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Abstract. Invasive aspergillosis (IA) is a severe disease, the 
pathogenesis of which remains unclear. The present study 
aimed to determine the molecular mechanism of IA and to 
identify potential biomarkers using bioinformatics analysis. The 
GSE78000 dataset, which includes data from patients with IA 
and healthy individuals, was downloaded from Gene Expression 
Omnibus. Differentially expressed genes (DEGs) between the 
IA and control groups were identified with the ‘affy’ package in 
R software. The Gene Ontology (GO) and Kyoto Encyclopaedia 
of Genes and Genomes (KEGG) databases were then used to 
analyse the function and pathway enrichment of DEGs. The 
protein‑protein interaction network was analysed with the 
Search Tool for the Retrieval of Interacting Genes (STRING) 
website. In addition, DEGs were confirmed using reverse 
transcription‑quantitative PCR and western blotting in samples 
with IA (n=6) and control samples (n=6) collected from the 
Department of Respiratory and Critical Care Medicine of the 
First Affiliated Hospital of Henan University of Science and 
Technology (Luoyang, China). The present study identified 735 
DEGs, including 312 upregulated and 423 downregulated genes. 
Through GO and KEGG analyses of the DEGs, macrophage 
activation and hypoxia‑inducible factor 1 (HIF‑1) signalling 
pathways were revealed to be significantly upregulated and 
downregulated, respectively, in patients with IA compared 

with that of the healthy individuals. Subsequently, correlation 
analysis of macrophage activation and HIF‑1 signalling path‑
ways was revealed using correlation as a distance metric for 
hierarchical clustering correlation analysis. However, there was 
no protein‑protein interaction between the macrophage activity 
regulation and HIF‑1 signalling pathways based on STRING 
analysis. In summary, the present study identified candidate 
genes and associated molecules that may be associated to IA and 
revealed potential biomarkers and therapeutic targets for IA.

Introduction

Invasive aspergillosis (IA) is a common invasive fungal 
disease caused by Aspergillus infection, with 60% of all 
people with a fungal disease having an Aspergillus infection. 
Pathogenic Aspergillus species include Aspergillus fumigatus, 
Aspergillus f lavus, Aspergillus niger and Aspergillus 
terreus (1). Aspergillus is present widely in the environment, 
and it can also exist on the human epidermis, mucosa of the 
mouth, as well as other parts of the body. When the immune 
barriers of an individual are normal, Aspergillus generally 
does not cause disease. However, when an individual is immu‑
nocompromised, Aspergillus will multiply in large numbers in 
epidermal tissues, causing infection. The excessive use of anti‑
biotics may lead to a reduction in the total number of normal 
bacterial flora, resulting in the uncontrolled reproduction of 
Aspergillus, which can also lead to IA (2).

The incidence of IA has been increasing with the wide 
application of broad‑spectrum antibiotics, immunosuppres‑
sive agents and corticosteroids, the diagnosis and treatment 
of organs, stem cell transplantation and catheter technology, 
the increasing incidence of malignant tumours and acquired 
immunodeficiency syndrome (3). According to clinical statis‑
tics, IA is the second most common invasive fungal disease 
worldwide (4). Due to the difficulty in making an early diag‑
nosis and a lack of effective treatment measures, worldwide 
mortality from IA is 30‑95% (5‑8), and mortality in intensive 
care units has been reported to be as high as 80% (9).

Because a lack of early diagnosis is the main reason for the 
severity and high mortality of IA, the identification and rapid 
screening of biomarkers is necessary for improving early diag‑
nosis (10). Identification of the molecular mechanisms underlying 
the pathogenesis of IA is also required. Analysis of microarray‑based 
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mRNA expression levels can be used to identify genetic risk factors 
and investigate the molecular pathobiology of IA (11).

Our previous study revealed that alveolar macrophages (AM) 
serve a role in the resistance to Aspergillus infection in human 
THP‑1‑derived macrophages (12). The level of the CD23 protein 
in macrophages directly affects the function of AM. PU.1 is 
critical for innate immunity against IA as it regulates important 
C‑type lectin receptors (CLR) expression in human macro‑
phages. CD23, encoded by the Fc fragment of the IgE receptor 
II gene was recently reported to be a novel CLR. CD23 is a 
low‑affinity IgE receptor and serves key roles in the IgE‑mediated 
immune response, regulating cell differentiation and inflam‑
mation (12). HIF‑1 as a critical mediator of EtOH‑mediated 
metabolic derangements in AM. FES proteins can positively 
regulate the PU.1 and CD23 proteins, and HIF‑1 can negatively 
regulate FES proteins. However, an increase in HIF‑1 levels, 
induced by IA, does not reduce the levels of CD23, indicating that 
the increase in HIF‑1 levels may not reduce the ability of AM to 
resist fungal infection (13). It was further revealed that mice with 
IA may have deficiencies in glycolytic energy metabolism and 
AM activity, thus promoting the occurrence of the disease (14). 
The present study hypothesized that an increase in HIF‑1 levels, 
following AI, may serve a role in overcoming the defects of the 
AM glycolysis pathway and improving the ability of AM to resist 
fungal infection. Therefore, in the present study, the association 
between macrophage activity and the HIF‑1 signalling pathway 
was confirmed through GO and KEGG enrichment analyses. 
Both methods were used to jointly analyse clinical information 
and microarray data from patients with IA in order to identify 
genes associated with clinical features. These genes may have 
important clinical implications and may serve as diagnostic or 
prognostic biomarkers and therapeutic targets.

Materials and methods

Microarray data resources. Microarray data from the 
GSE78000 dataset, comparing the gene expression levels in 
blood samples from patients suffering from IA with that of patients 
without IA or healthy individuals (considered as the healthy group 
in the present study) (15), was obtained from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) to 
screen differentially expressed genes (DEGs), identify key genes 
involved in IA onset and deterioration.

Principal coordinates analysis (PCoA). PCoA is a visualiza‑
tion method that examines the similarities or differences of 
the data, and allows the observation of differences between 
individuals or groups (16). The original expression levels from 
the GSE78000 dataset were standardised using log (1+x). 
The dissimilarity indices of the standardized samples were 
calculated using the Bray Curtis method, using the ‘vegdist’ 
tool (https://github.com/vegandevs/vegan/) (17). The distance 
matrix of the dissimilarity index was calculated using the 
PCoA of the software package ‘ape’ (http://ape‑package.ird.
fr/). After sorting a series of eigenvalues and eigenvectors, the 
top 6 samples with were selected through PCoA analysis.

Identification of DEGs. Raw data for gene expression levels 
were read and processed using the ‘affy’ package (version 1.50.0) 
in the R software (version 4.0.1, https://www.r‑project.org/) (18). 

Gene probes were annotated using the Affymetrix Human Genome 
U219 Array (accession no. GPL21464) as an annotation profile 
and unmatched probes were discarded. When multiple probes 
matched one gene symbol, the average values of the probes were 
calculated as the final expression level of the gene. DEGs from IA 
and control samples were screened using the Linear Models for 
Microarray (Limma) package (version 3.24.14) in R (19). Limma 
was used to analyse the data according to the expression levels by 
fitting linear models and to determine statistical significance with 
moderated t‑statistics. The P‑value was adjusted according to the 
false discovery rate (19). Genes with an adjusted value of P<0.05 
and at least a 2‑fold increase or decrease were considered DEGs.

Functional and pathway enrichment analyses. The biological 
functions of the DEGs were explored with GO (http://geneon‑
tology.org/) and KEGG (https://www.kegg.jp/) enrichment 
analyses (20,21) using the online tool Database for Annotation, 
Visualization and Integrated Discovery (version  6.8; 
https://david.ncifcrf.gov/home.jsp)  (18,22). The GO terms 
included biological process (BP), cellular component and 
molecular function. KEGG provides a set of functionalities, 
including input by identifications and sequences, identification 
of frequent and statistically enriched pathways, a choice of 
four statistical tests and the option of multiple testing correc‑
tion (23). Significant GO and KEGG pathways with threshold 
counts ≥2 and P<0.05 were selected for further analysis.

Correlation analysis of predicted target genes. A prerequisite 
for understanding cellular functions at the molecular level is 
determining the functional interactions among the various 
proteins in the cell (24). The correlation matrix was gener‑
ated based on the results of hierarchical clustering of gene 
expression. Spearman's ρ statistic was used to estimate a 
rank‑based measure of association with hierarchical clustering 
(Hclust)=0.05 and P<0.05 as the cut‑off values.

Protein‑protein interaction (PPI) network. A PPI network among 
co‑expressed DEGs was constructed using the STRING database 
(version 11.0; http://string‑db.org/) (25) and a PPI score (medium 
confidence) ≥0.4 was defined as the cut‑off value (26,27).

IA specimens. Between January 2020 and May 2021, whole 
blood samples from 6 cases with IA (3 males, 3 females; age, 
67±8 years) and 6 cases without IA (controls; 3 males, 3 females; 
age, 65±9  years) were collected from the Department of 
Respiratory and Critical Care Medicine of the First Affiliated 
Hospital of Henan University of Science and Technology 
(Luoyang, China). Patients that had a history of IA or had clinical 
or biochemical evidence of other comorbidities were excluded 
(Table  SI). Patients with IA and controls provided written 
informed consent prior to using their blood samples in the present 
study. The current study was approved by the Ethics Committee 
of The First Affiliated Hospital of Henan University of Science 
and Technology (approval no. HUST2034532, Luoyang, China).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Complete RNA was extracted from whole blood 
with TRI reagent (Merck KGaA), and all mRNA was subjected 
to reverse transcription (RT) and qPCR using a PrimeScript® 
RT Master Mix (Perfect Real Time) kit (Takara Biotechnology 
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Co., Ltd.) and SYBR Green Master Mix (Takara Biotechnology 
Co., Ltd.), respectively, according to the manufacturer's proto‑
cols. qPCR was performed on a Roche LightCycler® 480 II 
Real‑Time System (Roche Diagnostics). The program was as 
follows: 2 min at 94˚C followed by 40 cycles of 30 sec at 94˚C 
and 20 sec at 60˚C. The results were analysed using the 2‑ΔΔCq 
method (28). The genes were amplified using specific primers, 
and GAPDH was used as the reference gene in qPCR (Table I).

Western blot assay. Whole blood from healthy patients 
and patients with IA was extracted using a Whole Blood 
Protein Extraction kit (EX1200, Beijing Solarbio Science & 
Technology Co., Ltd.) and quantified via the bicinchoninic acid 
assay (Pierce; Thermo Fisher Scientific, Inc.). A total of 24 µg 
protein sample was loaded per lane and then electrophoresed 
on 10% SDS‑PAGE gels and transferred to PVDF membranes 
(MilliporeSigma) using electrophoresis systems (Tanon 

Table I. Sequence information for primers used in reverse transcription‑quantitative PCR.

Gene name	 NCBI gene identification number	 Primer sequence (5'‑3')

ARG1	 383	 F: GCTACTCTCAGGATTAGATATA
		  R: CAAGGTTATTGCAACTGCTGTGT
CD177	 57126	 F: AGCATTCAGGGCTGCGTGGCCCA
		  R: CACATCACGCTTCTCACGCGCAG
FES	 2242	 F: ACGTGTGGAGCTTTGGCATCTTG
		  R: CACGGCATCAGGACACAGCTCTG
HMOX1	 3162	 F: CAACAAAGTGCAAGATTCTGCCC
		  R: AGGACCCATCGGAGAAGCGGAGC
ICAM1	 3383	 F: CCGCAAGGTGACCGTGAATGTGC
		  R: CGCTGGCGGTTATAGAGGTACGT
IL4R	 3566	 F: TGGGCAGTGGCATTGTCTACTCA
		  R: ACAGCAAGGACTGGCCATGACAG
ITGAM	 3684	 F: ACCTCCTGATCGTGAGCACAGCT
		  R: CGACAGAGCTGCCCACGATGAGC
MMP2	 4313	 F: TGGAGACAAATTCTGGAGATACA
		  R: TGCAGGTCCACGACGGCATCCAG
PFKFB3	 5209	 F: ACGCCTGTCGCTTATGGCTGCCG
		  R: GACACTATTGCGTCTCATGAGCG
TIMP1	 7076	 F: CTGGAACAGCCTGAGCTTAGCTC
		  R: GTCCGTCCACAAGCAATGAGTGC
ALDOC	 230	 F: AGCCTCTGCACTCAATGCCTGGC
		  R: GCAAGCCCATTCACCTCAGCCCG
BLK	 640	 F: CGCAACCTGGAGCGCGGCTACCG
		  R: AAGTCCTCCAGCACCGACTGCAG
LDHB	 3945	 F: AAGGATATACCAACTGGGCTATT
		  R: ATCCCCTTTACCATTGTTGACAC
RPS12	 6206	 F: ATCCAACTGTGATGAGCCTATGT
		  R: CTACACAACTGCAACCAACCACT
RPL8	 6132	 F: GCATCAGGGAACTATGCCACCGT
		  R: CACACCAACCACAGCTCTGTTGG
RPL35	 11224	 F: CACGTGCCATGCGCCGCCGGCTC
		  R: TTGACCGCGTACTTCCGCAGCGG
RPS6	 6194	 F: TTCAGCGTCTTGTTACTCCACGT
		  R: GCATATTCTGCAGCCTCTTCTTT
RPS16	 6217	 F: GTGTAGACATCCGTGTCCGTGTA
		  R: TATTTCTGGTAATAGGCCACCAG
GAPDH	 2597	 F: CATCACTGCCACCCAGAAGACTG
		  R: ATGCCAGTGAGCTTCCCGTTCAG

F, forward; R, reverse; ARG1, arginase 1; FES, FES proto‑oncogene tyrosine kinase; HMOX1, heme oxygenase 1; ICAM1, intercellular 
adhesion molecule 1; IL4R, interleukin 4 receptor; ITGAM, integrin subunit alpha M; PFKFB3, 6‑phosphofructo‑2‑kinase/fructose‑2,6‑bi‑
phosphatase 3; TIMP1, TIMP metallopeptidase inhibitor 1; ALDOC, aldolase fructose‑bisphosphate C; BLK, BLK proto‑oncogene Src family 
tyrosine kinase; LDHB, lactate dehydrogenase B; RP, ribosomal protein.
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VE‑180 and Tanon VE‑186, respectively; Tanon Science and 
Technology Co., Ltd.). The PVDF membranes were blocked 
with 5% (w/v) skimmed milk powder at room temperature for 
2 h and incubated at 4˚C overnight with the following primary 
antibodies: IL4 (1:1,000; cat. no. ab34277; Abcam), ITGAM 
(1:500; cat. no. ab133357; Abcam), MMP2 (1:1,000; cat no. 
ab181286; Abcam), GAPDH (1:5,000; cat.  no.  ab181602; 
Abcam) and RPL8 (1:1,000; cat. no. ab169538; Abcam). The 
membranes were then washed five times with 1X PBS‑5% 
Tween 20 and incubated with HRP‑labelled goat anti‑rabbit 
IgG (1:10,000; cat. no. ab205718; Abcam) and anti‑rat IgG 
(1:10,000; cat. no. ab205720; Abcam) secondary antibodies 
at room temperature for 1 h. Blots were subsequently visu‑
alized using an enhanced chemiluminescence detection kit 
(MilliporeSigma) according to the manufacturer's protocols. A 
ChemiDoc MP (Bio‑Rad Laboratories, Inc.) scanning system 
was used to assess the immunoreactive protein bands.

Statistical analysis. The data are presented as the mean ± SEM. 
Statistical analysis was performed using GraphPad Prism 6.05 
software (GraphPad Software; Dotmatics). The data were 
analysed using paired Student's t‑tests as appropriate. P<0.05 
was considered to indicate a statistically significant difference.

Results

Identification of DEGs in IA. The GSE78000 dataset was 
downloaded from the GEO database and included 45 samples 
in total. Subsequently, the samples of 23 patients with IA 
and 9 healthy individuals were selected for primary analysis 
and unclassified samples were excluded. According to the 
results of PCoA analysis, 12 blood samples (6 patients with 
IA matched with 6 patients without IA or healthy individuals) 
were selected for further analysis (Fig. S1 and Table SII). The 
Limma package was then used to identify DEGs by comparing 

samples with IA with matched control samples. The Limma 
package identified 312 upregulated and 423 downregulated 
genes (a total of 735 genes; Table SIII). The expression levels 
and distribution status of all DEGs in the GSE78000 dataset 
are presented in a volcano plot (Fig. 1) and a heatmap (Fig. 2).

Functional and pathway enrichment analyses of DEGs. After 
obtaining the DEGs, GO and KEGG enrichment analyses 
were performed to examine the classification of the DEGs. 
The GO analysis revealed that the BP terms included ‘regula‑
tion of macrophage activation’, MF terms included ‘cytokine 
receptor activity’ and CC terms included ‘immunological 
synapse’ (Fig. 3 and Table SIV). This finding demonstrated 
that the occurrence of IA was associated with abnormal 
immune function. At the same time, a previous study reported 
that the HIF‑1 signalling pathway plays a role in antifungal 
immunity (13); thus, the potential implication of the HIF‑1 
signalling pathway in IA was further investigated. It was 
revealed that the significantly enriched KEGG pathways of 
the DEGs included the HIF‑1 signalling pathway (Fig. 4 and 
Table SV). The present study demonstrated that there are 18 
major signalling molecules involved in the macrophage activa‑
tion signalling pathway and HIF‑1 signalling pathway. Among 

Figure 1. Volcano plot demonstrating the differentially expressed genes in 
the GSE78000 dataset. The x‑axis indicates log2FC, and the y‑axis indicates 
‑lg10 (P‑value). Red dots indicate upregulated genes, blue dots indicate down‑
regulated genes and grey dots indicate genes without a significant difference 
in expression levels. FC, fold change.

Figure 2. Heatmap demonstrating the differentially expressed genes in the 
GSE78000 dataset. Blue represents a lower expression level, red represents 
a higher expression level and white indicates that there was no difference in 
the expression level among the genes. Each column represents one subject in 
the dataset, and each row represents one gene. The gradual change in colour 
ranging from blue to red represents the process of downregulation to upregu‑
lation as number of standard deviations from mean expression. IA, invasive 
aspergillosis.
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them, the expression of ICAM1, MMP2, TIMP1, ARG1, 
CD177, IL4R, FES, HMOX1, ITGAM and PFKFB3 were 
upregulated and the expression of RPS12, ALDOC, LDHB, 
BLK, RPS6, RPS16, RPL8 and RPL35 were downregulated in 
IA group compared with control groups (Fig. 5A).

Correlation analysis of macrophage activation and HIF‑1 
signalling pathways. In the aforementioned experiments, the 
expression levels of the signalling pathways moleucles regulating 
macrophage activity and HIF‑1 were significantly different 
between the IA and control samples. To clarify whether correla‑
tion occurred between the macrophage activation and HIF‑1 
signalling pathways, Hclust correlation analysis was used to 
predict co‑expressed interactions (Fig. 5B). With HClust=0.05 
as the cut‑off for a significant difference, the 18 genes were 
revealed to be correlated with each other. Subsequently, the 
expression levels of them were compared between the control 
and IA groups (Fig. 6A). Compared with the control group, the 

expression levels of all 10 genes in the macrophage activity 
regulation signalling pathway were significantly higher (P<0.01) 
in the IA group. The expression levels of the eight genes in the 
HIF‑1 signalling pathway were decreased significantly in the 
IA group compared with the control group. Except for RPS6 
(P<0.05), the other seven genes exhibited a significant differ‑
ence of P<0.01 (Fig. 6A). Furthermore, the protein levels of IL4, 
ITGAM and MMP2 were upregulated, while the RPL8 protein 
level was downregulated in patients with IA compared with 
healthy controls (Fig. 6B). The aforementioned results demon‑
strated the correlation between the two types of genes.

Gene expression levels represent the level of RNA 
expression, and they cannot account for the final func‑
tionality at the protein level. To further investigate the 
relationship between macrophage activation and HIF‑1 
signalling pathways, PPI analysis was employed. Strong 
interactions were revealed among the 12 proteins of the 
macrophage activity regulation signalling pathway, and 

Figure 3. GO functional annotation of DEGs. GO enrichment analysis of the 37 most significantly enriched terms of the shared DEGs in the GSE78000 dataset. 
The x‑axis indicates ‑lg10 (P‑value), and the y‑axis indicates the 37 most significantly enriched GO pathways. The number in brackets represent number of genes 
and enrichment factor, respectively. Blue bars represent ‘biological processes’, orange bars represent ‘molecular functions’ and green bars represents ‘cellular 
components’. GO, Gene Ontology; DEGs, differentially expressed genes.
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there were also interactions among the eight proteins of 
the HIF‑1 signalling pathway. However, there was no PPI 

between the macrophage activity regulation and HIF‑1 
signalling pathways (Fig. 7).

Figure 4. Pathway enrichment of DEGs using KEGG analysis. KEGG enrichment analysis of the top 30 enriched pathways of the shared DEGs. The x‑axis 
indicates the rich factor, and the y‑axis indicates the top 30 enriched KEGG pathways. KEGG, Kyoto Encyclopaedia of Genes and Genomes; DEGs, differen‑
tially expressed genes.

Figure 5. Correlations between macrophage activity and hypoxia‑inducible factor 1 signalling pathway‑associated genes in blood samples from patients with 
IA and controls. (A) Differences in the gene expression levels between healthy controls and patients with IA. The colour scale from blue to red represents the 
process of downregulation to upregulation as number of standard deviations from mean expression. (B) Correlations of gene expression levels in blood samples 
from patients with IA and controls. The correlation coefficient ranges from ‑1 (red colour) to +1 (blue colour). The red colour represents negative correlations. 
The blue colour represents positive correlations. Larger circles indicate greater correlation. IA, invasive aspergillosis.
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Discussion

Galactomannan assay, PCR, β‑D‑glucan testing and biopsy are 
the primary methods of diagnosing aspergillosis. The lack of 
clinical statistical data and a diagnostic consensus are the main 
reasons for the severity and high mortality of IA; however, iden‑
tification and rapid screening of simple biomarkers would allow 
for an early diagnosis. Understanding the molecular mechanisms 
underlying the pathogenesis of IA is required. Although a 

number of prognostic models have been proposed, the majority 
of the models are based on clinical parameters and lack accu‑
racy. Therefore, the pre‑diagnosis of IA needs to be accurate, 
and improved IA‑specific biomarkers are required. Improved 
biomarkers will provide more accurate clinical information that 
could enhance decision‑making for patient management (29).

Bioinformatics analysis was performed to identify the 
correlation analysis modules associated to the diagnosis of 
IA. The macrophage activity regulation and HIF‑1 signalling 

Figure 6. Expression levels of genes associated to the regulation of macrophage activity and the HIF‑1 signalling pathway. (A) Reverse transcription‑quantita‑
tive PCR analysis of the mRNA expression levels of genes regulating the macrophage activity signalling pathway and the HIF‑1 signalling pathway in healthy 
controls and patients with IA. (B) The protein expression levels of IL4, ITGAM, MMP2 and RPL8 as well as a GAPDH control were determined through 
western blotting. *P<0.05 and **P<0.01 vs. the control group (n=5). HIF‑1, hypoxia‑inducible factor 1; Ctrl, control; IA, invasive aspergillosis.
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pathways were revealed to be significantly upregulated and 
downregulated, respectively, in patients with IA compared with 
that in healthy individuals. For further analysis of the correlation 
between macrophage activation and HIF‑1 signalling pathways, 
blood samples were collected from allogeneic haematopoietic 
stem cell transplant recipients and patients receiving myelosup‑
pressive chemotherapy (15). Therefore, the patients with IA were 
immunocompromised individuals. For patients with immuno‑
suppression, increased macrophage activity may be a feedback 
mechanism. However, in the present study, the control group 
included patients with immunosuppression but without IA, and 
the macrophage activity in these individuals was not increased, 
thereby excluding the possibility that increased macrophage 
activity in the IA group was a compensatory response to immu‑
nosuppression. This suggests that the increased macrophage 
activity in patients with IA was an innate immune response to 
Aspergillus infection, which is consistent with the experimental 
results of previous studies (30‑32). Tan et al (33) reported that 
macrophages exposed to lysyl oxidase like 4 in vitro can cause 
an immunosuppressive phenotype, activate the expression of 
the programmed cell death ligand 1 and inhibit the function 
of CD8+ T cells. Fecher et al  (34) reported that after infec‑
tion with Histoplasma capsulatum, the increased activity of 
transcription factor cAMP response element‑binding protein in 
HIF‑1α‑knockout mice further increased the production of IL‑10 
in macrophages (34). In the present study, the macrophage acti‑
vation pathway was upregulated in the IA group compared with 
the control group. There are numerous molecules that regulate 
macrophage activity, of which HIF‑1 has attracted attention. 
For example, Fecher et al (34) demonstrated that HIF‑1α could 
promote macrophages to prevent fungal growth by inhibiting the 
production of IL‑10 by macrophages. Additionally, studies have 
demonstrated that in a mouse model of Aspergillus fumigatus 
infection, mTOR‑mediated HIF‑1α activation is necessary for 
macrophage glycolysis activation and its role in controlling the 
growth of Aspergillus fumigatus (30,35). In addition, ω‑alkynyl 
arachidonic acid polarizes macrophages to the M2 type by inter‑
fering with HIF‑1α and pyruvate kinase (36). These previous 

studies have demonstrated that HIF‑1α was necessary in the 
polarization of macrophages to the M1 type. Therefore, clari‑
fying the expression profiles of the HIF‑1 signalling pathway in 
patients with IA is required to understand the molecular mecha‑
nism underlying this process. The present study revealed that the 
HIF‑1 signalling pathway was significantly downregulated in 
patients with IA compared with that of controls. This suggested 
that the activation of macrophages in patients with IA may be 
considered an M2‑type activation. Therefore, although the 
activity of the macrophages in patients with IA was increased 
compared with that in the control group, the patients were 
immunosuppressed and could not eliminate the Aspergillus 
infection. Further experimental research is needed to confirm 
this hypothesis. At the same time, the present study results may 
indicate that the root cause of Aspergillus infection was the inhi‑
bition of HIF‑1 expression in the patients with IA. Therefore, it is 
necessary to clarify the molecular biological mechanism causing 
HIF‑1 inhibition with further in‑depth research on this topic.

In the PPI analysis, there was no interaction between the 
macrophage activity regulation and HIF‑1 signalling pathways. 
This indicated that the regulation of macrophage function by 
HIF‑1 was not due to a direct interaction, but was mediated by 
intermediate signalling molecules, and future research in this 
field should focus on identifying these molecular signals.

In conclusion, a comprehensive bioinformatic analysis of the 
gene expression profiles of blood samples from patients with IA 
and patients without IA or healthy individuals was conducted, 
and 735 DEGs were identified. There were 18 co‑expressed 
genes belonging to macrophage activation and HIF‑1 signalling 
pathways. The present study indicated that downregulation of 
the HIF‑1 signalling pathway and upregulation of macrophage 
activity may be the reason for Aspergillus infection and could 
be used as biomarkers for the prediction and diagnosis of IA.
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two nodes indicates that there was a PPI between the two molecules. PPI, 
protein‑protein interaction; HIF‑1, hypoxia‑inducible factor 1.
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