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Abstract. DNA methylation of cytosine‑guanine sites (CpGs) 
is associated with type 1 diabetes (T1D). The sequence of 
methylated and non‑methylated sites in a specific genetic 
region constitutes its methyl‑haplotype. The aim of the 
present study was to identify insulin gene promoter (IGP) 
methyl‑haplotypes among children and adolescents with 
T1D and suggest a predictive model for the discrimination of 
cases and controls according to methyl‑haplotypes. A total of 
40 individuals (20 T1D) participated. The IGP region from 
peripheral whole blood DNA of 40 participants (20 T1D) was 
sequenced using next‑generation sequencing, sequences were 
read using FASTQ files and methylation status was calculated 
by python‑based pipeline for targeted deep bisulfite sequenced 
amplicons (ampliMethProfiler). Methylation profile at 10 
CpG sites proximal to transcription start site of the IGP was 
recorded and coded as 0 for unmethylation or 1 for methylation. 
A single read could result in ‘1111111111’ methyl‑haplotype 

(all methylated), ‘000000000’ methyl‑haplotype (all unmeth‑
ylated) or any other combination. Principal component 
analysis was applied to the generated methyl‑haplotypes for 
dimensionality reduction, and the first three principal compo‑
nents were employed as features with five different classifiers 
(random forest, decision tree, logistic regression, Naive Bayes, 
support vector machine). Naive Bayes was the best‑performing 
classifier, with 0.9 accuracy. Predictive models were evalu‑
ated using receiver operating characteristics (AUC 0.96). 
Methyl‑haplotypes ‘1111111111’, ‘1111111011’, ‘1110111111’, 
‘1111101111’ and ‘1110101111’ were revealed to be the most 
significantly associated with T1D according to the dimension‑
ality reduction method. Methylation‑based biomarkers such as 
IGP methyl‑haplotypes could serve to identify individuals at 
high risk for T1D.

Introduction

Type 1 diabetes (T1D) is a multifactorial autoimmune disease 
caused by the complex interaction between genes and environ‑
ment. Although the major role of genetic alterations in T1D 
pathogenesis has been extensively supported, the influence 
of environmental factors remains less clear. As a result, the 
research interest has shifted to the elucidation of the effect of 
environmental triggering gene expression (1,2). 

Epigenetics, the study of stable and mitotic inherited 
changes in the expression of genes that do not directly alter 
the original DNA sequence, is one of the proposed mecha‑
nisms (3‑5). The main and, at the same time, the most studied 
epigenetic mechanism is DNA methylation, which involves the 
addition of a methyl group at specific sites in the molecular 
sequence (3,4). As a result, cytosine‑guanine sites (CpGs) in the 
genome may be identified as methylated or unmethylated (3,4). 
Methylation is associated with the development of T1D by 
altering the expression of genes associated with the immune 
response implicating pancreatic β‑cells (1). The combination 
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of the sequence of methylated and non‑methylated sites in a 
specific genetic region constitutes its methylation haplotype 
(methyl‑haplotype), following the pattern of the DNA base 
sequence (6).

The insulin gene (INS) is the second most important gene 
after the human leucocyte antigen complex in the development 
of T1D and is responsible for ~10% of the genetic risk of the 
disease (7). It is involved in the pathogenesis of T1D by acting 
as an immunoregulatory agent that inhibits cellular stress or 
even the death of pancreatic β‑cells (7). INS promoter (IGP) is 
a molecular site of great importance, including the information 
that regulates the loci expression. Epigenetic changes in this 
site are of exceptional clinical significance. 

The aim of the present study was to create a predictive 
model that classified individuals with T1D and healthy 
individuals using methylation haplotypes. There is great 
interest in the area, with studies using different observational 
techniques (8,9). Towards this direction, there are reports that 
explore the use of machine learning methods in T1D (10) and 
identify epigenetic differentiations with prognostic value (11). 
Specifically, studies are using machine learning algorithms, 
fed with a gene signature deriving from gene expression (12) 
or daily life data (13) to diagnose diabetes, while others use 
deep learning algorithms to classify diabetic and healthy 
cohorts (14). Regarding the prognostic value of methylation 
haplotypes, research has focused on the early detection of 
carcinogenesis (15) and only very recently as an autoimmunity 
biomarker (16). 

In the present study, methylation haplotypes were used as 
features to feed the classification algorithms. After the initial 
data preprocessing, an unsupervised clustering method was 
implemented to explore the differentiation between patients 
and healthy individuals. For the feature extraction, a classic 
method was not used for the selection of the significant 
features, as implemented in a previous study (6), but a dimen‑
sionality reduction algorithm was performed that used the new 
fewer variables as features.

Materials and methods

Data. The present study (ClinicalTrials.gov identifier, 
ΝCT04139369) is an original observational clinical study 
with cross‑sectional protocol design, which took place at the 
Second Department of Pediatrics, Faculty of Health Sciences, 
School of Medicine, Aristotle University of Thessaloniki 
(Thessaloniki, Greece) in collaboration with the Laboratory 
of Computing, Medical Informatics and Biomedical Imaging 
Technologies, Faculty of Health Sciences, School of Medicine, 
Aristotle University of Thessaloniki (Thessaloniki, Greece). 

All participants and their guardians were informed in detail 
about the aims and content of the study and gave written consent 
for their participation. The study was carried out in accordance 
with the rules of the Declaration of Helsinki of 1975, revised 
in 2013, after the approval from the Bioethics Committee of 
the School of Medicine, Faculty of Health Sciences, Aristotle 
University of Thessaloniki (approval no. 185/30.12.2015).

The study population consisted of 20 children and adoles‑
cents with T1D and 20 healthy children and adolescents 
matched for age and sex (Table I). Recruitment was performed 
between January 2016 and February 2019. According to the 

inclusion criteria of the present study, all participants were 
non‑consanguineous and at least three generations of Greek 
origin. An additional inclusion criterion of the healthy group 
was a negative family history of T1D or any other autoim‑
mune disease. Exclusion criteria were the presence of any 
chronic disease for the healthy group or the presence of any 
chronic disease apart from T1D for the T1D group. Patients 
were followed up at the Unit of Pediatric Endocrinology and 
Metabolism and the Unit of Diabetes Mellitus of children and 
adolescents of the Second Department of Pediatrics, Faculty of 
Health Sciences, School of Medicine, Aristotle University of 
Thessaloniki, AHEPA University Hospital. 

Sample representativeness. The calculation of sample size for 
continuous variables with respect to the INS gene was based 
on data on the standard deviation of the INS gene methylation 
variation in healthy participants (5%) (17). To detect a real 
potential difference of 5% in the variation of the methylation 
levels of the INS gene between the compared groups (statis‑
tical power, 80%; false negative rate β=0.2; probability of 
error type Ia=0.05), a total of 16 cases of each study group 
was necessary.

Definitions. The diagnosis of T1D was made based on the 
current diagnostic criteria of the International Society for 
Pediatric and Adolescent Diabetes and the American Diabetes 
Association (18,19).

Analysis. DNA of all participants was extracted from a whole 
peripheral blood sample which was immediately stored in a 
deep freezer (‑80˚C) until processed. Total DNA was isolated 
using a special isolation kit (QIAamp® DNA Blood Mini kit; 
Qiagen, Inc.) according to the manufacturer’s instructions. The 
isolated DNA samples were quantified spectrophotometrically 
using the ratio OD 260/280 (1OD=50 µg/ml) (BioPhotometer 
6131; Eppendorf) and the amount of isolated material was 
checked by 1.5% agarose gel electrophoresis. DNA modi‑
fication was followed in a quantity of 300  ng from each 
sample, with the use of the EZ DNA Methylation‑Gold™ Kit 
(Methylation Gold kit; Zymo Research Corp.).

The studied molecular locus (IGP) was then amplified by a 
standard PCR protocol (PCR conditions: Initial denaturation 
at 95˚C for 3 min; 40 cycles of 95˚C denaturation for 30 sec, 
55˚C annealing for 30 sec and 72˚C extension for 2.5 min; 
1 min final extension step at 72˚C) using the following primers: 
INS forward, 5'‑TAT​TTT​GGA​ATT​TTG​AGT​TTA​TT‑3' and 
INS reverse, 5'‑AAC​AAA​AAT​CTA​AAA​ACA​ACA​A‑3'. 
In addition, an overhang adapter sequence was added to the 
gene‑specific primers for the regions to be targeted (Nextera 
Transposase Adaptors; Illumina, Inc.), for prompt construc‑
tion of the next‑generation sequencing (NGS) libraries. The 
promoter‑specific primers targeted the NGS libraries using the 
Transposase adapter (read_1 forward 5'‑TCG​TCG​GCA​GCG​
TCA​GAT​GTG​TAT​AAG​AGA​CAG‑3', read_2 reverse 5'‑GTC​
TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG‑3'). PCR 
products were amplified using a low temperature ramping 
instrument (9700 Thermal Cycler; Eppendorf AG; cat. no. 
5341) using the preset 9600 emulation mode. The reaction 
solution consisted of AmpliTaq Gold DNA Polymerase with 
Buffer II and MgCl2 (Applied Biosystems; Thermo Fisher 
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Scientific, Inc.). The total reaction volume was 25 µl, which 
consisted of 1.3 µl bisulfite‑treated DNA, 2.5 µl 10X Buffer 
(100 mM Tris‑HCl, pH 8.3, 500 mM KCl), 0.2 µM of each 
primer, 200 µM dNTPs mix, 2 mM MgCl2 and 1.25 units 
AmpliGold Taq Polymerase.

After purification of the PCR products using NucleoMag 
NGS Clean‑up and Size Select (cat.  no.  744970.5; 
Macherey‑Nagel GmbH), they were pooled at similar molar 
quantities and submitted for library construction according 
to the manufacturer's protocol (Nextera XT DNA Library 
Preparation kit; cat.  no. FC‑131‑1096; Illumina, Inc.). For 
NGS, the readings (pair‑end reads) were chosen to have a 
read length format of 2x250 bp on a MiSeq® System Platform 
(cat. no. SY‑410‑1003; Illumina, Inc.). FASTQ files were used 
to read the sequence. The state of methylation was calculated 
with the ampliMethProfiler tool (20), which is a conductor 
based on the Python programming language (Python‑based 
pipeline) and aims to extract and analyze the synthesis of 
epitype sequences resulting from treatment with sulfite. 
Methylation status was analyzed at 10 distinct CpG sites of the 
IGP surrounding the transcription start site (TSS) at the 5'‑end 
of the sequence of the INS gene (Supplementary data). 

The methylation status at each of the 10 distinct and default 
CpGs sites of IGP was encoded with the character 0 (zero) 
when it was found non‑methylated or encoded with the char‑
acter 1 (one) when it was found methylated. The combination 
of the codes for the 10 default CpGs sites was the methyla‑
tion pattern of each individual for the IGP promoter, forming 
its methyl‑haplotype. Thus, each reading of the 10 CpGs of 
each participant could yield methyl‑haplotype ‘1111111111’ 
(complete methylation in all sites), methyl‑haplotype 
‘000000000’ (complete non‑methylation in all sites) or any 
other methyl‑haplotype combination. Data derived from the 
total reads of the samples are the methyl‑haplotypes that were 
thereafter analyzed as distinct features in bioinformatics 
analyses.

Descriptional statistics. Demographic characteristics of the 
study population were analyzed. Normality of distribution 
for continuous data was examined using the Shapiro‑Wilk 
test. Continuous variables were expressed as mean ± standard 
deviation and comparisons between groups were performed 
applying the independent‑samples Student's t‑test or its 
non‑parametric equivalent Mann‑Whitney‑U test. Distribution 
of categorical variables among groups was compared using 
the χ2 test. Data analysis was performed using SPSS 19.0 

(IBM Corp.). P<0.05 was considered to indicate a statistically 
significant difference.

Data preprocessing. The first step in data preprocessing was to 
remove the low variance features. This is achieved by applying 
a low‑variance filter. This filter removes the features that have 
constant or close to constant values among samples, based on 
a threshold. The threshold selected was ‘0.3’, which means that 
features (methyl‑haplotypes) that have a constant value in 70% 
of the samples were detected and removed. 

Unsupervised clustering as an exploratory step. The second 
step was to perform spectral clustering (SP)  (21). SC is a 
clustering method in which the algorithm detects clusters with 
similar characteristics in a dataset. This method was applied 
as an exploratory unsupervised clustering method, showing 
how the data were clustered without imposing the knowledge 
of the two groups. The purpose of this implementation was to 
explore the dataset that is derived from an innovative method 
and has specific properties, and to identify if the two groups 
were divided properly. The parameters used for the spectral 
clustering analysis implementation were: i) The nearest neigh‑
bors' method for the construction of the affinity matrix; and 
ii) the k‑means method for the assignment of labels in the 
embedding space.

Transformation and feature extraction. As a third step, a 
dimensionality reduction algorithm, principal component 
analysis (PCA)  (22), was applied to the dataset. With this 
method, the features were reduced to new, fewer variables 
[principal components (PC)] and data are expressed in terms 
of these variables. Considered together, the new variables 
represent the same amount of information as the original 
variables, by keeping the same summed value of variance with 
the initial dataset. 

Classification. Finally, PCs were used as the features that 
fed the classification algorithms for the implementation of 
the predictive models. Five classification algorithms were 
tested: i) Random forest; ii) decision tree; iii) linear regres‑
sion; iv) Naive Bayes; and v) support vector machine (linear). 
The evaluation of the models was performed using the k‑fold 
cross‑validation method and the evaluation metrics were: 
i) Accuracy; ii) precision; iii) recall; iv) F1‑score; and v) area 
under curve. All methods were implemented in python 3 and 
scikit‑learn library (23) for machine learning in python.

Table I. Demographic characteristics of the study population, presented per group.

Characteristic	 Group Α (healthy controls)	 Group Β (T1D)	 P‑value

Number 	 20.00	 20.00	
Sex (female/male)	 12.00/8.00	 8.00/12.00	 0.206
Age, years	 13.93±6.20	 13.18±3.79	 0.559
Age at T1D diagnosis, years	 ‑	 7.03±4.00	 ‑
Duration of T1D, years	 ‑	 6.15±4.12	 ‑

T1D, type 1 diabetes.
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Results

Data. The study population was composed of two groups of 
20 participants each (class A, healthy individuals; class B, 
individuals with T1D), aged 2‑17 years. The demographic 
characteristics of the sample per patient group are presented 
in detail in Table I. 

Based on the design of the study, there was no difference 
between the two groups in the distribution of both gender 
(P=0.206) and age (P=0.559). The body mass index also 
showed no difference between the two groups (P=0.119, data 
not shown). In group B, the diagnosis of T1D had been made in 
all patients before the age of 15 years (mean age of diagnosis, 
7.03 years), with the manifestation of diabetic ketoacidosis in 
most cases (16/20). Glycemic regulation of T1D patients was 
optimum (HbA1c%, 7.76±0.94). None of the participants had 
T1D complications.

The initial frequency range of methyl‑haplotypes 
detected by reading the 10 IGP methylation sites in the 
general population was [0, 1478]. After normalization of all 
methyl‑haplotype data, the value range was changed from 
[0, 1478] to [0, 99.27].

Analysis 
Preprocessing. The initial shape of the dataset was [40, 469]. 
After the low variance columns removal, 133 columns were 
removed, and the final shape of the dataset was [40, 336]. 

Unsupervised clustering. To explore the differentiation between 
the two groups, a spectral clustering algorithm was applied as 
an unsupervised clustering method. In Fig. 1, two scatter plots 
are presented. In these plots and for visualization purposes, 
a dimensionality reduction algorithm was implemented to 
present the results, creating two PC. These plots show the 

distribution of the subjects divided into the two groups using: i) 
The ground truth for the characterization of each subject; and 
ii) the prediction of spectral clustering. Table II demonstrates 
the validation metrics of this method, based on the confusion 
matrix between actual groups and separation in two clusters. 
The two groups seem to be clustered with high accuracy. 

Transformation and feature extraction. Since the dataset 
contains numerous features with a number of zero values, 
PCA was applied as a dimensionality reduction algorithm. The 
PCA algorithm, before applying the dimensionality reduction 
methodology, performs whitening, which is a transformation 
method. In this method, the vectors are multiplied by the 
square root of samples and then divided by the singular values 
to ensure uncorrelated outputs with unit component‑wise vari‑
ances. For the implementation of the PCA method, the sklearn 
library of python was used. An initial implementation was 
performed without specifying the number of components. In 
this configuration, the default number of components is calcu‑
lated as the minimum value between features and samples, 
which in this case is 40. This way all the components are 
kept. Each component/new variable created by this algorithm 
explains variance in a proportion. With this initial implemen‑
tation, it was noticed that the majority of the components had 
low explained variance. As a next step, five components were 
selected. Each component/new variable created by this algo‑
rithm explains variance in a proportion depicted in Table III. 

For each PC the most significant feature is the one with the 
maximum value of loading. Loading is the correlation coef‑
ficient between original variables and the component and is 
calculated by the algorithm during the dimensionality reduc‑
tion procedure, as the loading value (explained variance) of 
each component for each feature (24). Table III describes the 
features with the highest loadings for the respective PC, while 

Figure 1. Spectral clustering. Each point is one subject, and the two groups have a different sign (dot, type 1 diabetes; cross, control). X‑ and y‑axis correspond 
to the value of the two PC. PC, principal component.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  26:  461,  2023 5

Fig. 2 presents the loading values of the five most significant 
features for each PC, among all PCs.

The summary of the explained variance of the five PC is 
~90%, which means that they represent a large number of the 
initial features and they are concentrating a high percentage of 
the information included in the initial dataset. However, PC4 
and PC5 represent only 6% of the information; therefore, only 
the first three PC were kept for the next steps of the analysis. 
PC1, PC2 and PC3 represent ~85% of the initial features. 
Fig. 3A shows the result of the analysis in 3D space for the first 
three PC against the classes of patients (control and diabetes), 
while Fig. 3B‑D presents the relations between the three PC in 
pairs in 2D space.

Classification. The three variables (PC) identified by the 
previous step were used as the features that fed the classifica‑
tion algorithms. Thus, five different classifiers were trained 
and evaluated using the 5‑fold cross‑validation method. This 
method splits the dataset into five groups and uses the fourth 
for training and the fifth for testing and repeats the procedure 
until all groups are used as the testing dataset. The evaluation 
metrics of the five classifiers that were trained are presented 
in Table IV. For every classifier, the training was repeated 100 
times and the results recorded are based on the mean value of 
every metric.

The best‑performing classifier, when considering accuracy, 
was Naive Bayes (25). Fig. 4A shows the model performance 
on the train and validation dataset over times of evaluation. 
They are converging after a number of iterations, following the 
same course and resulting in the final score. Fig. 4B presents 
the receiver operating characteristic curve. The curve is close 
to the upper left quadrant of the plot which means that the 
model trained is efficient.

In one of our previous works, the most significant 
methyl‑haplotypes were detected with the Mann‑Whitney-
Wilcoxon method and used as features (6). The representative 
features detected with this methodology, as having statistically 

significant differences between the two groups (P<0.001), were 
the specific methyl‑haplotypes (‘1110101110’, ‘1110111110’ and 
‘1111111100’). The accuracy of the best‑performing classifier 
was 82%. Table V describes the loadings for each one of the 
eight features, 3 from previous work and five from the current 
work, and for every PC, while Fig. 5 depicts their loading 
values for each PC. 

Discussion

To the best of our knowledge, the present study investigated for 
the first time methyl‑haplotypes in the IGP region in children 
and adolescents with T1D and identified specific methylation 
patterns significantly associated with T1D. Furthermore, based 
on machine‑learning methods, the present study attempted to 
develop a predictive model for the discrimination of patients 
with T1D and healthy individuals using methyl‑haplotypes as 
classification parameters. Naive Bayes turned out to be the 
best‑performing classifier in the context of accuracy, precision, 
recall, F1 score and area under curve.

T1D is the result of a chronic, progressive, T‑cell‑mediated 
selective destruction of pancreatic islet β‑cells, leading to loss 
of insulin secretion and lifelong need for exogenous adminis‑
tration (1,7). It is characterized by a strong genetic background 
responsible for the increased rate of recurrence within 
families (1,26). Although the exact genetic etiology remains 
unknown, >60 gene sites have been found to be implicated 
through complex and synergistic interactions (27,28). Among 
them, the INS gene (11p15.5) is one of the most consistently 
replicating regions associated with T1D (7) that is involved in 
both induction and early phases of pancreatic islet β‑cellular 
immunity (27). Furthermore, the increase in the incidence 
of T1D in a genetically stable population for a short period 
of time highlights the importance of epigenetics beyond that 
of genomics (29). At present, there is an increasing number of 
studies investigating DNA methylation of several gene loci in 
patients with T1D with a wide range of results (30).

INS gene methylation has been extensively studied in 
adults with T1D (17,31‑36). Specific CpGs of this gene have 
been recorded in either a state of hypermethylation or hypo‑
methylation compared with a healthy population (17,31‑36). 
In children with T1D, even at the time of diagnosis, different 
levels of methylated and non‑methylated DNA in the INS gene 
have also been detected compared with controls (37). A recent 
study by our team estimated the rate of methylation of the 
INS gene at IGP‑CpGs sites, in children and adolescents of 
Greek origin with T1D and mean disease duration of 6 years 
and found hypermethylated sites compared with healthy 
individuals (38).

The state of methylation of the IGP region is emerging as a 
suitable biomarker for the detection of individuals with pancre‑
atic β‑cell autoimmunity. Given the large number of CpGs 

Table II. Evaluation of spectral clustering.

Method	 Accuracy	 Precision	 Recall	 F1 score	 Area under curve

Spectral clustering	 0.90	 0.94	 0.85	 0.89	 0.912

Table III. Loadings of most significant feature in each PC.

	 Explained	 Significant	 Loading
Component	 variance (%)	 feature	 value

PC1	 63.42	 1111111111	 0.769
PC2	 11.52	 1111111011	 0.498
PC3	 9.02	 1110111111	 0.873
PC4	 4.80	 1111101111	 0.706
PC5	 1.56	 1110101111	 0.446

PC, principal component.
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that are potential substrates for methylation, methyl‑haplotype 
processing offers the possibility of combinational searching 
and comparison of patterns instead of single sites (39). As a 
result, the conclusions drawn are of higher clinical significance 
and more compatible with the complexity of the molecular 
and biological systems to be elucidated (39). The present study 
studied the overall methylation pattern at ten IGP‑CpGs sites 
and detected five distinct methyl‑haplotypes highly associated 
with T1D.

Methyl‑haplotype based association studies have been 
proposed to have implications in the genetic investigation 
of complex diseases (40). With the development of biotech‑
nology, even Epigenome‑Wide Association Study software has 
been developed in order to systematically approach and reveal 
common disease/phenotype‑related methyl‑haplotypes (41). 
Methyl‑haplotypes are used in cancer diagnostics at an 
early disease stage (39,42‑44). Methods such as MHap and 
MHap_DMR have been developed for the construction of 

methylation haplotypes in CpG dense regions of homologous 
chromosomes, permitting the elucidation of the two‑way direc‑
tion, cell differentiation or cancerization (45). In this context, a 
cell‑free DNA methylation panel, ThyMet classifier, has been 
established to differentiate papillary thyroid carcinoma from 
benign thyroid nodule (46). Furthermore, a follicular thyroid 
carcinoma (FTC) predicting model based on DNA methyla‑
tion markers is used in cases of thyroid tumors with uncertain 
malignant potential in order to distinguish between FTC and 
benign follicular adenoma (FA)  (47). Plasma methylation 
haplotyping has been suggested as a promising method for 
the early detection of tumor and its tissue of origin, as well 
as for the continuous monitoring of tumor progression and 
metastasis to multiple organs (42). More specifically, meth‑
ylation haplotyping is studied as a diagnostic tool in cervical 
precancer (39,43) and hepatocellular carcinoma (HCC) (44), 
pancreatic ductal adenocarcinoma  (48) and colorectal 
cancer  (49). In human papillomavirus (HPV)‑positive 

Figure 2. Loadings correlation matrix plot for the five most significant features of each principal component.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  26:  461,  2023 7

women, a methylation assay including the basic carcinogenic 
HPV types can be applied as a screening test (39), while in 
high‑risk HPV‑positive women, certain methyl‑haplotypes 
are found to consistently serve as a potential biomarker for 
the stratification of risk (39). In HCC and pancreatic ductal 
adenocarcinoma (48), methyl‑haplotypes can early, accurately 
and non‑invasively detect microvascular invasion and predict 
prognosis of cancer (44,50). Recently, full methylation haplo‑
types levels in the protein region of homeodomain‑interacting 
protein kinase 3 are supported as a diagnostic biomarker and 
CRP level indicator for rheumatoid arthritis, opening the way 
for studies in other autoimmune diseases, such as T1D (16). 
More recommended is the use of methyl‑haplotypes as a 
screening tool in clinical decision making (40).

In the present study, the evaluation metrics of the predic‑
tive model show that this method had a greater performance 
compared with our initial approach (6). The accuracy of the 

best‑performing classifier in the present case was 90%. In the 
previous work, the accuracy of the best‑performing classifier 
was 82% (6). By this, we hypothesize that the transformation 
of the whole dataset with a dimensionality reduction method 
included more useful information compared with the selection 
of some representative methyl‑haplotypes. This may suggest 
that the phenomenon is expressed by several correlated 
features rather than a few specific methyl‑haplotypes.

The representative features detected in our previous 
work, methyl‑haplotypes (‘1110101110’, ‘1110111110’ and 
‘1111111100’) (6) do not coincide with the features marked as 
the most significant ones for each PC that was created by the 
dimensionality reduction method (‘1111111111’, ‘1111111011’, 
‘1110111111’, ‘1111101111’, ‘1110101111’). The present study 
observed that none of the features selected by the previous 
analysis has a significant participation in the PCs. However, it 
has to be highlighted that the currently proposed classifier used 

Figure 3. A total of three PCs against the two patient classes (A) in 3 dimensions and (B‑D) in pairs of components in 2D space: (B) PC2 vs. PC1, (C) PC3 vs. 
PC 1 and (D) PC3 vs. PC2. PC, principal component.
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as features the transformed data, PCs, instead of the original 
methyl‑haplotypes, and in this sense it combines information 
by more methyl‑haplotypes in each PC. 

With the implementation of the spectral clustering method 
on the dataset, it is apparent that the two groups, T1D and 
control, were classified with high accuracy, underlying that 
they had significantly different characteristics in the structure 
of the INS gene. Moreover, the high accuracy of the trained 
predictive model indicated that methyl‑haplotypes from INS 
gene may constitute a reliable marker that can be used to iden‑
tify the existence of T1D.

The methodology implemented is a first approach to 
the investigation of statistically significant IGP‑CpGs 
methyl‑haplotypes as predictor parameters in a classifica‑
tion system. After the preprocessing of our dataset and the 
removal of the low variance features, the shape of the dataset 
was (40, 336). PCA can be applied in all cases where n<p (51). 
A similar attempt of applying PCA in relevant dataset, on 
the grounds of the above‑mentioned rationale, has already 
been published, providing valuable results  (52). The only 
restriction that could be applied to the present bioinformatic 
approach was that the resulting components with non‑zero 
variance should be at least n‑1. In the present case, only the 
first five components (<<n‑1) represent 90% of the initial 
dataset and the rest of them have near‑to‑zero variance. Only 
the three first components were hereby used, in order to avoid 
fitting noise. For all these reasons, the results of the hereby 
presented analysis are solid and could be repeatable in other 
non‑relating datasets.

Studies on the widespread use of machine‑learning 
methods in diabetes have already been published (10,12,14). 
The large data available after the implementation of 
internationally accepted recommendations in diabetes, 
allow the use of artificial intelligence machine‑learning 
methods to extract new knowledge and develop predic‑
tive tools (10). Among the epigenetic variations, changes 
in DNA methylation can feed future prediction tools to 
be applied in primary disease prevention (11). The results 
of the present clustering tool succeeded in highlighting a 
specific method with extremely high percentages of metrics 
(accuracy, sensitivity and specificity), despite the fact that 
the implementation was performed using a small amount 
of data. Data of the present study could serve as a base of 
evidence to implement distinct statistical approaches for 
reconstructing methyl‑haplotypes frequency in population 
data  (53). Utilization of specific software with Bayesian 
methodology, allows the use of priori expectations in 
order to inform haplotype reconstruction (53,54). Through 
this approach, the hereby described methylation status in 
the IGP locus could serve as the basis to extrapolate and 
calculate the expected frequency of methylation haplotype 
in large datasets of T1D population, in order to optimize the 
use of our experimental resources.

This protocol presents some limitations that are recog‑
nized and include the homogeneity of the national origin of 
the sample, the small number of participants, the recruitment 
by a single center, as well as the homogeneity of patients in 
terms of glycemic control and body mass index. Factors that 
reduced the statistical significance of the results by increasing 

Table IV. Evaluation metrics.

Classifier	 Accuracy	 Precision	 Recall	 F1 score	 Area under curve

Random forest	 0.87	 0.86	 0.89	 0.87	 0.93
Decision tree	 0.88	 0.86	 0.82	 0.88	 0.84
Logistic regression	 0.65	 0.61	 0.80	 0.70	 0.75
Naive Bayes	 0.90	 0.94	 0.85	 0.90	 0.96
Support vector machine (linear)	 0.77	 0.72	 0.90	 0.80	 0.85

Figure 4. (A) Learning curve and (B) AUC for Naive Bayes classifier. AUC, 
area under curve.
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the accuracy, but on the other hand limited the investigation of 
the influence of environmental factors involved in the dynamic 
process of methylation.

To summarize the results of these studies, we can assume 
that the specific dataset and methyl‑haplotypes of the present 
study could be used as features for distinguishing T1D 
diabetes. The first part of the analysis, SP, proved that these 
features could differentiate the two classes of interest, control 
and diabetes. The second part of the analysis, machine 
learning based on PCA, showed evidence that effective 
predictive models could be built based on the methyl‑haplo‑
types. This methodology is a promising step towards early 
T1D diagnosis.

Epigenetic changes can serve as biomarkers of early 
diagnosis of T1D and as potential targets for therapeutic inter‑
vention. Methyl‑haplotyped studies such as the present are 
expected to provide the evidence to put them in the service of 
daily clinical practice as a tool of diagnosis and treatment with 
the ultimate goal of improving the level of health services in 
individuals with T1D or in those that they are prone to develop 
T1D. Verification of the results of this protocol in large datasets 
of patients with T1D could be extended accordingly.
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