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Abstract. During liver surgery and transplantation, periods of 
partial or total vascular occlusion are inevitable and result in 
ischemia‑reperfusion (IR) injury. Nanomedicine uses the latest 
technological advancement, which has emerged from interdis‑
ciplinary efforts involving biomedical sciences, physics and 
engineering to protect and improve human health. Antioxidant 
nanoparticles are potential therapeutic agents. The present 
study investigated the effects of cerium oxide (Co) administra‑
tion and sevoflurane anesthesia on liver tissue with IR injury. 
A total of 36 rats were randomly divided into control, Co, 
IR, IR‑Sevoflurane (IRS), Co + IR and Co + IRS groups. In 
the IR, IRS and Co + IRS groups, hepatic IR was induced. 
Intraperitoneal Co was administered to the Co groups 30 min 
before ischemia. Sevoflurane was administered to the IRS 
and Co + IRS groups during IR injury. Liver tissue samples 
were examined under the light microscope by staining with 
hematoxylin and eosin. Thiobarbituric acid (TBARS) levels 
as well as catalase (CAT) and glutathione‑S‑transferase (GST) 
enzyme activity were evaluated in liver tissue samples. The IR 
group had considerably more hydropic degeneration, sinusoidal 
dilatation and parenchymal neutrophil infiltration than the Co, 
IRS, Co + IR and Co + IRS groups. CAT and GST enzyme 
activity were significantly higher in Co and Co + IR groups 
compared with the IR group. TBARS levels were significantly 
lower in Co, IRS, Co + IR and Co + IRS groups compared 
whit those in the IR group. Intraperitoneal injection of Co with 
sevoflurane decreased oxidative stress and damage to the liver.

Introduction

Hepatic ischemia‑reperfusion (IR) injury is a biphasic condi‑
tion defined by a transient interruption in the blood supply to 
the liver followed by rapid reperfusion (1). Despite develop‑
ments in liver surgery protocols, IR injury is a concern in 
hepatic surgery that has an impact on postoperative morbidity 
and mortality  (1). Therefore, it is a concern in hepatobi‑
liary surgery, particularly liver resection and transplantation 
surgery, in which graft dysfunction is still a problem (1). The 
best course of action remains a matter of debate.

Due to its intensive metabolic functions, the liver is highly 
sensitive to redox disturbance. Increased reactive oxygen 
species (ROS) have been related to a series of molecular events 
that result in hepatocellular injury (2). Therefore, antioxidants 
are being used in current research on the treatment of hepatic 
IR injury to avoid the formation of excessive ROS (3‑5).

Cerium oxide (Co) is one of several potent ROS scaven‑
gers and its antioxidant effects have piqued attention in the 
medical industry (6,7). Consequently, Co has been consid‑
ered a therapeutic agent not only in hepatic IR (8) but also 
to treat stroke (9), ovarian cancer (10), cardiomyopathy (11), 
sepsis (12), obesity (13), lower extremity (14), intestinal (15) 
and lung IR (16).

Volatile agents are an essential part of perioperative medi‑
cine and are present in almost every patient undergoing general 
anesthesia (17). Several anesthetic agents (such as sevoflurane, 
desflurane, isoflurane, halothane, enflurane and xanthine 
oxidase) have been shown in various organs of animal models 
to decrease oxidative damage and inflammation, as well as 
protect against IR injury (18‑20).

Sevoflurane is a halogenated volatile anesthetic that is one of 
the most commonly used for the induction and maintenance of 
general anesthesia in all age groups due to its ease of adminis‑
tration, versatility and stable hemodynamic profile (17).  Since 
isoflurane has a recovery time longer than that of sevoflurane 
and desflurane is more irritating to the airway, sevoflurane 
induction and recovery tend to be smoother and are associ‑
ated with fewer complications compared with isoflurane and 
desflurane (17,21,22).
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To the best of our knowledge, although the precise mecha‑
nism remains unclear, volatile anesthetics are hypothesized to 
lessen IR injury and oxidative stress to the liver by lowering 
inflammatory cytokine levels  (23). Sevoflurane inhibited 
cytokines more effectively compared with other volatiles (23). 
However, if Co nanoparticles prevent hepatic injury caused by 
IR under sevoflurane remains unclear. The present study aimed 
to investigate the combined effects of sevoflurane and Co on 
IR‑injured liver tissue using biochemical and histological 
examination.

Materials and methods

Animals. Procedures were approved by the Gazi University 
Ethical Committee of Experimental Animals (approval 
no. G.Ü.ET‑21.064) and performed at the Gazi University 
Animal Laboratory following the Guidelines for the Care 
and Use of Laboratory Animals, Ankara, Turkey (24). In the 
present study, a total of 36 female Wistar albino rats (age, 
5 months; weight, 250‑350 g), which were supplied by Gazi 
University Experimental Animals Research Center, were used. 
Animals were housed under identical environmental condi‑
tions and kept in a temperature/humidity controlled room 
(20‑21˚C, 45‑55%) under a 12/12‑hlight/dark cycle. Food and 
water were available ad libitum.

Experimental groups. A total of 36 rats were randomly 
assigned and equally (n=6) divided into six groups (Control, 
Co, IR, IRS, Co + IR and Co + IRS). All surgical procedures 
were performed under general anesthesia. An intramuscular 
injection of 50 mg/kg ketamine hydrochloride (500 mg/10 ml; 
Ketalar®vial; Parke‑Davis; Pfizer, Inc.) +10  mg/kg xyla‑
zine hydrochloride (Alfazyne® vial 2%; Ege Vet, Ltd.) was 
administered for anesthesia. After 30 min, the procedure was 
performed under a warming lamp with the rats in the supine 
position. In the surgical groups, after skin asepsis was achieved, 
a midline abdominal incision was applied to the rats and the 
porta hepatis was explored. In the IR groups, an atraumatic 
micro clamp was placed on the porta hepatis for 120 min, then 
the clamp was withdrawn, and the liver was re‑perfused for 
another 120 min. In Co groups 0.5 mg/kg Co was adminis‑
tered intraperitoneally. In all groups, liver tissue of the rats 
was excised after having been sacrificed under anesthesia and 
the experiment lasted 270 min in total.

In the control group, rats were anesthetized 30 min before 
laparotomy. A midline laparotomy was the sole surgical 
procedure without any additional intervention. Blood 
samples (5‑10 ml) were taken after 4 h follow‑up. The liver 
tissue of rats was excised after having been sacrificed under 
anesthesia.

In the Co group, 0.5  mg/kg Co (Co aqueous nanopar‑
ticle dispersion, 100 ml; Sigma‑Aldrich; Merck KGaA) was 
administered intraperitoneally 30 min before laparotomy. 
Laparotomy was the sole surgical procedure without hepatic 
ischemia intervention. At 4 h after the procedure, liver tissue 
of the rats was excised after having been sacrificed under 
anesthesia.

In the IR group, hepatic IR was performed following lapa‑
rotomy. Subsequently, the rats were sacrificed and liver tissue 
was excised.

In the IRS group, the anesthesia procedure was conducted 
on the rats in a transparent plastic box. Hepatic IR procedure 
was performed following laparotomy. During the ischemia 
period, anesthetic gas vaporizers were calibrated and set at 
a minimum alveolar concentration of 2.3% sevofluranein 
oxygen (Sevorane Likid; 250 ml; AbbVie Tıbbi İlaçlar San. ve 
Tic. Ltd. Şti.).

In the Co + IR group, following laparotomy, Co was 
administered (0.5 mg/kg) 30 min before the ischemia period 
and the liver was re‑perfused.

In the Co + IRS group, following laparotomy, Co was 
administered (0.5 mg/kg) intraperitoneally 30 min before 
ischemia. During the ischemia period, sevoflurane was applied 
with the 2.3% inspiratory concentration in a transparent plastic 
box and the liver was re‑perfused.

Anesthesia was maintained in the control, Co, IR and 
Co +IR groups, which did not receive sevoflurane, with 
injections of 20 mg/kg ketamine with 5 mg/kg xylazine if a 
positive reaction to surgical stress or intermittent tail pinch 
was observed. Following the end of the reperfusion period, all 
rats were anesthetized with ketamine (50 mg/kg) and xylazine 
(10 mg/kg) and sacrificed by collecting blood (5‑10 ml) from 
their abdominal aorta. After heartbeat and respiration ceased, 
rats were monitored for a further 2 min to confirm death. Liver 
tissue specimens were excised for subsequent biochemical and 
histopathological analysis.

Histopathological evaluation. Histopathological assessment 
was performed at the Department of Histology at Kirikkale 
University. After tissues were fixed in 10% formalin for 48 h 
at room temperature specimens were prepared with paraffin 
blocks. Tissue sections of 5‑µm stained with hematoxylin 
for 10 min and then in eosin for 5 min at room tempera‑
ture. The histopathological assessment and scoring were 
performed under light microscopy (magnification x100; Nikon 
Corporation). The same pathologist performed the histological 
evaluations in a blinded manner.

Each preparation was examined for hepatocyte 
degeneration, sinusoidal dilatation, pre‑necrotic cell and 
mononuclear cellular infiltration in the parenchyma. 
Histological testing semiquantitative evaluation technique 
used by Abdel‑Wahhab et al (25) was applied for interpreting 
the structural changes in hepatic tissues of control and treat‑
ment groups. According to this, a negative point (0) represents 
no structural changes; one positive point (1,+) indicates mild 
changes; two positive points (2,++) represent medium struc‑
tural changes and three positive points (3,+++) indicate severe 
structural changes.

Biochemical evaluation. The biochemical examination was 
performed at the Department of Medical Biochemistry at Gazi 
University. Oxidative stress and lipid peroxidation in liver 
tissue was evaluated by measuring thiobarbituric acid (TBA) 
reactive substance (TBARS) levels and catalase (CAT) and 
glutathione‑S‑transferase (GST) enzyme activity.

TBARS assay was performed to measure lipid peroxi‑
dation as previously described  (26). TBARS assay (CAS 
Number:122‑31‑6, Sigma Aldrich, Lot: MKBH2096V) is 
based on the reaction of malondialdehyde with TBA, which 
forms a pink pigment with an absorption maximum at 532 nm 
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in acidic pH and 1,1,3,3‑tetraethoxypropane was used as a 
standard MDA solution freshly in 0.1 M pH 7 TTRIS‑HCl 
buffer solution from concentrated TEP.

CAT activity is based on the measurement of absorbance 
decrease due to H2O2 (Sigma‑Aldrich H1009, CAS Number 
7722‑84‑1) consumption at 240 nm as described by Aebi (27).

GST enzyme activity was measured as described by 
Habig  et  al  (28). GST activity method is based on the 
measurement of absorbance increase at 340 nm due to the 
monitoring the absorbance increase of the GSH‑CDNB 
complex, which is the product of the GSH (L‑Glutathione 
reduced Sigma‑Aldrich G4251, CAS Number 70‑18‑8) and 
CDNB (1‑Chloro‑2,4‑dinitrobenzene Sigma‑Aldrich 138630 
CAS Number 97‑00‑7) reaction. The results were expressed 
in IU/mg protein for CAT and GST, nmol/mg protein for 
TBARS.

Statistical analysis. SPSS 20.0(IBM Corp.) was used for 
statistical analysis. Data were analyzed using Kruskal‑Wallis 
test followed by Dunn's test or one‑way ANOVA followed by 
post hoc Tukey's test. P<0.05 was considered to indicate a 
statistically significant difference. Data are expressed as the 
mean ± standard error.

Results

Histopathological results. Hydropic degeneration, sinusoidal 
dilation, necrosis and parenchymal mononuclear cell infiltration 
were significantly different between the groups (hydropic degen‑
eration; P=0.003, sinusoidal dilation; P=0.013, necrosis; P=0.006 
and parenchymal mononuclear cell infiltration; P=0.011; Table I).

In comparison with the control group (Fig. 1), hydropic 
degeneration was more common in IR (P<0.0001; Fig. 2). 

Table I. Histopathological data of liver tissue.

							       Kruskal 		
	 Control				    Co + IR	 Co + IRS	 Wallis		
Variable	 (n=6)	 Co (n=6)	 IR (n=6)	 IRS (n=6)	 (n=6)	 (n=6)	 P‑value	 Comparison	 P‑value

Hydropic 	 0.17±0.17a	 0.33±0.21a	 1.67±0.33	 0.83±0.31a	 0.50±0.22a	 0.50±0.22a	 0.003	 Control vs. Co	 0.642
degeneration								        Control vs. IR	 <0.0001
								        IR vs. Co	 0.001
								        IR vs. IRS 	 0.026
								        IR vs. Co +IR	 0.003
								        IR vs. Co +IRS 	 0.003
Sinusoidal 	 0.33±0.21a	 0.50±0.22a	 1.67±0.33	 0.83±0.17a	 0.50±0.22a	 0.67±0.21a	 0.013	 Control vs. Co	 0.649
dilation								        Control vs. IR	 0.001
								        IR vs. Co	 0.003
								        IR vs. IRS 	 0.029
								        IR vs. Co +IR	 0.003
								        IR vs. Co + IRS 	 0.010
Pycnotic nuclei	 0.17±0.17	 0.33±0.21	 1.00±0.26	 0.67±0.21	 0.33±0.21	 0.50±0.22	 0.120	 Control vs. Co	 1.000
								        Control vs. IR	 0.154
								        IR vs. Co	 0.545
								        IR vs. IRS 	 1.000
								        IR vs. Co+ IR	 1.000
								        IR vs. Co +IRS 	 1.000
Necrosis	 0.17±0.17a	 0.17±0.17a	 1.33±0.21	 0.83±0.21	 0.50±0.22a	 0.67±0.21a	 0.006	 Control vs. Co	 1.000
								        Control vs. IR	 0.001
								        IR vs. Co	 0.001
								        IR vs. IRS 	 0.118
								        IR vs. Co + IR	 0.012
								        IR vs. Co +IRS 	 0.040
Parenchymal 	 0.33±0.21a	 0.50±0.22a	 1.50±0.22	 1.00±0.26	 0.50±0.22a	 0.67±0.21a	 0.011	 Control vs. Co	 0.605
mononuclear 								        Control vs. IR	 0.001
cell infiltration								        IR vs. Co	 0.004
								        IR vs. IRS 	 0.128
								        IR vs. Co +IR	 0.004
								        IR vs. Co +IRS 	 0.014

Data are presented as the mean ± standard error. P‑values were calculated with Kruskal‑Wallis test. aP<0.05 vs. IR. Co, cerium oxide; IRS, 
ischemia‑reperfusion‑sevoflurane.
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Hydropic degeneration was found to be significantly lower 
in Co (Fig.  3), IRS (Fig.  4), Co + IR (Fig.  5) and Co + 
IRS (Fig. 6) groups compared with those in the IR group 
(P=0.001, P=0.026, P=0.003 and P=0.003, respectively; 
Table I).

Sinusoidal dilatation was more common in the IR than 
in the control group (P=0.001). Sinusoidal dilatation was 
significantly lower in the Co (Fig. 3), IRS (Fig. 4), Co + IR 

(Fig. 5) and Co + IRS (Fig. 6) groups compared with the IR 
group (P=0.003, P=0.010, P=0.003 and P=0.029, respectively; 
Table I).

Necrosis was more common in the IR group than in the 
control group (P=0.001; Table I). Necrosis was significantly 
lower in Co (Fig. 3), Co + IR (Fig. 5) and Co + IRS (Fig. 6) 
groups than in the IR group (P=0.001, P=0.012, P=0.040, 

Figure 1. Representative light microscopy of hepatic tissue from the control 
group. Normal liver tissue. Magnification, x100. HL, hepatic lobule; VC, 
vena centralis; k, Kupffer cell hyperplasia; *, sinusoid dilatation; ↓↓, infiltra‑
tion; →, hepatocyte; c, dikaryotic hepatocyte; con, congestion.

Figure 2. Representative light microscopy of hepatic tissue from the 
ischemia‑reperfusion group. HL, hepatic lobule; VC, vena centralis; e, 
erythrocyte; *, sinusoid dilatation; →, hepatocyte; c, dikaryotic hepatocyte. 
H&Ex100.

Figure 3. Representative light microscopy of hepatic tissue from cerium 
oxide group. HL, hepatic lobules; VC, vena centralis; e, erythrocyte; con, 
congestion; *, sinusoid dilatation; →, hepatocyte; c, dikaryotic hepatocytes; 
(*), necrotic and apoptotic hepatocyte; ↓↓, infiltration; dej, hydrophilic 
degeneration; inf, inflammation; k, Kupffer cell hyperplasia. H&Ex100.

Figure 4. Representative light microscopy of hepatic tissue from ischemia 
reperfusion‑sevoflurane group. HL, hepatic lobule; VC, vena centralis; e, 
erythrocyte; conj, congestion; *, sinusoid dilatation; inf, inflammation; →, 
hepatocyte; k, Kupffer cell hyperplasia. H&Ex100.

Figure 5. Representative light microscopy of hepatic tissue from cerium 
oxide‑ischemia reperfusion group. HL, hepatic lobule; VC, vena centralis; 
con, congestion; *, sinusoid dilatation; ↓↓, infiltration; →, hepatocyte; c, 
dikaryotic hepatocyte; k, Kupffer cell hyperplasia; inf, inflammation; conj, 
congestion; (*), necrotic and apoptotic hepatocyte. H&Ex100.

Figure 6. Representative light microscopy of hepatic tissue from cerium 
oxide‑ischemia reperfusion‑sevoflurane group. HL, hepatic lobule; VC, vena 
centralis; e, erythrocyte; conj, congestion; *, sinusoid dilatation; ↓↓, infiltra‑
tion; →, hepatocyte; c, dikaryotic hepatocyte; k, Kupffer cell hyperplasia. 
H&Ex100.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  25:  164,  2023 5

respectively; Table I) while it was similar between IR and IRS 
groups (Fig. 6; P=0.118; Table I).

Parenchymal mononuclear cell infiltration was signifi‑
cantly decreased in the Co, Co + IR and Co + IRS groups 
compared with that in the IR group (P=0.004, P=0.004 and 
P=0.014, respectively) while it was found similar between IR 
and IRS groups (P=0.128; Table I).

The number of pyknotic nuclei was similar between all 
groups (P=0.120; Table I).

Biochemical results
TBARS levels. A significant difference was found in levels 
of TBARS in the liver tissue between groups (P<0.0001; 
Table II). In the IR group, TBARS levels were higher than in 
the control group (P=0.001). TBARS levels were significantly 
lower in Co, IRS, Co + IR and Co + IRS groups compared with 
in the IR group (P<0.0001 for all; Table II).

CAT enzyme activity. CAT enzyme activity in liver tissue 
was significantly different between all the groups (P=0.016; 
Table II).CAT enzyme activity was found to be significantly 
decreased in the IR group compared with that in the control 
group (P=0.002; Table II). CAT enzyme activity in Co, Co + 
IR and Co + IRS groups was significantly increased compared 
with that in the IR group (P=0.006, P=0.004, P=0.043, respec‑
tively; Table II). There was no difference between IR and IRS 
groups (P=0.172; Table II).

GST enzyme activity. GST enzyme activity in liver tissue 
was significantly different between the groups (P=0.049; 
Table  II). In the IR group, GST enzyme activity was 

significantly lower than that in the control group (P=0.007) 
and increased compared with that in the Co and Co + IR 
groups (P=0.030 and P=0.019, respectively; Table II). There 
was no difference between IR and IRS and Co + IRS groups 
(P=0.296 and P=0.068, respectively; Table II).

Discussion

Hepatic IR is a severe issue that impairs graft function, partic‑
ularly in liver transplantation (1,29). It involves a short halt in 
blood flow to all or part of the liver, followed by rapid reperfu‑
sion, disrupting normal homeostatic systems and generating 
free radicals (1). Hepatocellular injury and mortality are asso‑
ciated with high levels of ROS and the consequent activation 
of an inflammatory cascade (2). Certain approaches, such as 
Co and inhalation anesthetics, may decrease the severity of 
IR‑induced harm (8,16). Co proven to be beneficial in fatty liver, 
fibrosis and drug‑induced hepatocidal toxicity, such as doxo‑
rubicin and paracetamol, in addition to IR models (6,30‑32). 
The present study investigated the protective effect of Co in 
a rat model of experimental hepatic IR damage. To the best 
of our knowledge, this is the first study to combine Co with 
sevoflurane in a liver IR model.

Several enzymes protect cells from IR‑induced oxidative 
damage by acting as intracellular antioxidants. While the 
present study did not directly measure ROS levels, it investi‑
gated TBARS levels and CAT and GST enzyme activities, as 
well as histological examination using H&E staining to see if 
Co had a therapeutic impact. The TBARS assay, which detects 
MDA, is a common laboratory test for determining the degree 

Table II. Biochemical data of liver tissue.

	 Control 	 Co 			   Co + IR 	 Co + IRS 	 ANOVA 		
Variable	 (n=6)	 (n=6)	 IR (n=6)	 IRS (n=6)	 (n=6)	 (n=6)	 P‑Value	 Comparison	 P‑value

Thiobarbituric 	 0.36±0.04a	 0.45±0.05a	 1.22±0.24	 0.55±0.07a	 0.44±0.05a	 0.47±0.04a	 0.0001	 Control vs. Co	 0.566
acid, nmol/ml								        Control vs. IR	 <0.0001
								        IR vs. Co	 <0.0001
								        IR vs. IRS 	 <0.0001
								        IR vs. Co + IR	 <0.0001
								        IR vs. Co + IRS 	 <0.0001
Catalase,	 2.69±0.37a	 2.51±0.40a	 0.93±0.23	 1.67±0.36	 2.60±0.50a	 1.93±0.35a	 0.016	 Control vs. Co	 0.737
IU/mgpro								        Control vs. IR	 0.002
								        IR vs. Co	 0.006
								        IR vs. IRS 	 0.172
								        IR vs. Co +IR	 0.004
								        IR vs. Co + IRS 	 0.043
Glutathione‑	 0.62±0.20a	 0.49±0.15a	 0.05±0.01	 0.26±0.11	 0.53±0.17a	 0.42±0.12	 0.049	 Control vs. Co	 0.523
S‑transferase, 								        Control vs. IR	 0.007
IU/mgpro								        IR vs. Co	 0.030
								        IR vs. IRS 	 0.296
								        IR vs. Co +IR	 0.019
								        IR vs. Co +IRS 	 0.068

Data are presented as the mean ± standard error. P‑values calculated with ANOVA. aP<0.05 vs. IR. Co, cerium oxide; IRS, ischemia‑reperfu‑
sion‑sevoflurane; pro, protein.
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of harm caused by free radicals generated by IR (33). Cellular 
antioxidant defense functions are supported by CAT and GST. 
These enzymes degrade superoxide anions and hydrogen 
peroxide while also preventing the formation of free radicals. 
Antioxidant efficacy is shown by high levels of CAT and GST 
in the blood  (34). In the present study, increased TBARS 
levels were present in the IR group and CAT and GST enzyme 
activities revealed the protective effect of Co on liver IR. In 
the hepatic tissue of rats that received Co before hepatic IR, 
there was a considerable decrease in TBARS levels, as well as 
a significant rise in CAT and GST enzyme activity compared 
with those in the IR group; this finding was consistent with 
earlier investigations (6,8).

The hepatoprotective effects of Co were confirmed by 
histological findings. The IR damage was linked with notable 
hepatocyte degradation, sinusoidal dilatation, parenchymal 
mononuclear infiltration and several regions of necrosis, 
according to histological examination. Treatment with CO2 h 
before hepatic IR prevented these alterations and protected 
hepatocellular architecture. These modifications showed that 
Co can reduce ROS‑induced cell death and thereby protect 
hepatocytes from IR‑induced damage. This may be attributed 
to excess caspase 3 and inflammatory cytokine levels as well 
as reduced macrophage infiltration in presence of Co (32).

Although most antioxidants used to treat liver disease 
have difficulty targeting hepatocytes, necessitating 
repeated administration at high concentrations (35), in the 
present study Co was administered once before ischemia. 
Yokel et al (36) revealed that Co nanoparticles exist in the 
circulation for a short time on intravenous administration 
(half‑life, 7.5 min).Even if the remaining intravenous time 
is limited, nanoparticles translocate to the liver and other 
organs (37). Nanoceria, nanoparticles of cerium oxide, in 
particular, has been demonstrated to be taken up by Kupffer 
cells in the liver, in which nanoceria partially dissolves to 
generate second‑generation nanoceria clouds, which are 
smaller and may be more effective at reducing free radi‑
cals (38). Manne et al (8) demonstrated that Co nanoparticles 
protect against hepatic IR injury by infusing 0.5 mg/kg of 
10‑30  nm spherical Co nanoparticles intravenously into 
Sprague‑Dawley rats 1 h before inducing hepatic ischemia in 
the left lateral and median lobes. The present study admin‑
istered 0.5 mg/kg Co intraperitoneally for 2 h before the 
ischemia. It was speculated that a single intraperitoneal dose 
of Co may preserve liver tissue in IR models in rats without 
the requirement for numerous intravenous administrations 
due to in vivo distribution and cellular uptake of nanoceria 
and intrinsic autocatalytic activity.

Sevoflurane, desflurane and isoflurane, all extensively 
used volatile anesthetics in clinical practice, may be viable 
options for reducing IR damage. Through the control of 
inflammatory cytokines, oxidative stress and complement, 
they protect against hepatic IR damage (19,23,39). However, 
compared with isoflurane, sevoflurane has a stronger effect in 
reversing liver function, inhibiting inflammatory cytokines 
and decreasing oxidative stress (23). There is interest in the 
non‑anesthetic effects of sevoflurane. Its principal mecha‑
nisms are lowering oxygen free radical and excess calcium 
level, suppressing inflammatory responses and enhancing liver 
cell energy consumption (40). Both experimental and clinical 

investigations imply that the mechanism of sevoflurane condi‑
tioning in decreasing hepatic IR damage is similar to that of 
ischemia preconditioning (39,41,42).

Although it remains unclear how sevoflurane reduces 
hepatic IR, some mechanisms have been discussed  (43). 
Sevoflurane attenuates aggregation of macrophages and 
neutrophils in the liver sinusoid. Furthermore, it preserves 
the endothelial glycocalyx, reduces apoptosis and exerts 
antioxidant effects by regulating the nuclear factor erythroid 
2‑related factor 2 (Nrf2) pathway, thereby decreasing liver 
IR injury  (44). The transcription factor Nrf2 is a pivotal 
agent in protection against oxidative stress. It is involved 
in the regulation of the expression of antioxidants, such as 
GST (45). In the absence of Nrf2, liver regeneration is signif‑
icantly delayed and hepatocyte death is also increased (46). 
It has been demonstrated that Co and sevoflurane both 
downregulate Nrf2 (44,46).

The protective effect of sevoflurane in liver IR injury was 
revealed by the present investigation. When compared with 
the IR group, the IRS group had lower levels of TBARS, 
hepatocyte degeneration and sinusoidal dilatation. The combi‑
nation of sevoflurane and Co also decreased IR damage in the 
liver. The significant decrease in TBARS levels shows that 
damage was associated with lipid peroxidation. Co and sevo‑
flurane administration may decrease IR damage by altering 
lipid peroxidation. Histopathological findings supported the 
biochemical findings, demonstrating that co‑administration of 
Co with sevoflurane may be more effective in avoiding liver 
damage than sevoflurane alone. Compared with the IR group, 
the Co + IR group exhibited notably decreased hepatocyte 
deterioration, sinusoidal dilatation, parenchymal mononuclear 
infiltration and necrosis.

The primary limitation of the present study was the absence 
of aspartate transaminase (AST) and alanine transaminase 
(ALT) level measurements. ALT and AST are standard 
biomarkers of choice for detecting liver injury (47). However, 
considering ALT and AST are not liver‑specific and limited 
blood volume in rats, CAT, TBARS and GST were selected. 
ALT levels should be reported in future studies to improve 
the understanding of the effect of Co on liver tissue in the IR 
model.

In summary, the present findings revealed that Co therapy 
decreased oxidative stress generated by IR, as evidenced by a 
decrease in TBARS levels and increased activity of CAT and 
GST. The biochemical and histological findings in rats reveal 
a decrease in liver damage in Co + IR and Co +IRS groups 
compared with IR group. These findings support the hepato‑
protective effects of Co. Taken together, the findings imply 
that intraperitoneal 0.5 mg/kg prophylactic Co administration 
may be a potential therapeutic method for treatment of hepatic 
IR damage. These effects should be confirmed at different 
concentrations and dosing regimens.
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