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Abstract. Herbal medicine has been widely applied for a range 
of diseases in China since antiquity. Cassia obtusifolia L. and 
Cassia tora L. are plants whose seeds have high reported 
medicinal values and have been documented to function as a 
laxative, to lower lipid level and to lower blood pressure. The 
main active ingredient in Cassia seeds is aurantio‑obtusin (AO), 
which is an anthraquinone monomer compound. Currently, 
AO is listed in China as a quality control index component of 
Cassia seeds. In clinical practice in China, AO is typically used 
to treat obesity, diabetes and its complications, non‑alcoholic 
fatty liver disease and allergic reactions. In addition, AO has 
been reported to confer insecticidal activities and antimalarial 
effects. Previous studies have even suggested that AO is a 
potential therapeutic candidate for a variety of diseases with 
research value. Therefore, the present review summarizes and 
discuss the existing literature on AO to provide a review of its 
pharmacological activity and mechanism of action, with the 
aim of providing a basis for its development and utilization in 
a clinical setting.
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1. Introduction

Cassia seeds are the dried mature seeds of Cassia obtusi‑
folia L. or Cassia tora L., which belongs to the Leguminosae 
family (1). The seeds are widely used in China, Japan and 
Korea for improving visual acuity, and having laxative, 
antioxidant, neuroprotective and anti‑bacterial effects, in 
addition to lowering the blood pressure (2‑5). Cassia seeds 
contain anthraquinones, naphthopyrrolidones and fatty 
acids, with anthraquinone being the main active ingredient. 
Anthraquinones have a planar and rigid anthracene ring 
in the 9th and 10th positions, with two ketone groups, so 
that this structure allows the absorption of light at specific 
wavelengths (6) (Fig. 1), which also have reported anti‑
cancer, antitumor, antioxidant and antimalarial biological 
activities (7‑10). The main anthraquinones in Cassia seeds 
include aurantio‑obtusin (AO), chrysophanol, emodin and 
rhein (11).

As a lipophilic anthraquinone compound extracted 
from Cassia seeds, AO is the main bioactive component 
of Cassia seeds and is currently listed as a quality control 
index component of Cassia seeds in the Pharmacopoeia 
of the People's Republic of China (5). The Pharmacopoeia 
of the People's Republic of China stipulates that Cassia 
seeds should contain not less than 0.080% of AO on a 
dried basis. AO is also known as 1,3,7‑trihydroxy‑2,8‑di‑
methoxy‑6‑methyl‑9,10‑anthracenedione (Fig. 2) and has a 
variety of documented pharmacological effects, including 
anti‑hyperlipidemic (12,13), and anti‑inf lammatory 
effects (14,15) This renders AO to be a potential candidate for 
the treatment of various diseases. However, to the best of our 
knowledge, there are no systematic reviews on this topic at 
present. Therefore, the present paper reviewed and discussed 
the relevant literature on AO and its pharmacological 
activity.
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2. Pharmacological activity

Treatment of obesity. Obesity is a condition in which adipose 
tissues accumulates excessively in the body to an extent that 
it exerts detrimental effects on health (16). It is characterized 
by weight gain, which is caused by excessive fat accumulation 
due to excessive daily food intake and insufficient calorific 
expenditure (17). Obesity increases the risk of coronary artery 
disease (18), hypertension (19), type 2 diabetes (20), asthma (21), 
cancer (17), venous thromboembolism (22), periodontal 
disease (23) and Coronavirus disease 2019 (Covid‑19) (24,25).

For the treatment of obesity, reducing daily intake whilst 
increasing daily calorific expenditure and increasing the 
metabolic rate in the body can confer a significant effects. In 
a previous study on the effects of AO on obesity, hepatic lipid 
metabolism and insulin sensitivity using high‑fat diet‑induced 
obese mice, AO was found to significantly reduce body weight 
and inhibit lipid accumulation in the liver and the white adipose 
tissue (WAT) (26). The mechanism of action was found to be 
mainly due to AO increasing peroxisome proliferator‑activated 
receptor (PPAR)‑α mRNA expression and decreasing PPAR‑γ 
mRNA expression in the liver. PPAR‑α expression can inhibit 
triglyceride synthesis and promote fatty acid oxidation (27) 
in another study, while decreasing PPAR‑γ expression can 
reduce the differentiation of preadipocytes into adipocytes 
to decrease fatty acid storage (28). This suggests to a certain 
extent the inhibitory effects AO can exert against obesity.

Treatment of diabetic complications. Diabetes is a condi‑
tion in which the combination of genetic and environmental 
factors contributes to either absolute or relative insulin 
deficiency and reduced insulin sensitivity in target tissue 
cells (29). This results in metabolic disorders in the body, 
which are characterized by hyperglycemia (29). Diabetic 
complications caused by the prolonged exposure to hypergly‑
cemic conditions are the main causes of organ dysfunction 
and even mortality in patients with diabetes (30). Diabetic 
complications can affect almost all organs of the body, 
including the nervous system, heart, kidney, eyes and blood 
vessels (29), which can be classified as macroangiopathy 
and microangiopathy. Macroangiopathy includes cardiovas‑
cular and heart disease, whereas microangiopathy includes 
diabetic nephropathy, cataract and retinopathy (31,32). 
Diabetes has also been reported to predispose patients 
to the more severe forms of Covid‑19, which increases 
the risk of poorer prognosis (33). Advanced glycation 
end products (AGEs) and aldose reductase (AR) are two 
important contributing components to the complications of 
diabetes (34). Therefore, AR inhibitors have been proposed 
to be a viable option for the treatment of diabetes mellitus. 
In the AGE formation and rat lens aldose reductase (RLAR) 
inhibition assay (35), AO showed no inhibitory activity on 
AGE formation, but showed significant inhibitory activity 
against RLAR with an IC50 value of 13.6 µM, suggesting that 
AO can exert inhibitory effects against AR. In addition, it 
was found in another study that AO can activate the insulin 
signaling pathway to increase sensitivity to insulin whilst 
also improving obesity (26). Therefore, AO is a potential 
candidate for the treatment of diabetic complications and 
associated diseases.

Reduction of non‑alcoholic fatty liver disease (NAFLD). 
NAFLD is defined as a disease caused by excessive hepatic 
adipose accumulation associated with insulin resistance 
(IR) (36). It is a general term used for a range of diseases 
with histological hepatic alterations, including simple hepatic 
steatosis, non‑alcoholic hepatitis characterized by hepatocel‑
lular damage with inflammation and varying degrees of 
fibrosis, cirrhosis and hepatocellular carcinoma (37,38). IR is 
therefore a key factor in the pathogenesis of NAFLD. It can, on 
the one hand, lead to lipolysis in adipose tissue, thus providing 
free fatty acids to the liver, and on the other hand, it can 
promote de novo synthesis, leading to further accumulation of 
fatty acids in the liver (39). However, the specific mechanism 
driving the pathogenesis of NAFLD remains unclear, where 
the main strategy of treatment is to target the IR and intrahe‑
patic lipid accumulation (40). Under conditions of high ester 
and high glucose conditions, AO has been found to improve 
IR by downregulating the mRNA expression of genes associ‑
ated with lipid metabolism such as PPAR‑γ and FAS, whilst 
suppressing the mRNA expression of inflammatory cytokines 
such as IL‑6, IL‑1β, MCP‑1 and TNF‑α in WAT (26). In addi‑
tion, in a mouse model of NAFLD induced by high‑sugar and 
high‑fat conditions and in oleic and palmitic acid‑treated mouse 
primary hepatocytes, AO was found to significantly promote 
autophagic flow and activate the transcription factor EB (41). 
This inhibited ab initio lipid synthesis and suppressed lipid 
accumulation to improve hepatic steatosis (41). Altogether, this 
provides a pharmacological treatment avenue for NAFLD and 
related complications.

Antiallergic effect. Allergy is an acquisitive hypersensitivity by 
the immune system to harmless environment substances (42). 
This spectrum includes allergic rhinitis, allergic asthma, food 
allergies and atopic dermatitis (also known as eczema) (43,44). 

Figure 1. Chemical structure of anthraquinone.

Figure 2. Chemical structure of aurantio‑obtusin.
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Immunoglobulin E (IgE) is one of the key drivers of allergic 
responses (45). Although it is the least abundant antibody in 
the human serum, it can induce an effective inflammatory 
immune response in various tissues and organs, whilst also 
serving as a Th2 biomarker involved in the regulation of 
Th2 inflammatory responses (46,47). Previous studies on the 
effects of AO on IgE‑mediated allergic responses and lipo‑
polysaccharide (LPS)‑induced RAW264.7 cells have found 
that AO can inhibit the expression of TNF‑α and IL‑4 mRNA 
whilst also suppressing the expression of prostaglandin E2 and 
cyclooxygenase‑2 (48,49).

Aryl hydrocarbon receptors (AhRs) is a ligand‑activated 
transcription factor and is present in important signaling 
pathways in the mammalian immune system (50). In addi‑
tion, they can regulate the differentiation of monocytes into 
dendritic cells and that of T cells into regulatory T cells 
and Th17 cells (51). AhRs also serves an important role in 
anticancer effects, energy metabolism, immunity and drug 
metabolism (50,52,53), such that it has been shown that acti‑
vation of AhRs decreases the immune response; AO exhibits 
significant AhRs activity and it may be a significant natural 
AhR agonist (54). It has also been found that the natural plant 
extract mixture AF‑343, obtained from Cassia tora L., Ulmus 
pumila L. and Taraxacum officinale, is potentially a natural 
candidate for the prevention and treatment of mast cell‑induced 
allergic diseases, such as allergic inflammation (55,56). Since 
the natural active compounds of AF‑343 also include AO, this 
suggests the possible benefits of using AO for the treatment of 
allergy‑related disorders.

Treatment of asthma and chronic obstructive pulmonary 
disease. In 2019, chronic obstructive pulmonary disease 
(COPD) and asthma were respiratory diseases with high 
morbidity and mortality rates in China, the United States 
and other regions (57,58). Airway smooth muscle contraction 
is one of the causes of both of the aforementioned diseases, 
rendering bronchodilators to be an effective drug for their 
treatment (59). In a previous study on the effects of Cassia 
seeds on airway smooth muscle contraction (60), the ethanolic 
extract of Cassia seeds have been found to inhibit the contrac‑
tion of airway smooth muscle by inhibiting voltage‑dependent 
L‑type‑mediated Ca2+ influx. Further studies have demon‑
strated that the main component of the ethanol extract of 
Cassia seeds that can induce the relaxation of airway smooth 
muscle is AO. Therefore, AO may serve as a viable therapeutic 
agent for the treatment of asthma and COPD.

Other effects. Mosquitoes are vectors of a number of diseases, 
such as malaria, dengue fever, dengue shock syndrome and 
yellow fever (61,62). Therefore, controlling their population 
can control these aforementioned infectious diseases (63). 
Generally, control is done at their larval stages because they 
are more accessible compared with adults, where they are 
more concentrated and less likely to change their habitat (64). 
AO has been shown to be effective for controlling the 
larvae of Anopheles gambiae, with a median lethal dose of 
1 mg/ml (65,66). In addition, besides killing this species of 
mosquitoes, AO can also protect against cowpea weevil 
beetle infestation, which can be applied as a protective agent 
for stored cowpea seeds and other crops (67). Furthermore, a 

previous review of plant‑based insecticides from 2000 to 2018 
showed that AO can be used as a potential larvicide (68).

In addition, AO showed >15% inhibition on the senes‑
cence‑associated secretory phenotype (SASP) (69). SASP 
is a bioactive secretion produced during senescence of cells 
which can mediate non‑cell‑autonomous effects of senes‑
cence (70,71). Therefore, inhibition of SASP formation may 
have a role in slowing down cellular senescence. It has also 
been shown that AO can significantly reduce total serum 
cholesterol levels, triglyceride and low‑density lipoprotein 
levels in hyperlipidemic rats (12). In Xuezhiling tablets, a 
Chinese patented medicine used for the treatment of hyper‑
lipidemia, tests have identified AO to be one of the active 
ingredients, which is associated with the anti‑hyperlipidemic 
effect of Xuezhiling (13). This suggests AO to be a potential 
drug for the treatment of hyperlipidemia. Bate‑site amyloid 
precursor protein cleaving enzyme‑1 (BACE1) inhibitors can 
significantly reduce the concentration of cerebrospinal fluid 
amyloid plaques of β‑protein and are promising drugs for the 
treatment of Alzheimer's disease (72). It has been found that 
AO has a strong inhibitory effect on BACE1 with IC50 values 
of 50.9‑190 µg/ml (73), which suggests that AO has some 
application in the development of drugs for the prevention and 
treatment of Alzheimer's disease.

3. Mechanism of action

Actions on vasopressin receptors. Vasopressin (AVP), a 
nonapeptide, is mainly synthesized in the hypothalamic 
supraoptic nucleus, paraventricular nucleus and the supraoptic 
nucleus (74). It can also be produced in other areas of the brain 
and organs, such as the medial amygdala, the nucleus of the 
terminal bed and adrenal chromophores (74,75). AVP can 
only be found in mammals and is involved in the regulation of 
blood pressure, water and salt balance, social behavior (such 
as learning and cognition) and regulation of emotion (such as 
anxiety, fear and depression) (76,77). AVP acts through three 
different vasopressin receptors (78): V1a, V1b and V2 receptors, 
all of which belong to different isoforms of G protein‑coupled 
receptors (79). A previous study has demonstrated that V1a 
is the most abundant and widely distributed vasopressin 
receptor (80). V1a‑knockout mice show a significant reduction 
in anxious behavior but also severely impaired social cognition 
performance (81,82). V1a is mainly distributed in the brain and 
is involved in regulation of emotional and adaptive behaviors, 
pain, circadian rhythm cortisol synthesis and secretion (82).

In a study that evaluated the functional effects of anthra‑
quinones from Cassia seeds on various G protein‑coupled 
receptors (83), it was previously found that only AO exhibits 
specific V1a receptor antagonism, with an IC50 value of 
67.70±2.41 µM. In further experiments in a C57Bl/6 mouse 
model of transient cerebral ischemia/reperfusion injury, 
therapy with AO (10 mg/kg, p.o.) significantly decreased the 
severity of injury in the cortex regions, medial cornu ammonis 
1 and dorsal medial cornu ammonis 1, which indicated a 
neuroprotective effect of AO. These results emphasize the 
possible antagonistic effect of AO on the V1a receptor. At 
present, there have been reports proposing the use of V1a 
receptor antagonists for the treatment of Raynaud's syndrome, 
dysmenorrhea, preterm labor, reduction of cell proliferation 
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and bone metastasis growth in desmoplastic refractory pros‑
tate cancer in vivo (84‑86), which could be used as a potential 
therapeutic in multiple disease types.

Action on the PI3K/Akt/endothelial nit ric oxide 
synthase (eNOS) signaling pathway in endothelial cells. 
PI3K/Akt/eNOS is an important regulatory signaling pathway 

Figure 3. Mechanism diagram of AO. PI3K/Akt/eNOS is a signaling pathway that mainly operates in endothelial cells and serves an important regulatory role 
in dilating blood vessels and protecting endothelial cells. NF‑κB signaling serves a key role in regulating the immune response to infection. AO can activate 
PI3K/Akt/eNOS and plays an important role in vasodilation. AO can also inhibit NF‑κB, thrombin and inhibit V1a, which prevent inflammation, are involved in 
brain emotion regulation and glycogen decomposition, this can be exploited as a potential therapeutic intervention for the prevention and treatment of throm‑
botic diseases and neurological diseases. AO, aurantio‑obtusin; eNOS, endothelial nitric oxide synthase; V1a, vasopressin receptor; NIK, NF‑κB‑inducing 
kinase; TAK1, transforming growth factor‑β‑activated kinase 1; AVP, vasopressin; LPS, lipopolysaccharide.
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in endothelial cells, and previous studies have also found that 
activation of the PI3K/Akt/eNOS signaling pathway can not 
only promote angiogenesis (87,88), improve renal microcir‑
culation (89) and protect endothelial cells from injury (90), 
but can also suppress diabetes‑induced atrial remodeling and 
atrial fibrillation (91), and can improve cardiac function in rats 
with myocardial infarction (92). Thus, these data suggest that 
the PI3K/Akt/eNOS signaling pathway plays an important 
role in regulating vascular activity. In a study investigating the 
effects of AO on isolated mesenteric arteries and its mecha‑
nism of action, AO was previously found to have an important 
role in activating the PI3K/Akt/eNOS signaling pathway by 
phosphorylating Ser473 to activate Akt. This enhanced eNOS 
activation by phosphorylating Ser1177 and Thr495 to stimu‑
late nitric oxide (NO) production in endothelial cells (93). 
Therefore, these observations suggest that AO can serve as a 
potential vasodilator.

Thrombin inhibition. AO is a potent thrombin inhibitor (94) 
that can readily inhibit this enzyme, with a Ki value of 
10.30 µM, which was shown by previous kinetic studies. 
Docking simulations showed that AO can bind both the cata‑
lytic cavity and two anion‑binding exosites (ABE) 1 and ABE2. 
Specifically, the hydroxyl group at the C‑7 site and the methoxy 
group at the C‑8 site were found to produce a critical interac‑
tion with human thrombin by forming hydrogen bonds (94). 
Furthermore, it has been previously shown that anthraqui‑
nones isolated from Cassia seeds have a thrombin‑inhibiting 
function against thrombin‑mediated Z‑GGRAMC acetic acid 
(a thrombin‑specific fluorescent substrate for the detection of 
thrombin production in PRP and platelet‑deficient plasma) 
hydrolysis (95), where further docking experiments revealed 
that AO has an improved inhibitory effect (94,96). Therefore, 
AO could potentially be the lead compound for the explora‑
tion of novel thrombin inhibitors. They can be used to inhibit 
thrombus formation and/or vascular embolism, which can 
reduce the incidence of myocardial infarction, acute ischemic 
stroke, venous thromboembolism and pulmonary embo‑
lism (97‑99). AO can be a potential therapeutic alternative for 
the treatment and prevention of thrombotic diseases.

Actions on the NF‑κB signaling pathway. NF‑κB has an 
instrumental role in immune homeostasis and chronic inflam‑
mation (100‑102). AO has been previously found to exert 
anti‑inflammatory effects by interrupting the activation of 
MAPK and NF‑κB signaling, in addition to suppressing IL‑6 
generation in the IL‑1β‑treated lung epithelial A549 cells (14). 
In the mouse airway inflammation model of LPS‑induced 
acute lung injury, AO exerted an inhibitory effect on the 
inflammatory response (14). Additionally, AO treatment was 
able to ameliorate acute lung injury by inactivating the MAPK 
and NF‑κB signaling pathways (15). By studying the effect of 
AO on the LPS‑induced inflammatory response in the mouse 
macrophage RAW264.7 model, it was also demonstrated that 
AO can prevent inflammation through inhibition of NF‑κB 
activation (49).

In summary, AO can exert varying degrees of inhibi‑
tory effects on vasopressin and thrombin signaling, whilst 
also conferring agonistic effects on the PI3K/Akt/eNOS and 
NF‑κB signaling pathways (Fig. 3). These can potentially be 

exploited for the development of therapeutic agents for the 
corresponding diseases.

4. Biosafety

Anthraquinones generally have some hepatic and renal toxicity, 
where AO is of no exception (103,104). Whilst examining the 
effects of oral administration of different doses of AO on 
hepatotoxicity in rats, it was previously found that medium 
(40 mg/kg) and high doses (200 mg/kg) of AO can cause 
liver damage (5). Furthermore, in a study in which Cassia 
seed aqueous extract was administered orally to rats at doses 
of 4.37, 15.75 and 47.30 g/kg for 28 days, histopathological 
changes in the livers of male rats (47.30 g/kg group) and female 
rats (15.75 and 47.30 g/kg groups) were found; it was demon‑
strated that the aqueous extract can induce hepatotoxicity in 
rats, where AO was one of the components that caused the 
hepatotoxicity (105). AO induces hepatotoxicity by activating 
the nucleotide‑binding oligomerization domain, leucine rich 
repeat and pyrin domain‑containing 3 inflammatory vesicle 
signaling pathway (106), which also causes nephrotoxicity 
and colorectal melanosis (107). In addition to this, AO may 
increase the toxicity of certain drugs. AO has been observed 
to significantly increase the toxicity of irinotecan compared 
with glucoaurantio‑obtusin (108). Therefore, the biosafety of 
AO should be considered when developing it for the treatment 
of various diseases in the body.

5. Conclusions

In summary, as one of the main active components of 
Cassia seeds, AO has certain pharmacological activities and 
medicinal values that can be explored as a potential drug for 
various human diseases. However, when considering AO for 
potential drug development, it cannot be ignored that AO can 
exert certain hepatic and renal toxicity.
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