and 
decreased autophagy are involved in IPF. To the best of our 

knowledge, however, most current research has focused on 
epigenetics and autophagy (5,54).

Epigenetic alterations. Epigenetic changes mainly involve 
DNA methylation, histone post‑translational modifications 
and miR regulation (55). Human DNA contains cytosine‑phos‑
phate‑guanine(CpG)sites and the methylation of the CpG 
island via DNA methyltransferases (DNMTs) prevents RNA 
polymerase complex binding to the promoter region and there‑
fore suppresses gene expression. Additionally, the majority 
of human CpG sites are methylated (56). Abnormal DNA 
methylation either silences or activates expression of genes 
that drive fibrosis and alter the mRNA expression of several 
genes. For example, Neveu et al (57) found that thymocyte 
differentiation antigen 1 (Thy‑1) expression is epigenetically 
modified. Treatment with DNMT inhibitor 5‑azacytidine 
attenuates TGF‑β1‑induced collagen type I α 1 chain gene 
and protein expression and α‑SMA gene expression in LFs. 
Furthermore, inhibiting DNMT1 attenuates TGF‑β1‑induced 
DNMT activity, downstream suppression of Thy‑1 expression 
and decreases Thy‑1 promoter methylation. In addition, DNA 
methylation induces differentiation of fibroblasts into myofibro‑
blasts and deposition of collagen matrix (58). O6‑alkylguanine 
DNA alkyltransferase (MGMT) is a key DNA repair enzyme; 
however, MGMT is hypomethylated with overexpression in 
IPF fibroblasts (59). These findings suggest that inhibition of 
DNMT might prevent lung fibrosis (57).

At present, a few histone modifications have been described. 
The best‑elucidated modifications (60) include acetylation 
by histone acetyltransferases (HATs) (61), deacetylation by 
HDAC (62), methylation by histone methyltransferase (HMT), 
demethylation, phosphorylation, ubiquitination, sumoylation 
and poly ADP‑ribosylation (63). Currently, acetylation is 
hypothesized to activate cell transcription by decompression of 
the chromatin. IPF is characterized by increases in ‘restrictive’ 
histone post‑translational modifications that result in decreased 
anti‑fibrotic and pro‑apoptotic gene expression (63). A previous 
study has shown that decreased acetylation of histone H3 and 
H4 in patients with IPF decreases expression of cyclooxygenase 
2 (COX‑2) in fibroblasts, thereby decreasing synthesis of prosta‑
glandin E2 and effectively inhibiting activation of fibroblasts (64). 
Moreover, Fas expression is decreased in IPF and linked to 
elevated H3K9 trimethylation and decreased H3 pan‑acetylation 
at the Fas promoter (63). Taken together, the aforementioned 
studies indicate an imbalance in both histone acetylation and 
methylation in IPF; this imbalance prevents transcriptional acti‑
vation of anti‑fibrotic and pro‑apoptotic genes. 

Numerous miRNAs are up‑ or downregulated in patients 
with IPF. For example, increased expression of miR‑21 in 
IPF fibroblasts inhibits Smad7 activation by TGFβ1, thereby 
aggravating PF (65). Additionally, miR‑21 is hypothesized 
to induce EMT and promote fibrotic processes via inhibition 
of Smad7 (65). Furthermore, miR‑144‑3p is a miRNA that 
is upregulated >70‑fold in IPF fibroblasts; it can increase 
α‑SMA levels and its mimic has been shown to downregulate 
relaxin/insulin‑like family peptide receptor 1in IPF LFs (66).

Decreased autophagy. Transformation of PF fibroblasts into 
pulmonary myofibroblasts is a key part of PF. Inhibition of 
autophagy leads to increased differentiation of myofibroblasts 
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and enhanced expression of smooth actin. A lack of autophagy 
may cause phenotypical transformation of fibroblasts into 
myofibroblasts (67). Beclin‑1, a key autophagic protein, in 
a complex with class III phosphatidylinositol 3‑kinase and 
ATG14 serves as a major positive regulator of autophagy (68). 
Genetic deletion of autophagy protein LC3 or Beclin‑1 
enhances expression of fibronectin, myofibroblast differentia‑
tion marker and SMA in LFs (69). TGF‑β1 is a multifunctional 
peptide growth factor with a range of potential effects on cell 
proliferation and differentiation and ECM protein production. 
TGF‑β1 also mediates the downregulation of Caveolin‑1 (Cav‑1) 
in fibroblasts via the MAPK signaling pathway and Cav‑1 loss 
provides fibroblasts with anti‑apoptotic properties (70). Another 
pathway by which autophagy regulates the pathological 
process of IPF is the mammalian target of rapamycin (mTOR) 
pathway. This pathway consists of upstream molecules (PI3K 
and AKT), tuberous sclerosis complex 1/2 and downstream 
molecules (eukaryotic cell translation initiation factor 4E 
binding protein 1 and ribosomal protein S6 kinase 1) (71). The 
mTOR pathway inhibits autophagy, which is characterized by 
increased apoptotic effector protein beclin‑1 and LC3 levels. 

Activation of this pathway promotes differentiation of myofi‑
broblasts and leads to the formation of PF (72). Similarly, Nho 
and Hergert (73) showed that deletion of PTEN in activated 
human chromosome 10 PTEN/AKT/mTOR signaling pathway 
induces autophagy in myofibroblasts for collagen synthesis. 
In LFs of IPF, the PTEN/AKT axis decreases the expression 
of FOXO3a. The decreased FOXO3a expression suppresses 
LC3B transcription and leads to loss of autophagy on collagen 
in IPF fibroblasts. Vimentin intermediate fills and Janus kinase 
2/signal transduction activator 3 signaling pathways lead to 
increased production of the anti‑apoptotic Bcl‑2 family protein 
to inhibit autophagy, thus causing fibroblast‑to‑myofibroblast 
transformation and progression of PF (74). 

A study reported the presence of telomere shortening in 
LFs of patients with IPF (5). This is consistent with telomere 
length maintained in the epithelial cells of patients with 
IPF (67). However, when expression of telomerase transcrip‑
tase in human LF is induced, the telomere length does not 
change in BLM‑induced lung tissue (75,76). This suggests 
that the association between telomere shortening and cellular 
senescence occurs only in ATII cells and not in LFs, showing 

Figure 2. Aging mechanism of AECs. The senescence and apoptosis of AECs may be related to ER stress, autophagy, telomere damage, mitochondrial 
dysfunction, and epigenetic changes. In aging lungs, AECs are particularly sensitive to ER stress. GRP78 knockout decreases ER stress, injury, aging and differ‑
entiation, and TGF‑β 1/Abnormal activation of SMAD signaling. Normal aging is accompanied by telomere shortening, while mutations in hTRT and hTR of 
telomerase complex gene accelerate telomere shortening and lead to replicative aging of AECs. In the pathogenesis of IPF, mitochondrial dysfunction involves 
the imbalance of mitochondrial ROS level, the change of mitochondrial DNA, the downregulation of mitochondrial autophagy mediated by PINK1‑PARK2, 
and the downregulation of SIRT3 expression. The high expression of miR‑34a, miR‑34b and miR‑34c can lead to the aging of AECs. AEC, alveolar epithelial 
cell; GRP78, glucose regulatory protein 78; hTRT, human telomerase reverse transcriptase; hTR, human telomerase RNA; mtDNA, mitochondrial DNA; 
PINK1, PTEN‑induced putative kinase 1; PARK2, parkin RBR E3 ubiquitin protein ligase; ROS, reactive oxygen species; SASP, senescence‑associated 
secretion phenotype; SIRT3, NAD‑dependent deacetylase sirtuin‑3; miR, microRNA. 
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cell type specificity. In terms of mitochondrial dysfunction, 
TGF‑β is a pro‑fibrosis factor and TGF‑β stimulation of LFs 
decreases PINK1 levels and promotes mitochondria‑mediated 
phagocytosis as well as a low levels of myofibroblast differen‑
tiation (44). In addition, mitochondrial dysfunction of aging 
fibroblasts results in mTOR complex 1 (mTORC1) activation, 
which changes mitochondrial homeostasis and produces 
a large amount of ROS. ROS promotes DNA damage and 
enhances aging of LFs (77). The role of LFs and SASP in IPF 
is illustrated in Fig. 3.

4. Stem cell senescence and IPF

Stem cell dysfunction occurs in several aging‑associated 
diseases, including IPF. MSCs from patients with IPF are 
in a transitional state of senescence and induce senescence 
paracrine, which can induce senescence in normal fibroblasts. 
A study demonstrated that adult stem cells prevent PF progres‑
sion, repair lung injury and remodel lung tissue in animal 
models of PF (78,79). As MSCs are pluripotent, they can 
differentiate into a variety of cell types, including ATII cells, 
in response to specific stimuli (80).

Resident stem cells in the adult respiratory system have 
been identified, including Clara cell secreted protein (CCSP) 
and surfactant protein C‑positive bronchioalveolar stem cells, 

p63‑, Krt5‑ and/or Krt14‑positive basal cells, secretoglobin 
family 1A member 1‑positive Clara cells, tyrosine‑protein 
kinase Kit‑positive lung stem cells, E‑cadherin/leucine‑rich 
repeat containing G protein‑coupled receptor 6‑positive 
putative stem cells and ATⅡ cells that initiate a pro‑fibrotic 
cascade when the lung is damaged by persistent or repeated 
noxious stimuli, such as smoke, viruses, pollutants and genetic 
factors, and induces an abnormal environment to promote 
terminal differentiation of lung stem/progenitor cells from 
favoring local alveolar tissue regeneration to effector or fibro‑
blast/myofibroblast development in IPF, ultimately promoting 
fibrosis progression (81).

ATⅡ cells function as alveolar progenitors and long‑term 
stem cells in the adult lung (82). Adult stem cells undergo 
dynamic changes after tissue injury. ATⅡ cells are adult 
alveolar stem cells that can differentiate into ATI cells 
during alveolar homeostasis and post‑injury repair and 
are involved in the process of lung repair (83). A previous 
study found that alveolar stem cell differentiation involves 
a transitional state (84) and a pre‑ATI cell transitional state 
was identified in lung tissue regeneration. This unique state 
is associated with enrichment of cellular senescence and 
defective alveolar regeneration pathways, as well as the 
prolonged senescence and stress mediated pathway leading 
to pathological processes such as fibrosis. Furthermore, there 

Figure 3. Aging mechanism of lung fibroblasts. Epigenetic changes mainly involve DNA methylation, histone post‑translational modification and miR regula‑
tion. Abnormal DNA methylation can inhibit or activate the gene expression leading to fibrosis and change the mRNA expression of genes. The up regulation of 
histone H3 and H4 acetylation can promote pulmonary fibroblast fibrosis. The transformation of PF fibroblasts into pulmonary muscle fibroblasts is a key part 
of PF. Inhibition of autophagy may lead to the transformation of fibroblast phenotype into myofibroblast, and Beclin‑1 is a key autophagic protein and a major 
positive regulator of autophagy. Gene deletion of autophagic protein LC3 or Beclin‑1 enhanced the expression of fibronectin, myofibroblast differentiation 
marker and SMA in LFs. The upregulation of PTEN in PTEN/AKT/mTOR signal pathway can downregulate autophagy of myofibroblasts. Upregulation of 
ROS and PINK1 signaling pathway leads to mitochondrial dysfunction related to autophagy. PINK1, PTEN‑induced putative kinase 1; ROS, reactive oxygen 
species; SASP, senescence‑associated secretion phenotype; VIMFL, vimentin intermediate fill; JAK2, Janus kinase 2; STST3, signal transduction activator 3; 
miR, microRNA. 
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is a transition between ATI and ATⅡ cells. These transition 
states are associated with abnormal epithelial cells, which 
show DNA damage response and express aging related genes 
on the way to ATI cells and are related to the defects of 
human pulmonary fibrosis (84). Metabolic lesions are associ‑
ated with progressive PF (84). 

Aging affects all cells, including MSCs. B‑MSCs share 
many features with lung resident progenitor cells and have 
anti‑inflammatory and immunomodulatory properties (85). 
A study demonstrated the ability of MSCs to suppress inflam‑
mation, decrease fibrosis and prolong survival in preclinical 
PF models (79). Tracking of radiolabeled cells revealed that 
when administered intravenously, MSCs primarily localize 
to the lung, followed by the liver and other organs (86). IPF 
is characterized by interstitial inflammation and epithelial 
cell damage, followed by fibroblast proliferation and collagen 
deposition. Preferentially located at sites of inflammation, 
MSCs inhibit ongoing damage and contribute to tissue 
repair (87). It has been suggested that several pathways are 
altered in aging MSCs and lungs, which may increase the risk 
of IPF (88). Scientists have observed IPF‑associated extrapul‑
monary effects in B‑MSCs. Compared with B‑MSCs from 
age‑matched controls, B‑MSCs from patients with IPF exhibit 
increased cell size, morphological changes, DNA damage 
and telomere shortening with replicative senescence (89). In 
addition, B‑MSCs from patients with IPF exhibit mitochon‑
drial dysfunction and impaired recovery under in vitro and 
in vivo stimulation (89). Senescent B‑MSCs have decreased 
paracrine capacity by senescent fibroblasts, suggesting a 
potential link between senescent B‑MSCs and later onset of 
the IPF (89). In addition, systemic transfer of MSCs effec‑
tively decreases BLM‑induced lung injury and fibrosis by 
downregulating nitric oxide metabolites, pro‑inflammatory 
factors and angiogenic cytokines (90).

Elucidating the association between stem cell aging and PF 
may provide novel potential treatment options for PF.

5. SASP

There is an association between senescent AECs and 
fibroblasts. Senescent AECs promote activation of LFs by 
increasing expression of SASP. SASP includes pro‑inflam‑
matory cytokines (such as IL‑6 and IL‑8), growth factors 
[such as TGF‑β and granulocyte‑macrophage (GM) 
colony‑stimulating factor (CSF)], chemokines [such as 
C‑X‑C motif chemokine ligand (CXCL) 1, CXCL3 and 
CXCL10] and matrix remodeling enzymes (such as metal‑
loproteinases) (91). SASP has potent autocrine and paracrine 
effects and regulates the tissue microenvironment through 
biological processes, including cell proliferation, migration, 
inflammation, fibrosis, ECM degradation, neovasculariza‑
tion, tissue repair and regeneration, senescence clearance 
and EMT (92). SASP creates an inflammatory microen‑
vironment for clearance of senescent cells and promotes 
senescence of surrounding cells in a paracrine manner. 
The SASP factor varies in different cell types and senes‑
cence‑induced stimuli (92). Fibroblasts and myofibroblasts 
exhibit stress and senile phenotypes while secreting a range 
of cytokines, including pro‑inflammatory cytokines (such 
as TNF‑α, TGF‑β, IL‑1β, IL‑6, IL‑8, IL‑10 and IL‑18), 

chemokines (such as CXCL1 and monocyte chemoat‑
tractant protein‑1), growth regulators [such as fibroblast 
growth factors, connective tissue growth factor (CTGF), 
GM‑CSF and macrophage‑CSF], matrix metalloproteinases 
(such as MMP‑2, MMP‑3, MMP‑9, MMP‑10 and MMP‑12) 
and leukotrienes (LTs; such as LTA4, LTB4, LTC4, 
LTD4) (93,94). These cytokines serve a key role in regulation 
of PF and inflammation (95). IL‑18 promotes senescence of 
LFs and expression of SASP in lung tissues by downregu‑
lating Klotho expression. Furthermore, neutralizing IL‑18 
by IL‑18 binding protein partially inhibits aging of LFs (94). 
TGFβ‑1 is a key component of SASP. By upregulating the 
cell cycle inhibitors p21, p27 and p15, TGFβ induces the 
senescence of adjacent cells in a paracrine manner through 
the SMAD signaling pathway (96).

Aging ATII cells express SASPs such as PDGF, TNF, 
endothelin‑1, CTGF, osteopontin, CXCL12 and plasminogen 
activator inhibitor 1 (PAI‑1), inducing massive proliferation 
and activation of IPF LFs and myofibroblasts (97). One salient 
component is PAI‑1 which is highly expressed in ATII cells. 
Overexpression of PAI‑1 promotes accumulation of extracel‑
lular stroma and acts as a strong inducer of cell senescence, 
especially in ATII cells. TGF‑β1 increases PAI‑1 expression 
through a variety of signaling pathways (98), such as TGF‑β1, 
induce ATII‑cell senescence, and that its prosenescent effects 
are mediated by PAI‑1 (99), TGF‑β1 induces PAI‑1 production 
in alveolar macrophages through activin receptor‑like kinase 5 
activation and Smad3 phosphorylation (100).

Extracellular vesicles (EVs) have been recognized as a 
type of SASP. Derived from plasma membranes, EVs have 
diameters ranging from 30 nm to 5 µm and are composed of 
a phospholipid bilayer. EVs effectively promote cell signaling 
and differentiation by transferring bioactive substances, 
including miRNA, mRNA and lipids. IPF LF‑derived EVs 
transfer miR‑23b‑3p and miR‑494‑3p to lung epithelial 
cells (101,102). These miRNAs inhibit production of mito‑
chondrial ROS, causing mitochondrial dysfunction, DNA 
damage response and accelerated cell senescence (101). The 
expression of miRNAs in LF‑derived EV was correlated 
with lung function of the donor. The development of fibrosis 
is largely regulated by SASP. Targeted inhibition of specific 
miRNA species or blocking secretion of specific EVs from LF 
may provide new therapeutic options (101). 

SASP is involved in lung fibrosis by recruiting a large 
number of inflammatory cells into tissue and organs. In 
addition, SASP promotes the synthesis of ECM proteins by 
stimulating proliferation and transformation of fibroblasts into 
myofibroblasts (101). 

The senescence of AECs is controlled by the PTEN/NF‑κB 
pathway; this is a feature of PF. NF‑κB is a key target of the 
PTEN/PI3K/Akt pathway, a signal transduction pathway that 
triggers cytokine release in senescent cells, thereby contrib‑
uting to the adjacent cellular microenvironment (103). Other 
studies have showed that NF‑κB and p38 MAPK pathways are 
involved in regulation of SASP (104,105).

In conclusion, SASP directly or indirectly promotes cell 
senescence or lung fibrosis via various signaling pathways, 
such as blocking the Klotho, SMAD and PTEN/NF‑κB path‑
ways. Further study of this mechanism is key for the treatment 
of IPF.
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6. Interaction between senescent ATII, LF and other cell 
types in IPF

Senescent cells have two effects: They can be physiologically 
beneficial for tissue repair but they can also be pathologically 
harmful in age‑associated diseases such as lung fibrosis (91). 
One of the key pathogenic mechanisms of PF is the inability of 
ATII cells to repair damaged epithelial cells due to cell death, 
ineffective proliferation, migration and differentiation, leading 
to interstitial scarring. Apoptosis of ATII cells directly encour‑
ages the progression of PF. Abnormal aging and apoptosis in 
ATII cells during acute lung damage are initiators of fibrosis. 
AECs during acute lung damage activate fibroblasts to differen‑
tiate into myofibroblasts, which form fibroblast foci and secrete 
large amounts of ECM (91). Aging AECs promote activation 
of LFs by increasing expression of SASP. One hypothesis on 
the origin of myofibroblasts is EMT (91). Cells lose the proper‑
ties of epithelial cells and acquire properties of mesenchymal 
cells (106). The Wnt pathway is potentially involved in EMT. 
In ATII cells with overexpressed Wnt‑1‑induced signaling 
proteins, secretions of certain pro‑fibrosis markers, such as 
PAI‑1, are increased. These markers induce EMT in adjacent 
epithelial cells. In turn, abnormally aging ATII cells activate 
fibroblasts by secreting chemokines. Myofibroblasts produce 
mediators that induce epithelial cell apoptosis, thereby 
destabilizing epithelial cells and increasing alveolar injury. 
Moreover, apoptosis of AECs leads to formation of gaps 
between alveoli (107). Myofibroblasts are the activated form of 
fibroblasts that migrate into the interstitial space and activate 
further fibroblast proliferation, leading to increased apoptosis 
in ATII cells (108), further promoting lung fibrosis.

Kadota et al (109) demonstrated accelerated epithelial cell 
mitochondrial damage and senescence during IPF. LFs from 
patients with IPF were found to induce cellular senescence via 
EV‑mediated transfer of pathogenic cargo to lung epithelial 
cells. The transfer of miR‑23b‑3p and miR‑494‑3p via IPF 
LF‑derived EVs also induced mitochondrial damage and senes‑
cence in lung epithelial cells. In addition, levels of miR‑23b‑3p 
and miR‑494‑3p from IPF LF‑derived EVs correlated posi‑
tively with disease severity of IPF. Furthermore, LFs from 
patients with IPF were found to induce cellular senescence via 
EV‑mediated transfer of pathogenic substances to AECs. IPF 
LF‑derived EVs increased mitochondrial ROS and associated 
mitochondrial damage in lung epithelial cells, leading to acti‑
vation of the DNA damage response and subsequent epithelial 
senescence. In addition, miR‑23b‑3p and miR‑494‑3p, released 
from fibroblasts as EV cargo, were transferred to lung epithe‑
lial cells, where they induced mitochondrial damage and 
cellular senescence in HBECs. Scientists have identified a 
novel EMT interaction mediated by LF‑derived EVs (110). 
This interaction induces mitochondrial damage and senes‑
cence in epithelial cells during the pathogenesis of IPF (110). 
Aging in ATⅡ cells also contributes to PF. E3 ubiquitin ligase 
FBW7 binds TPP1, promotes TPP1 multisite ubiquitination, 
accelerates degradation, triggers telomere unpacking and 
DNA damage responses, as well as leads to stress‑associated 
telomere dysfunction, which ultimately inhibits ATⅡ stem 
cell proliferation and mediates stress‑induced ATⅡ stem cell 
senescence and PF (111). The proportion of ATⅡ in total AECs 
is significantly decreased in patients with IPF (112).

7. Senotherapeutics

Currently, the only FDA‑approved medications for treat‑
ment of IPF are pirfenidone and nintedanib (113). While 
both drugs slow progression of fibrosis in certain patients 
with IPF, they do not halt or reverse progressive fibrosis. 
Experiments are ongoing and numerous clinical trials have 
been conducted (114‑116). A better understanding of cellular 
senescence lung fibrosis may provide novel therapeutic strate‑
gies for the prevention and treatment of aging‑related PF.

Experiments have focused on the characteristics and 
signaling pathways of aging, but the current results are limited. 
Most research studies are in their early stages. There is also an 
increasing focus on developing anti‑aging treatments known 
as senotherapy. In principle, aging treatment strategies are 
broadly divided into two categories: Anti‑aging strategies that 
selectively remove senescent cells and homogeneous strategies 
that block the aging phenotype by inhibiting SASP without 
damaging cells (117‑119). These potential therapeutics are 
summarized in Table I.

Senolytics
Therapeutic interventions for autophagy. Rapamycin 

attenuates TGF‑β‑induced differentiation of myofi‑
broblasts and simultaneously activates autophagy by 
inhibiting mTORC1 (77). Berberine improves BLM‑induced 
IPF by antagonizing the TGF‑β1‑mediated SMAD and the 
FAK‑dependent PIK3/Akt‑mTOR signaling pathways (120). 
Sphingosine 1‑phosphate inhibits activation of mTORC, 
increases autophagy and decreases progression of PF (121).

Therapeutic interventions for ER stress. Chronic ER 
stress‑mediated apoptosis in ATII cells and macrophages is a 
key pathogenic mechanism of IPF (122,123). Perera et al (124) 
showed that BLM increases ER stress and apoptosis in ATII 
cells and lung macrophages. Moreover, this effect is signifi‑
cantly ameliorated by in vivo blockade of the calcium‑activated 
potassium channel KCa3.1 with senicapoc, a KCa3.1 ion 
channel blocker. Blocking KCA3.1 ion channels decreased 
ER stress and apoptosis in ATII cells and macrophages, which 
may help to reduce IPF pathology and improve lung function.

Decreasing ER stress and apoptosis in ATII cells reverse 
fibrosis. Liu et al (125) showed that 4‑phenylbutyrate, a chem‑
ical ER chaperone, ameliorates ER stress, interstitial damage, 
collagen deposition and apoptosis in unilateral ureteral 
obstruction rat kidney. Research (126) has demonstrated 
reduced ER mitochondrial tethering in in vitro experimental 
ER stress and in vitro IPF ATII experiments in the presence of 
decreased expression of phospholipase acidic cluster classifi‑
cation protein 2 (PACS2). The levels of PACS2 are affected by 
its interaction with transient receptor potential cation channel 
subfamily V member 1 (TRPV1) and can be experimentally 
modified using capsaicin (CPS) and recovered following CPS 
treatment. Thus, therapeutic targeting of the PACS2/TRPV1 
axis represents a novel approach to epithelial protection in 
IPF (126). Some ER stress inhibitors target lung cells and most 
experiments are in vitro (127,128). Therefore, to the best of our 
knowledge, the side effects of inhibiting ER stress in treatment 
of fibrosis are not mentioned in the literature. This requires 
further study on the side effects of ER stress inhibitors on 
normal cells.
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Table I. Experimental potential senolytic drugs that target senescent alveolar epithelial cells and lung fibroblasts.

  Potential  
First author/s, year Target therapeutic drugs Mechanism (Refs.)

Le Saux et al, 2013; Telomere Raloxifene Induces telomerase activity (129)
Calado et al, 2009;   and maintains telomere length (130)
Arish et al, 2019;  Androgens  (131)
Townsley et al, 2016  GRN510 The small molecule telomerase (132)
   activator GRN510 attenuates
   fibrosis in mice with bleomycin‑
   induced PF
  Danazol Danazol, a synthetic androgen, 
   increases telomere length and
   stabilizes diffusing capacity for
   carbon monoxide and forced
   vital capacity
Sanders et al, 2014; Epigenetics Vorinostat Inhibits ubiquitin‑histone (139)
Korfei et al, 2018;   deacetylase and induces (140)
Mora et al, 2017;   apoptosis of fibroblasts (141)
Coward et al, 2014;  5'‑azacytidine Decreases DNA methylation (142)
Korfei et al, 2015   and fibrosis (138)
  BIX‑01294 and Inhibitors of euchromatic 
  3‑deazaneplanocin histone‑lysine N‑methyltransferase
   2 and enhancer of zeste homolog
   2 histone methyltransferases;
   increase cyclooxygenase
   ‑2 expression in IPF fibroblasts,
   which may enhance production of
   anti‑fibrotic prostanoid PGE2
  LBH589 and SAHA LBH589 downregulates mRNA 
   expression of ACTA2 and ECM
   genes COL1A1, COL3A1 and
   FN in primary IPF fibroblasts
   and interferes with fibroblast‑to‑
   myofibroblast differentiation.
   SAHA induces apoptosis of
   IPF myofibroblasts, an effect
   that is mediated, at least in part,
   by upregulation of
   pro‑apoptotic gene Bcl‑2
   antagonist/killer 1 and
   downregulation of anti‑
   apoptotic gene Bcl‑xL
  Panobinostat The pan‑histone deacetylase‑ 
   inhibitor panobinostat decreases
   profibrotic phenotypes, as well as
   inducing cell cycle arrest and
   apoptosis in IPF fibroblasts
Sosulski et al, 2017; Mitochondria Hexafluoro Increases the expression of (47)
Sato et al, 2016   NAD‑dependent deacetylase (145)
   sirtuin‑3
  Metformin Prevents PF with NADPH 
   oxidase 4 inhibitors
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Therapeutic interventions for telomerase function. 
Drugs that target telomeres have therapeutic potential for 
lung fibrosis. Le Saux et al (129) demonstrated that acti‑
vation of telomerase with the small molecule telomerase 
activator GRN510 resulted in attenuation of lung fibrosis 
in BLM‑induced fibrosis mice, showing decreased collagen 
deposition and loss of lung function and protecting lung 
epithelial cells from senescence. The estrogen receptor 
modulator raloxifene and androgens have been used to induce 
telomerase activity and increase telomere length (130). In a 

prospective study, danazol, a synthetic androgen, was shown 
to increase telomere length (131). Danazol was also found to 
increase telomere length and stabilize forced vital capacity 
and diffusing capacity of carbon monoxide in a small‑scale 
clinical trial (132). However, hepatotoxicity and worsening 
PF associated with long‑term use of danazol has been 
reported following danazol initiation and withdrawal (133). 
Therefore, more studies need to be conducted for effec‑
tive interventions concerning telomerase function in lung 
fibrosis.

Table I. Continued.

  Potential  
First author/s, year Target therapeutic drugs Mechanism (Refs.)

Liu et al, 2016 ER 4‑phenylbutyrate  A chemical ER chaperone that (125)
   ameliorates ER stress, interstitial
   damage, collagen deposition and
   apoptosis in unilateral ureteral
   obstruction rat kidney
Romero et al, 2016; Autophagy Rebamycin Inhibits mTOR complex 1 (72)
Lavieu et al, 2006;   and activates autophagy (121)
Lawson et al, 2008  Sphingosine Inhibits activation of mTOR (122)
  1‑phosphate complex and increases autophagy
  Berberine Antagonizes TGF‑β1‑mediated 
   PIK3/Akt/mTOR signaling
   and increases autophagy
Lehmann et al, 2017; SASP Dasatinib and Inhibit tyrosine kinases, induce (149)
Feng et al, 2019  quercitin  clearance of senescent cells, (151)
   decrease fibrosis and SASP
   production.
  Citrus basic Downregulates expression of 
  extract SASP factors in etoposide‑
   induced fibroblasts by
   activating cyclooxygenase 2
Glassberg et al, 2017; Stem cell MSC intravenous Following in vivo transplantation, (159)
Zhao et al, 2021 transplantation injection MSCs home in on injured lung (156)
   tissue, release paracrine factors
   and extracellular vesicles,
   regulate function of immune
   cells, decrease the local
   inflammatory response, inhibit
   fibrous proliferation and promote
   endogenous lung injury resistance.
   MSCs decrease bleomycin‑induced
   lung tissue inflammatory response,
   cell infiltration and cytokine
   expression, extracellular matrix
   production and collagen
   deposition and improve Ashcroft
   score

IPF, idiopathic pulmonary fibrosis; SAHA, suberoylanilide hydroxamic acid; ER, endoplasmic reticulum; MSC, mesenchymal stem cell; 
SASP, senescence‑Associated Secretory Phenotype. 
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Therapeutic interventions for epigenetic changes. In lung 
remodeling and repair, druggable targets include enzymes 
that catalyze DNA methylation and demethylation, as well 
as enzymes that catalyze post‑translational modifications of 
histones and non‑coding RNAs (miRNAs and long non‑coding 
RNAs) (134). Investigating the role of epigenetic factors in 
development of IPF may provide novel therapeutic options. 

DNMT inhibitor 5‑aza‑2'‑deoxycytidine (decitabine) 
enhances miR 17‑92 expression and decreases expression of 
profibrotic genes including collagen 1A1 and CTGF (134). Its 
effects are independent of DNA methylation that enhances 
apoptosis. Therefore, more selective inhibitors of DNMTs 
need to be studied to determine if altered DNA methylation is 
involved in the pathogenesis of IPF.

Histone post‑translation modifications, such as acetyla‑
tion and methylation, are key regulators of transcription and 
comprise crucial components of the ‘histone code’ (135). 
HATs and HDAC regulate histone acetylation. Histone 
lysine or arginine methyltransferase and histone demethylase 
regulate histone methylation. HDAC alters differentiation of 
lung myofibroblasts (136). Moreover, treatment of fibroblasts 
with HDAC inhibitors increases histone H3 and histone H4 
acetylation close to the promoter of the Fas gene, influences 
Fas expression and recovers sensitivity to Fas‑mediated apop‑
tosis (63,137). In fibroblasts from patients with IPF, application 
of HDAC inhibitors LBH589 and suberoylanilide hydroxamic 
acid (SAHA) increases expression of COX‑2 to levels similar 
to those observed in controls (64,138). The upregulation of 
the pro‑apoptotic gene Bcl‑2 antagonist/killer 1 and down‑
regulation of the anti‑apoptotic gene Bcl‑xL partially mediate 
SAHA‑induced apoptosis of IPF myofibroblasts, indicating 
that HDAC inhibitors may provide a novel therapeutic 
strategy in IPF by regulating myofibroblast susceptibility to 
apoptosis (139). A few studies have demonstrated that HDAC 
inhibitors inhibit activation and proliferation of cultured fibro‑
blasts and attenuate fibrosis in multiple organs in in vivo animal 
models (137,139,140). The pan‑HDAC‑inhibitor panobinostat 
decreases profibrotic phenotypes and induces cell cycle arrest 
and apoptosis in IPF fibroblasts, thus indicating more efficiency 
than pirfenidone in inactivating IPF fibroblasts (140). The 
aforementioned study showed that HDAC inhibitors promote 
apoptosis of LF, while other treatments of IPF inhibit apoptosis 
of epithelial cells. Vorinostat, a pan‑HDAC inhibitor, decreases 
lung fibrosis by promoting apoptosis of myofibroblasts, further 
improving lung function in mouse model of lung fibrosis (141). 
Some preclinical evidence showed that HDAC inhibitors have 
beneficial effects on IPF, for example, two inhibitors of the 
euchromatic histone‑lysine N‑methyltransferase 2 and enhancer 
of zeste homolog 2 HMTs (BIX‑01294 and 3‑deazaneplanocin) 
increase COX‑2 expression in IPF fibroblasts, which may 
enhance production of PGE2, an anti‑fibrotic prostanoid (142).

As highlighted by a recent review, studies discovered that 
non‑coding RNAs may be a potential treatment for IPF (60,65). 
Many miRNAs(miR‑21, miR‑133a, miR‑106b‑5p) associated with 
lung fibrosis regulate TGF‑β1 expression or function, inflamma‑
tion, actin expression or cell signaling (65,143,144). Moreover, 
blocking upregulated lung ‘fibro‑miRs’ or restoring downregu‑
lated ‘anti‑fibro‑miRs’ attenuates the lung fibrotic response (60).

Epigenetic marks are cell‑type specific, yet, to the best 
of our knowledge, most research in this area has involved 

whole‑lung tissue because isolation of sufficient material for 
specific cell types is often not feasible in human subjects. 
Another challenge with epigenomics is to integrate the epigen‑
etic mechanisms that affect transcription and translation.

Therapeutic interventions for mitochondrial dysfunc-
tion. Metformin prevents PF via NOX4 inhibition (145). 
Metformin‑mediated AMPK activation inhibits TGF‑β‑induced 
NOX4 expression. Rangarajan et al (146) found that metformin, 
as well as other AMPK activators, reverse lung fibrosis by 
promoting inactivation and apoptosis of myofibroblasts due to a 
lack of AMPK activation. The antifibrotic effects of normal SIRT3 
expression levels in AECs and fibroblasts have potential therapeutic 
applications by decreasing formation of destructive cellular ROS 
and may be used in treatment of IPF. Furthermore, hexafluoro (a 
novel fluorinated synthetic honokiol analogue) maintains SIRT3 
levels in LFs treated with TGF‑β1 cytokines. This compound 
partly decreases TGF‑ß‑induced mitochondrial oxidative stress 
and activation of fibroblasts via SIRT3 stimulation. In addition, 
hexafluoro decreases levels of profibrotic factors such as α‑SMA 
and fibronectin, which promote EMT in lung fibrosis (147).

Senomorphics
Therapeutic interventions for SASP. Removal of senescent 

cells decreases expression of SASP factors in regulating fibrotic 
pathogenesis of IPF. Targeting SASP components may be a 
feasible strategy to block detrimental functions of senescent cells 
of IPF. SASP, which is composed of cytokines, modulates the 
tissue microenvironment through various biological processes, 
including cell proliferation and migration, inflammation, fibrosis, 
ECM degradation, neovascularization and paracrine and auto‑
crine pathways, as well as EMT (103). To investigate if SASP 
regulators decrease lung fibrosis, Justice et al (148) conducted a 
two‑center, open‑label study of dasatinib (D) + quercetin (Q), a 
senolytic, in patients with IPF to evaluate the feasibility of senolytic 
intervention. D is a tyrosine kinase inhibitor, while Q is a natural 
product that targets Bcl‑2, insulin/insulin‑like growth factor 1 
and hypoxia‑inducible factor 1α SCAP network components. 
It selectively eliminates senescent fibroblasts in BLM‑induced 
fibrosis mouse models (95,148). A previous study reported that 
D + Q inhibits tyrosine kinase, induces clearance of senescent 
cells, decreases fibrosis and inhibits production of SASP (149). 
Furthermore, D + Q eliminates the anti‑apoptosis effect of fibrotic 
fibroblasts induced by Fas ligand or TNF‑associated apop‑
tosis‑inducing ligand, further reversing PF induced by BLM and 
decreasing mortality rate, making D + Q a potential therapeutic 
target for IPF (150). Citrus basic extract downregulates expression 
of SASP factors in etoposide‑induced fibroblasts by activating 
COX‑2 (151). Shentu et al (152) used human MSC‑derived 
EVs (mEVs) to inhibit TGF‑β1 and stimulate both normal and 
IPF myofibroblast differentiation. Their findings demonstrated 
anti‑myofibroblastic effects of Thy‑1‑mediated mEV uptake 
and anti‑myofibroblast in IPF fibroblasts and revealed that 
mEV‑enriched miRs may mediate these effects.

mEVs represent a promising cell‑free therapeutic approach 
for an array of disorders. Human bronchial epithelial cell 
(HBEC)‑derived EVs contain a variety of miRNAs, including 
miR‑16, miR‑26a, miR‑26b, miR‑141, miR‑148a and miR‑200a 
(153). By attenuating Wnt signaling, these miRNAs inhibit 
TGF‑β1‑mediated induction of both myofibroblast differentia‑
tion and lung epithelial cellular senescence. However, this effect 
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in HBEC EVs is more pronounced than the effects observed in 
mEVs (153). Kadota et al (153) demonstrated that intratracheal 
administration of HBEC EVs attenuates BLM‑induced lung 
fibrosis. To the best of our knowledge, however, there is no 
appropriate in vitro ATII culture system to prepare sufficient 
quantities of ATII EVs for injection therapy.

Stem cell transplantation. Cell therapy for lung diseases is 
developing rapidly. After tissue damage, MSCs are activated 
and recruited to the injured site. MSCs secrete bioactive 
molecules, regulate local immune response and establish a 
microenvironment to promote regeneration (154). Phase 1b 
non‑randomized non‑placebo clinical trials involving stem 
cells and a clinical study (155,156) have been performed using 
lung stem/progenitor ATII cells (155,157‑159). Data from 
these trials support the safety of transplantation of MSCs or 
ATII cells in patients with IPF of different severity levels. 
Furthermore, Zhao et al (156) systematically reviewed 36 
preclinical studies that used MSCs to treat BLM‑induced 
acute lung injury and PF in rodent models. They found that 
MSCs significantly improve BLM‑induced PF and suggested 
that MSCs could be a potential treatment for both IPF and 
virus‑induced PF. In addition, intravenous injection of MSCs is 
feasible and safe for the treatment of patients with moderate to 
severe IPF (160). It is challenging to evaluate parameters such 
as tissue origin, cell type and delivery method in large‑scale 
human studies because these parameters determine the effect 
of cell therapy. Poggio et al (161) compared intervention 
strategies of MSCs administered once and twice weekly and 
reported that repeated administration has more potent immu‑
nosuppressive effects on T cells (primarily CD8+ T cells). In a 
murine model of BLM‑induced PF, repeated administration of 
MSCs (three times/3 days) had comparable antifibrotic effects 
to the continuous administration of pirfenidone (161).

8. Conclusion

IPF is a progressive and fatal diffuse interstitial lung disease 
that has a poor prognosis and its primary mechanism remains 
unclear. Currently, there is no effective treatment for IPF other 
than lung transplantation.

IPF is an aging‑associated lung disease in which LF 
and AEC senescence play a complex role in pathogenesis. 
Numerous studies (16‑20,24‑28,31‑34,41) have revealed 
that ATII cell senescence and apoptosis are associated with 
ER stress and autophagy, telomere damage, mitochondrial 
dysfunction and epigenetic changes, leading to development of 
PF. The activation of LF and deposition of ECM proteins are 
key steps in the development of IPF. Epigenetic changes and 
reduced activation of autophagy promote myofibroblast differ‑
entiation, ultimately leading to PF. Aging AECs promote LF 
activation by increasing expression of SASP, thereby increasing 
occurrence and development of PF. In short, cell senescence is 
an important mechanism of IPF pathogenesis (5,9,54).

AECs (primarily ATII cells) and LF have therapeutic 
pathways and the same pathogenic pathways in the process 
of mediating PF. These pathways may act as potential new 
therapeutic targets for PF in future. More efforts on clinical 
testing need to be performed to validate promising therapeutic 
compounds. 

Over the past decades, scientists have explored the mecha‑
nisms that lead to aging, damage and fibrosis of lung cells and have 
yielded useful insights (3,5,6,9,12,15,19,53,95). However, the exact 
mechanism of cellular senescence remains unclear and requires 
further research. Aging affects not only different types of cell in 
the lungs but also cells in other organs. The treatment of lung cell 
senescence is being actively explored, but whether the molecular 
mechanism involved in lung cell senescence therapy adversely 
affects normal and aging cells of extrapulmonary organs remains 
unclear. It is difficult to treat a specific pathogenic target accu‑
rately, because the expectation of this treatment is to promote the 
apoptosis of lung senescent cells and the proliferation of normal 
lung cells. It is worth exploring whether targeted therapy drugs 
can be developed that accurately target disease‑causing senescent 
cells in the lung. Stem cell transplantation has been a hot research 
topic in recent years. Existing research has advanced in mouse 
models of BLM‑induced PF and it may provide new ideas for the 
treatment of IPF. Novel therapies targeting cellular senescence 
may provide new treatment strategies for IPF and improve 
survival and quality of life for patients with IPF.
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