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Abstract. Notoginseng saponins (NS) are the active ingredi‑
ents in Panax notoginseng (Burk.) F.H. Chen (PN). NS can 
be transformed depending on how the extract is processed. 
Fermentation has been shown to produce secondary ginsen‑
osides with increased bioavailability. However, the therapeutic 
effect of fermented NS (FNS) requires further study. The 
present study compared the compositions and activities of FNS 
and NS in blood deficiency rats, which resembles the symptoms 
of anemia in modern medicine, induced by acetylphenylhydra‑
zine and cyclophosphamide. A total of 32 rats were randomly 
divided into control, model, FNS and NS groups. A blood defi‑
ciency model was established and then treatment was orally 
administered for 21 days. The results of component analysis 
indicated that some saponins transformed during the fermenta‑
tion process resulting in a decrease of notoginsenoside R1, and 
ginsenosides Rg1, Rb1 and Re, and an increase in ginsenosides 
Rd, Rh2, compound K, protopanaxadiol and protopanaxatriol. 
The animal results showed that both FNS and NS increased 
the number of white blood cells (WBCs), red blood cells, 
hemoglobin, platelets and reticulocytes, and the levels of gran‑
ulocyte‑macrophage colony‑stimulating factor (GM‑CSF), 
erythropoietin (EPO) and thrombopoietin (TPO), decreased 
the G0/G1 phase and increased G2/M phase, and decreased the 
apoptosis rate of bone marrow (BM) cells, which suggested a 

contribution to the recovery of hematopoietic function of the 
BM cells. FNS and NS increased the protein expression levels 
of the cytokines IL‑4, IL‑10, IL‑12, IL‑13, TGF‑β, IL‑6, IFN‑γ 
and TNF‑α, and the mRNA expression levels of transcription 
factors GATA binding protein 3 and T‑box expressed in T cell 
(T‑bet). FNS and NS treatment also increased the number of 
CD4+ T cells, and decreased the enlargement of the rat spleen 
and thymus atrophy, which indicated a protective effect on 
the organs of the immune system. The results of the present 
study demonstrated that compared with NS, FNS showed an 
improved ability to increase the levels of WBCs, lymphocytes, 
GM‑CSF, EPO, TPO, aspartate aminotransferase, IL‑10, IL‑12, 
IL‑13 and TNF‑α, and the mRNA expression levels of T‑bet, 
and decrease alanine aminotransferase levels. The differ‑
ences seen for FNS treatment could arise from their improved 
bioavailability compared with NS, due to the larger proportion 
of hydrophobic ginsenosides produced during fermentation.

Introduction

In Traditional Chinese Medicine (TCM) it is believed that 
blood deficiency can be defined as suffering from Qi and blood 
loss, deficiency in the stomach and spleen, and insufficient 
hematogenesis. Common symptoms are pale or pale‑yellow 
complexion, pale lips, dizziness, blurred vision, hand and foot 
numbness, and low menstrual volume in women (1). These 
symptoms are in line with the symptoms of anemia in modern 
medicine (2). Patients with malignant tumors are treated with 
chemotherapy drugs, which usually cause myelosuppression 
and immunosuppression. The reduction of erythrocytopenia 
and thrombocytopenia in chemotherapy patients may impede 
the chemotherapy process, which can affect both the thera‑
peutic outcome and quality of life of patients (3). Therefore, 
compounds that can treat and/or prevent the side effects of 
anemia in patients with malignant tumors are of great interest.

Panax  notoginseng (Burk.) F.H. Chen (PN) is a 
well‑known traditional herb in China and has been used in 
TCM for >2,000 years. PN can promote blood circulation, 
hemostasis, detumescence and relieve pain. Saponins are a 
general term for a type of glycoside composed of triterpenes 
or spirostanes. The saponins first found in ginseng that were 
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named as ginsenosides Rb1, Rg1, Rd, etc. and in PN were 
named as notoginsenosides R1, Ft1, and etc. The main active 
components of PN are saponins, including notoginsenoside R1 
(nR1), and ginsenosides Rb1, Rg1 and Rd (4). These saponins 
are used as anti‑inflammatory and antitumor treatments and 
are also considered to support the immune system, provide 
cardiovascular protection and promote blood circulation (5,6). 
Traditionally, PN has two different forms, raw and processed. 
The processed PN, known as steamed PN, is the key compo‑
nent in generating blood (7), which increases the production of 
blood cells and is involved in the activation of immune cells 
through the JAK‑STAT signaling pathway, finally promoting 
hematopoiesis in anemia  (8). The process of steaming PN 
increases the amount and activities of certain ginsenosides. 
For example, the ginsenoside Rb1 is converted into the more 
bioactive ginsenoside compound K (CK) and protopanaxadiol 
(PPD) (9). Although PN is typically processed by steaming, 
it can also be processed by fermentation. The enzymes 
produced by microorganisms in the fermentation process 
hydrolyze the carbohydrate side chains at C‑3, C‑6 and C‑20, 
which changes the composition and contents of saponins (10). 
Previous studies (9,10) have reported that the processed PN 
generates a large number of effective ginsenosides, which 
differ from the ones found in raw PN. Ginsenosides Rk3, 
Rh4, Rk1, Rg5, F4, 20(S/R)‑Rg3, CK and 20(S/R)‑Rh1 are 
unique saponins that only exist in processed PN but not in raw 
PN (11). The microbial transformation method is stable in the 
production of PN or NS (12,13) and can also improve drug 
efficacy and reduce toxicity. Several studies have reported that 
the β‑glucosidase enzyme produced by Lactobacillus plan‑
tarum, Lactobacillus delbrueckii, Lactobacillus fermentum, 
Bifidobacterium longum or Leuconostoc mesenteroides could 
transform the ginsenosides into rare ginsenosides, which are 
the deglycosylated secondary metabolic derivatives of major 
ginsenosides and function as active substances (14,15). In the 
present study, the chemical composition and content of the 
total saponins from PN before and after fermentation with 
Lactobacillus plantarum were compared.

In anemia, functional recovery of hematopoietic organs is 
a key process. Hematopoiesis is the differentiation of a small 
pool of self‑renewing pluripotent hematopoietic stem cells 
(HSCs) to produce blood cells, including white blood cells 
(WBCs), red blood cells (RBCs), platelets (PLTs) and reticulo‑
cytes (Rets) (16). HSCs can produce a new blood cell count to 
resist the reduction caused by blood deficiency. Hematopoietic 
cytokines, such as thrombopoietin (TPO), erythropoietin 
(EPO) and granulocyte‑macrophage colony‑stimulating factor 
(GM‑CSF), perform vital roles in the progress of hemopoi‑
esis (17). Cytokines are crucial in the inflammatory response 
to anemia and are necessary for re‑establishing flow to the 
afflicted organs (18). Decreased levels of cytokines suggest 
organ pathology, which inhibits the development of T cells 
and other immune cells (19). The effect of saponins on hema‑
topoiesis and immunity should be evaluated for use in treating 
anemia. However, to the best of our knowledge, no studies 
have previously reported the therapeutic effect of notoginseng 
saponins (NS) and fermented NS (FNS) on blood deficiency.

In the present study, the total saponins from PN were 
fermented with Lactobacillus plantarum, and the changes in 
saponin content were evaluated. Blood deficiency was induced 

in rats using acetylphenylhydrazine (APH) and cyclophospha‑
mide (CP), and the effects of FNS and NS on blood deficiency 
parameters were assessed. The present study aimed to provide 
a useful theoretical basis for the future clinical treatment of 
blood deficiency.

Materials and methods

Materials. The saponins [notoginsenoside R1 (nR1), 
ginsenosides Rg1, Rb1, Re, Rd, Rh2, CK, PPD and protopanax‑
atriol (PPT)] and NS were purchased from Shanghai Yuanye 
Biotechnology Co., Ltd. The saponins were supplied with 
a purity of >99.0%. APH and CP were purchased from 
MilliporeSigma. The ELISA kits for interleukin(IL)‑4, 
IL‑6, IL‑10, IL‑12, IL‑13, transforming growth factor‑β 
(TGF‑β), interferon‑γ (IFN‑γ), tumor necrosis factor‑α 
(TNF‑α), thrombopoietin (TPO), erythropoietin (EPO), gran‑
ulocyte‑macrophage colony‑stimulating factor (GM‑CSF), 
alkaline phosphatase (ALP), alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), direct bilirubin (DBIL), 
lactate dehydrogenase (LDH), and transferrin (TRF) were 
purchased from Nanjing Jiancheng Bioengineering Institute. 
Cell cycle and apoptosis kits were supplied by BD Biosciences. 
A blood routine reagent kit was purchased from IDEXX 
Laboratories Inc.

Prepara t ion of  FNS.  NS was inocu lated  with 
Lactobacillus plantarum culture (10% MRS broth (Beijing 
Solarbio Science & Technology Co., Ltd).; 3.1% of inoculation 
amount; pH 7.0) and fermented for 3.2 days at 37.6˚C. After 
fermentation, the culture was freeze‑dried and smashed. The 
FNS and the raw NS powders were stored at ‑20˚C for later 
use.

HPLC analysis. A mixed standard solution containing nR1, 
ginsenosides Rg1, Rb1, PPD, Re, Rd, PPT, CK and Rh2 at 
1.5 mg/ml was dissolved in methanol and filtered through a 
0.22‑µm filter membrane. Sample solutions of FNS and NS 
(2 mg/ml) were dissolved in methanol and filtered. The saponin 
contents of FNS and NS were analyzed using the LC‑2030 
HPLC system (Shimadzu Corporation) and a C18 column 
(Agilent, 150x4.6 mm; 5 µm). The mobile phase comprised 
acetonitrile (A) and water (B). The elution gradient was as 
follows: 0‑10 min, 18‑23% A; 10‑30 min, 23‑44% A; 30‑38 
min, 44‑68% A; 38‑45 min, 68% A; 45‑55 min, 68‑100% A; 
55‑60 min, 100% A; and 60‑65 min, 100‑18% A. The flow 
rate was 1.0 ml/min, the detection wavelength was 203 nm, 
the column oven was maintained at 25˚C and injection volume 
was 10 µl.

Animal model. A total of 32 male Wistar rats (weight, 
200.0±20.0 g; age, 8 weeks) were supplied by Changchun Yisi 
Experimental Animal Technology Co., Ltd. [animal license 
no. SCXK (Ji)‑2021‑0003]. The rats had ad libitum access 
to food and water and were kept in an environment with 
controlled light (12 h light/dark cycle), temperature (25±1˚C) 
and relative humidity (60±5%). This experiment was autho‑
rized by the Bioethics Committee of Changchun University of 
Chinese Medicine and the Institutional Animal Care (approval 
no. 2022156; Changchun, China), and was performed based on 
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the NIH guide for the care and use of laboratory animals (20). 
After a 3‑day period of acclimation, 32 rats were divided into 
the control, model, FNS and NS groups (n=8). To induce the 
blood deficiency model, the rats (model, FNS and NS groups) 
were subcutaneously injected in the neck with 2% APH 
normal saline (20 and 10 mg/kg) on days 1 and 4, respectively. 
At 2 h after injection on day 4, the rats were intraperitoneally 
injected with CP normal saline (20 mg/kg), this was repeated 
on days 5, 6 and 7 (21). After APH and CP treatment for 24 h, 
which started on day 8, the rats were intragastrically admin‑
istered FNS (250 mg/kg) and NS (250 mg/kg), and the rats 
in the control and model groups were intragastrically admin‑
istered 0.9% normal saline (1 ml/100 g body weight), once a 
day for 21 consecutive days. The safe clinical NS dosage was 
2.5‑10 mg/kg per day (22), which could be transformed into 
15.75‑63 mg/kg daily for rats (obversion coefficient=6.3). A 
dose of 250 mg/kg is four times the amount of the maximum 
clinical dose (22). The body weight of each rat was measured 
daily. After 21 days of drug treatment, all rats were euthanized 
by cervical dislocation under anesthesia with 30 mg/kg pento‑
barbital sodium via intraperitoneal injection after fasting for 
24 h.

Routine blood tests. After rats were anesthetized as aforemen‑
tioned, blood from the abdominal aorta was collected in a tube 
with K2‑EDTA. The WBC, RBC, hemoglobin (HGB), PLT 
and Ret parameters of rats were detected using the XT‑2000i 
automated hematology analyzer (Sysmex Corporation) (n=6). 
In the remaining rats, the blood was used in other tests. HCT 
parameter was calculated as follows: HGB (%)=RBC (1012/l) 
x MCV (fl).

Cytokine and biochemical parameter assays in serum. 
Blood prepared with K2‑EDTA as aforementioned was 
centrifuged at 4˚C at 5,760 x g for 5 min to collect serum. 
Hematopoiesis‑related cytokines EPO (cat. no. H051), TPO (cat. 
no. H482‑1) and GM‑CSF (cat. no. H060), and inflammatory 
cytokines IL‑4 (cat. no. H005‑1‑2), IL‑6 (cat. no. H007‑1‑2), 
IL‑10 (cat. no. H009‑1‑2), IL‑12 (cat. no. H010‑1‑2), IL‑13 (cat. 
no. H011), TGF (cat. no. H034‑1‑2), IFN‑γ (cat. no. H025‑1‑2) 
and TNF‑α (cat. no. H052‑1‑2) were analyzed using ELISA 
kits.

The whole blood of rats was collected from the abdom‑
inal aorta in a tube with an additive clot activator and then 
centrifuged at 4˚C at 5,760 x g for 5 min to collect the serum. 
The biochemical parameters, such as alkaline phosphatase 
(ALP; cat. no. A059‑2‑2), alanine aminotransferase (ALT; 
cat. no.  C009‑2‑1), aspartate aminotransferase (AST; cat. 
no.  C010‑2‑1), direct bilirubin (DBIL; cat. no.  C019‑2‑1), 
lactate dehydrogenase (LDH; cat. no. A020‑2‑2) and trans‑
ferrin (TRF; cat. no. H130‑1‑2), were detected using ELISA 
kits.

Cell cycle and apoptosis analysis of bone marrow (BM) cells. 
BM from the left femur was flushed with sterile PBS. A single 
cell suspension (1x106 cells/ml) in PBS was centrifuged at 
300 x g for 5 min at room temperature. The BM cells were 
fixed with 70% ethanol at 4˚C overnight. After washing twice 
with PBS, the cells were resuspended with 1 ml PI/Triton 
X‑100 staining solution with RNase A (Beyotime Institute of 

Biotechnology) and incubated for 30 min at room temperature 
(n=6). The cells were quantified using a DxFLEX flow cytom‑
eter (Beckman Coulter, Inc.). The cell cycle distribution of the 
BM cells was analyzed using ModFit LT 5.0 software (Verity 
Software House, Inc.).

The apoptosis rate of the BM cells (1x106  cells/ml) 
prepared as aforementioned was measured using an Annexin 
V‑FITC/PI apoptosis kit (Beyotime Institute of Biotechnology) 
according to the manufacturer's instructions and a DxFLEX 
flow cytometer with CytExpert software 5.0 (Beckman 
Coulter, Inc.) (n=6). In the remaining rats, the tissue was used 
in other tests.

Western blotting. Single suspension cells from rats for each 
group were collected from the left femur, total protein 
was obtained by using RIPA lysis buffer containing 
protease/phosphatase inhibitor cocktail (Beyotime Institute 
of Biotechnology). The total protein concentration was deter‑
mined using a BCA Protein Assay Kit (Beyotime Institute of 
Biotechnology) and 30 µg protein per lane was separated by 
10% SDS‑PAGE and transferred to PVDF membranes. The 
membranes were blocked with 5% (w/v) nonfat dried milk for 
2 h at room temperature and incubated with specific primary 
antibodies at 4˚C overnight. The primary antibodies used 
were as follows: Cyclin A polyclonal antibody (1:500; cat. 
no. BS1083; Bioworld Technology, Inc.), cyclin D1 polyclonal 
antibody (1:500; cat. no. BS1741; Bioworld Technology, Inc.), 
Bcl‑2 (1:500; cat. no. BS80057; Bioworld Technology, Inc.), 
Bax (1:500; cat. no. BS79682; Bioworld Technology, Inc.) and 
β‑actin monoclonal antibody (1:5,000; cat. no. BS6007M; 
Bioworld Technology, Inc.). The membranes were subse‑
quently washed in TBS with 0.1% Tween‑20 (TBST) and 
incubated with secondary antibodies, HRP‑labelled goat 
anti‑mouse IgG (H+L) (1:5,000; cat. no. ZJ2020‑M; Bioworld 
Technology, Inc.) or HRP‑labelled goat anti‑rabbit IgG (H+L) 
(1:5,000; cat. no. ZJ2020‑R; Bioworld Technology, Inc.), at 
room temperature for 1.5 h. Following washing with TBST 
(0.1% Tween‑20), protein bands were visualized using a 
BeyoECL Plus Kit (Beyotime Institute of Biotechnology). 
Immunoreactive protein bands were quantified by using a 
ChemiDocTM MP imaging system (Bio‑Rad Laboratories, 
Inc.).

Splenic T‑lymphocyte (LYMPH) subpopulation assay. 
Splenocytes (1x106 cells/ml) from rat spleen were prepared 
using sterile PBS according to the aforementioned method used 
for BM cells. Splenocytes were labeled with FITC‑conjugated 
anti‑rat CD4 (2.5 µg/ml final concentration; cat. no. 201505; 
BioLegend, Inc.) and phycoerythrin‑conjugated anti‑rat CD25 
antibodies (2.5 µg/ml final concentration; cat. no. 202105; 
BioLegend, Inc.). The labeled splenocytes were washed 
twice with PBS and resuspended in the PBS buffer, and the 
expression of CD4 and CD25 by splenocytes was detected 
using a DxFLEX flow cytometer with CytExpert software 5.0 
(Beckman Coulter, Inc.).

Thymus and spleen indexes. After the rats were sacrificed, the 
spleen and thymus were collected and weighed. Thymus and 
spleen indexes were calculated as follows: Organ index=organ 
weight (g)/body weight (g).
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H&E staining. Spleen and thymus specimens were fixed in 
10% formalin solution for 48 h at room temperature, paraffin 
embedded and cut into 4 µm sections. The paraffin slices 
underwent H&E staining, with hematoxylin for 3 min and 
eosin for 30 sec at room temperature, for routine morpho‑
logical analysis. Images were captured using a fluorescence 
microscope (Nikon Corporation) at a magnification of x400.

RNA extraction and reverse transcription‑quantitative PCR 
(RT‑qPCR). Total RNA was extracted from the rat spleens 
with TRIzol® reagent (Thermo Fisher Scientific, Inc.). Total 
RNA was reverse transcribed into cDNA using the FastKing 
RT Kit (Tiangen Biotech Co., Ltd.) according to the manufac‑
turer's protocol. qPCR was performed using the CFX Connect 
Real‑Time PCR Detection System (Bio‑Rad Laboratories, 
Inc.) with SuperReal PreMix Plus SYBR Green reagent 
(Tiangen Biotech Co., Ltd.). The primer sequences used for 
qPCR were as follows: β‑actin forward (F), 5'‑CTG​TCC​CTG​
TAT​GCC​TCT​G‑3' and reverse (R), 5'‑ATG​TCA​CGC​ACG​
ATT​TCC‑3'; EPO F, 5'‑GGG​GGT​GCC​CGA​ACG‑3' and R, 
5'‑GGC​CC​CCA​GAA​TAT​CAC​TGC‑3'; TPO F, 5'‑GAA​CCC​
AGC​TTC​CTC​CAC​AG‑3' and R, 5'‑CCT​TTC​CCC​GAA​GCA​
GTT​GT‑3'; GM‑CSF F, 5'‑TCC​TAA​ATG​ACA​TGC​GTG​CT‑3' 
and R, GCC​ATT​GAG​TTT​GGT​GAG​GT; IL‑4 F, 5'‑CTT​
GCT​GTC​ACC​CTG​TTC‑3' and R, 5'‑CAT​GGA​AGT​GCA​
GGA​CTG​C‑3'; IL‑6 F, 5'‑GAG​TTC​CGT​TTC​TAC​CTG‑3' 
and R, 5'‑CTC​TGG​CTT​TGT​CTT​TCT‑3'; IFN‑γ F, 5'‑CGT​
CTT​GGT​TTT​GCA​GCT​C‑3' and R, 5'‑ACT​CCT​TTT​CCG​
CTT​CCT​T‑3'; GATA binding protein 3 (GATA‑3) F, 5'‑CTG​
GCT​GGA​TGG​CGG​CAA​AG‑3' and R, 5'‑TGG​GCG​GGA​
AGG​TGA​AGA​G‑3'; and T‑bet F, 5'‑AAC​CAG​TAT​CCT​GTT​
CCC​AGC‑3' and R, 5'‑TGT​CGC​CAC​TGG​AAG​GAT​A‑3'. The 
thermocycling conditions were as follows: 95˚C for 15 min, 
followed by 40 cycles of 95˚C for 10 sec, 55˚C for 20 sec and 
72˚C for 30 sec. The transcript levels were quantified and 
normalized to the internal reference gene β‑actin using the 
2‑ΔΔCq method (23).

Statistical analysis. All experiment data are presented as the 
mean ± SD. The significance of differences was analyzed using 
one‑way ANOVA with Tukey's post hoc test using GraphPad 
Prism 8.0 software (Dotmatics). P<0.05 was considered to 
indicate a statistically significant difference.

Results

HPLC analysis of FNS and NS. Saponins were the main 
active ingredients in FNS and NS with nine saponins detected 
using HPLC. As shown in Fig. 1 and Table I, the levels of the 
ginsenosides PPD, Rd, PPT, CK and Rh2 were increased in 
FNS, and nR1, Rg1, Rb1 and Re levels were decreased in FNS 
compared with NS. In summary, there was a marked differ‑
ence in saponin content between FNS and NS.

Effect of FNS and NS on blood cell parameters of blood defi‑
ciency rats. APH and CP treatment in the model rats significantly 
reduced the WBC, RBC, HGB, PLT and Ret levels compared 
with those in the control group. After FNS and NS treatment for 
21 days, most blood cell parameters were significantly increased 
compared with the model group (Fig. 2).

WBC parameters. For the WBC parameters, the model 
group exhibited significantly decreased WBC, LYMPH 
and monocyte (MONO) levels compared with the control 
group. A decrease in neutrophil (NEUT) levels was 
observed compared with the model group; however, this 
was not statistically significant. FNS treatment significantly 
increased WBC, LYMPH, NEUT and MONO levels, and 
NS significantly increased WBC, LYMPH and NEUT 
levels compared with the model group. MONO levels were 
also increased in the NS group; however, this was not 
statistically significant compared with the model group. 
Furthermore, the WBC and LYMPH levels of rats treated 
with FNS were significantly higher than those of rats in the 
NS group (Fig. 2A).

RBC parameters. In terms of the RBC parameters, the 
RBC levels of rats in the model group were significantly 
reduced, and the mean corpuscular volume (MCV), red 
cell distribution width‑standard deviation (RDW‑SD) 
and red cell distribution width‑coefficient of variation 
(RDW‑CV) levels were significantly increased compared 
with the control group. No significant decrease in MCV and 
RDW‑SD was seen in the FNS and NS treatment groups 
compared with the model group. However, a significant 
increase in RDW‑CV levels was seen in FNS‑treated rats 
compared with the model group, and these were also signif‑
icantly higher than the levels in the NS‑treated group. The 
hematocrit (HCT) was calculated according to the RBCs 
and MCV. According to the results, the HCT of the model 
rats demonstrated no significant difference compared with 
the control group. Both FNS and NS significantly increased 
the RBC and HCT levels compared with the model group. 
(Fig. 2B).

HGB parameters. The HGB and mean corpuscular hemo‑
globin concentration (MCHC) levels of rats were significantly 
decreased and mean corpuscular hemoglobin (MCH) levels 
were significantly increased in the model group compared with 
the control group. Both FNS and NS significantly elevated the 
HGB level compared with the model group; however, there was 
no significant difference in MCH and MCHC levels compared 
with the model rats (Fig. 2C).

PLT parameters. PLT and plateletcrit (PCT) levels of 
model rats were significantly decreased, and the platelet distri‑
bution width (PDW), mean platelet volume (MPV) and platelet 
larger cell ratio (P‑LCR) were significantly increased in the 
model group compared with the control group. FNS and NS 
treatment significantly increased PLT levels, and significantly 
reduced MPV and P‑LCR levels compared with the model 
group. However, there was no statistically significant differ‑
ence in PCT and PDW levels compared with the model group 
(Fig. 2D).

Ret parameters. The Ret level of model rats was signifi‑
cantly reduced compared with the control group, and the model 
group exhibited no significant change in immature Ret fraction 
(IRF), low fluorescence ratio (LRF), middle fluorescence ratio 
(MRF) and high fluorescence ratio (HRF) compared with the 
control group. FNS significantly increased the Ret, IRF and 
HRF levels of rats, and NS significantly elevated the Ret and 
IRF levels compared with the model group. NS and FNS also 
significantly decreased the LRF level of rats compared with 
the model group (Fig. 2E).
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Effect of FNS and NS on hematopoiesis‑related cytokines and 
biochemical parameters of blood deficiency rats. In model rats, 
the GM‑CSF, EPO and TPO levels were significantly reduced 
compared with the control group. Treatment with FNS and NS 
significantly elevated the GM‑CSF, EPO and TPO levels of 
rats compared with the model group. The GM‑CSF, EPO and 
TPO levels of rats treated with FNS were significantly higher 
than those of rats treated with NS (Fig. 3A).

CP is metabolized in the liver and can cause liver 
damage (24) as seen in the model rats where the ALP, ALT 
and DBIL levels were significantly increased and AST, LDH 
and TRF levels were significantly decreased compared with 
the control group. FNS and NS significantly reduced ALP, 
ALT and DBIL and significantly increased AST, LDH and 
TRF levels compared with the model group. ALT levels in 
FNS‑treated rats were significantly reduced and AST levels 
were significantly increased compared with those in the 
NS‑treated rats (Fig. 3B).

Effect of FNS and NS on inflammatory cytokines of blood 
deficiency rats. APH and CP can reduce the efficiency 
of the immune system and cause an imbalance between 
anti‑inflammatory and pro‑inflammatory cytokines (25,26).

The levels of anti‑inflammatory cytokines (IL‑4, IL‑10, 
IL‑12, IL‑13 and TGF‑β) and pro‑inflammatory cytokines 
(IL‑6, IFN‑γ and TNF‑α) in the model rats were significantly 
reduced compared with those in the control group (27,28). 
Both FNS and NS significantly increased the levels of these 
indicators compared with those in the model rats. There was a 
significant increase in IL‑10, IL‑12, IL‑13 and TNF‑α levels in 
FNS‑treated rats compared with the NS‑treated group (Fig. 4).

Effect of FNS and NS on the cell cycle and apoptosis of BM 
cells from blood deficiency rats. Chemotherapy causes myelo‑
suppression, damages the DNA, affects normal hematopoiesis 
and changes the proportions of cells in different cell cycle 
phases (29).

The percentage of BM cells in the G0/G1 phase was signifi‑
cantly increased and the percentage of BM cells in the G2/M 
phase was significantly decreased in model rats compared with 
the control group (Fig. 5A and B). No significant difference in 
the percentage of cells in the S phase was seen compared with 
the control. After treatment with FNS and NS, the percentage 
of BM cells in the G0/G1 phase was significantly decreased 
and the percentage of BM cells in G2/M was significantly 
increased compared with the model group. An increase in the 

Figure 1. Chromatograms of (A) FNS and (B) NS from high‑performance liquid chromatography. 1, notoginsenoside R1; 2, Rg1; 3, Rb1; 4, protopanaxadiol; 
5, Re; 6, Rd; 7, protopanaxatriol; 8, compound K; and 9, Rh2. FNS, fermented notoginseng saponins; NS, notoginseng saponins.
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proportion of cells in S phase was also seen after treatment 
with FNS and NS; however, the difference was not statistically 
significant compared with the model group (Fig. 5B). These 
results demonstrated that FNS and NS effectively improved the 
recovery of hemopoiesis in blood deficiency rats by increasing 
the progression of BM cells from G0/G1 phase arrest into G2/M 
and S phases.

The protein expression levels of cyclin A and cyclin D1 
in BM cells were significantly decreased in blood deficiency 
model rats compared with the control group. FNS and NS 
treatment significantly increased the protein expression levels 
of cyclin A and cyclin D1 compared with the model group. 
Furthermore, a significant increase in cyclin A and cyclin 
D1 protein expression levels was seen in FNS‑treated rats 
compared with NS‑treated rats (Fig. 5C).

Apoptosis and proliferation of BM cells are coupled and 
are responsible for the maintenance of hematopoiesis in the 
hematopoietic system (30). The apoptosis rates of BM cells in 
the model group, including the early, late and total apoptosis 
rates, were significantly increased compared with the control 
group. The early, late and total apoptosis rates of BM cells 
were significantly decreased after FNS and NS administration 
compared with the model group. Furthermore, the late and 
total apoptosis rates of BM cells isolated from rats treated 
with FNS were significantly decreased compared with the NS 
group (Fig. 6A and B).

Furthermore, the expression levels of anti‑apoptotic 
protein Bcl‑2 and pro‑apoptotic protein Bax were detected. 
These proteins can prevent or promote cell apoptosis and 
prolong or shorten cell lifespan, respectively (31,32). In model 
rats, the relative expression levels of Bcl‑2 were significantly 
decreased and the relative expression levels of Bax were 
significantly increased compared with the control group. FNS 
and NS significantly increased Bcl‑2 protein expression and 
FNS significantly reduced Bax protein expression compared 
with the model group. The reduction of Bax protein expression 
in the NS group was not statistically significant compared with 
the model group. Furthermore, the relative protein expression 
levels of Bcl‑2 were significantly increased in FNS‑treated rats 
and the relative protein expression levels of Bax were signifi‑
cantly reduced compared with the NS‑treated group (Fig. 6C). 

These results suggested that APH and CP could accelerate the 
apoptosis of BM cells and that the anti‑apoptotic effect of FNS 
was superior to NS in the relative expression of Bcl‑2 and Bax.

Effect of FNS and NS on T cells of blood deficiency rats. APH 
and CP can damage immunological self‑tolerance and homeo‑
stasis, and significantly influence the function of T cells (33). 
The levels of CD4+, CD25+ and CD4+CD25+ T cells from the 
spleen were measured using flow cytometry. In the model 
group, CD4+ T cell levels were significantly decreased and the 
levels of CD25+ and CD4+CD25+ T cells were significantly 
increased compared with those in the control group. FNS 
treatment significantly increased the percentage of CD4+ T 
cells compared with the model group. There was a significant 
decrease in the percentages of CD25+ and CD4+CD25+ T 
cells in the NS‑treated group compared with the model group. 
There was no significant difference in the percentage of CD4+, 
CD25+ and CD4+CD25+ T cells between the FNS and NS 
groups (Fig. 7).

Effect of FNS and NS on body weight, organ indexes, and 
the morphology of the spleen and thymus of blood deficiency 
rats. APH and CP seriously affect immune organs, such as the 
spleen and thymus (33,34). In the model group, there was a 
significant decrease in the body weight and thymus index, and 
a significant increase in the spleen index compared with the 
control group. FNS and NS treatment significantly increased 
the body weight and thymus index and significantly decreased 
the spleen index compared with the model group. However, 
there was no statistically significant difference in the body 
weight, spleen index or thymus index between the FNS and 
NS groups (Fig. 8A‑C).

APH and CP damage the histological structure changes of 
the rat spleen and thymus, including induction of disorganiza‑
tion in splenic structures, thymic apoptosis, hypocellularity and 
atrophy (35,36). H&E staining showed that the splenic cord, 
splenic sinus and trabecula in the red pulp (RP) were displayed 
clearly in the control group. However, in the model group, 
RP expansion, white pulp (WP) and central artery shrinking 
were visible, which indicated neutrophil accumulation and a 
decreasing level of LYMPHs, respectively. The marginal zone 

Table I. Saponin contents of FNS and NS.

Peak no.	 Ginsenosides	 Type of saponin	 FNS, g/100 g	 NS, g/100 g

1	 nR1	 PPT	 5.36±0.68	 7.58±0.75
2	 Rg1	 PPT	 12.42±0.93	 19.84±1.31
3	 Rb1	 PPD	 16.25±2.35	 23.34±2.22
4	 PPD	 PPD	 1.37±0.21	 0.87±0.19
5	 Re	 PPT	 2.64±0.37	 3.15±0.32
6	 Rd	 PPD	 1.93±0.29	 0.57±0.08
7	 PPT	 PPT	 5.50±0.67	 2.27±0.38
8	 CK	 PPD	 14.08±1.97	 10.80±1.21
9	 Rh2	 PPD	 11.23±1.33	 5.65±0.83

nR1, notoginsenoside R1; CK, compound K; PPT, protopanaxatriol; PPD, protopanaxadiol; NS, notoginseng saponins; FNS, fermented 
notoginseng saponins.
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was ambiguous between RP and WP. These results showed 
a decreasing level of LYMPHs and an increasing level of 
macrophages. FNS and NS improved the histological structure 
of the rat spleens compared with the model group. The WP 
was darker and had extensive distribution which related to an 

increasing level of macrophages, and the marginal zone was 
clear in the FNS and NS groups (Fig. 8D).

The cortex (COR) and medulla (MED) of the model rat 
thymus, which related to the change of thymus morphology 
and atrophy, became fused in some areas with no apparent 

Figure 2. Effect of FNS and NS on (A) WBC, (B) RBC, (C) HGB, (D) PLT and (E) Ret parameters in blood deficiency rats. The data are presented as the 
mean ± SD (n=6). *P<0.05, **P<0.01 and ***P<0.001 compared with the model group; and #P<0.05 compared with the NS group. NS, notoginseng saponins; FNS, 
fermented notoginseng saponins; WBC, white blood cell; LYMPH, lymphocyte in the plasma; NEUT, neutrophil; MONO, monocyte; RBC, red blood cell; 
HCT, hematocrit; MCV, mean corpuscular volume; RDW‑SD, red cell distribution width‑standard deviation; RDW‑CV, red cell distribution width‑coefficient 
of variation; HGB, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT, platelet; PCT, plateletcrit; 
PDW, platelet distribution width; MPV, mean platelet volume; P‑LCR, platelet larger cell ratio; Ret, reticulocyte; IRF, immature reticulocyte fraction; LRF, 
low fluorescence ratio; MRF, middle fluorescence ratio; HRF, high fluorescence ratio; ns, not statistically significant.
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marginal zones between them. In the model group, the number 
of Lcs and epithelial reticular cells (ERCs) was reduced 
compared with the control, and ERCs provided a scaffold in 
the COR. The medullary epithelial cells (MECs) and thymic 
corpuscle (TC) are important to T cell development, and 
became expanded and irregular in the MED. In the FNS and 
NS groups, the number of Lcs, ERCs and MECs increased, the 
COR had deep staining, and round or oval TCs were seen in 
the MED. Both FNS and NS appeared to reduce tissue damage 
induced by APH and CP in the model group (Fig. 8E).

Effect of FNS and NS on mRNA expression levels in blood 
deficiency rats. APH and CP break the balance of body 
immunity, affect immune organs and the release of immunity 
cytokines and transcription factors and prevent stem cells from 
differentiating into hematopoietic cell lineages by affecting 
the release of cytokines and transcription factors (37,38). In 
the model group, the mRNA expression levels of hemato‑
poietic cytokines (GM‑CSF, EPO and TPO), inflammatory 
cytokines (IL‑4, IL‑6 and IFN‑γ) and transcription factors 

(GATA‑3 and T‑bet) were significantly reduced compared 
with those in the control group. With NS and FNS treatment, 
the mRNA expression levels of GM‑CSF, EPO, TPO, IL‑4, 
IL‑6, IFN‑γ, GATA‑3 and T‑bet were significantly increased 
compared with the model group. FNS treatment significantly 
increased GM‑CSF, TPO, IL‑4, IL‑6 and T‑bet mRNA expres‑
sion compared with NS treatment (Fig. 9).

Discussion

According to the theory of TCM, deficiency of viscera and 
insufficiency of Qi and blood are attributed to blood defi‑
ciency. The effect of PN in promoting hemostasis is known as 
‘the raw materials eliminate and the steamed ones tonify’ and 
steamed PN is considered to possess the function of warming 
and toning viscera, benefiting Qi and nourishing blood in 
TCM (39). In TCM it is believed that there are marked differ‑
ences in composition, activities and efficacy between raw 
PN and the steamed PN (8). For example, in TCM raw PN is 
considered to primarily stop bleeding, promote apokatastasis, 

Figure 3. Effect of FNS and NS on (A) hematopoiesis‑related cytokines and (B) biochemical parameters of blood deficiency rats. The data are presented as 
the mean ± SD (n=8). *P<0.05, **P<0.01 and ***P<0.001 compared with the model group; and #P<0.05 and ##P<0.01 compared with the NS group. GM‑CSF, 
granulocyte‑macrophage colony‑stimulating factor; EPO, erythropoietin; TPO, thrombopoietin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; 
DBIL, direct bilirubin; AST, aspartate aminotransferase; LDH, lactate dehydrogenase; TRF, transferrin; NS, notoginseng saponins; FNS, fermented notogin‑
seng saponins; ns, not statistically significant.
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strengthen the heart and provide pain relief. Whereas steamed 
PN is used in TCM to nourish blood, regulate circulation and 
improve immune function (40).

Previous research has shown that fermentation of PN 
extracts produces a similar ginsenoside profile to steamed 
PN (41). L. plantarum metabolizes ginsenosides mainly through 
deglycosylation and dehydration (42). NS contains Rb1, Rg1, Re 
and nR1 as the major active compounds, which are metabolized 
by β‑glycosidases produced by the gut microbiota (43). The C‑20 
glucosides of Rb1/Rb2/Rc are deglycosylated to form Rd, which 
further be converted to Rg3. The C‑20 of Rg3 is dehydrated to 
form Rk1 or Rg5 (44). The C‑3 glucoside of Rg3 is deglycosyl‑
ated to form Rh2 which is then transformed into PPD (45). In 
addition, the C‑3 glucoside of Rb1 is deglycosylated to convert 
X VII to LXXV/F2, CK and PPD (46,47).

Previous studies have reported on the metabolic pathway 
for the elimination of the C‑20 sugar moieties in Re and Rg1 
produce 20(S)‑Rg2 and 20(S)‑Rh1, respectively (48,49). It has 
been suggested that the C‑6 rhamnose of Rg2 is eliminated to 
generate Rh1 (50,51). The elimination of the C‑6 glucoside of 
Re produces Rg1. Rg1 is transformed into Rh1, which further 
changed into PPT by L. plantarum fermentation. Furthermore, 
the C‑20 glucoside of Re is deglycosylated to produce Rg2, 
which is further dehydrated to Rh4, F4 or Rg6. The C‑6 gluco‑
side of Rg6 and nR1 can also be deglycosylated to produce 
Rk3 and Rg1, respectively (51). In the present study, according 
to HPLC analysis, L. plantarum fermentation transformed 
nR1, Rg1, Rb1 and Re into their corresponding metabolites, 
and increased the PPD, Rd, PPT, CK and Rh2 content in FNS 
compared with unfermented NS.

Hypodermic injection of APH and intraperitoneal injection 
of CP were used to establish a blood deficiency rat model (52). 
Hua et al (53) and Li et al (54) reported that Sprague Dawley 
rats were hypodermically injected with 2% APH saline solu‑
tion on days 1 and 4 at a dose of 20  and 40 mg/kg, respectively; 
2 h after the hypodermic injection with 2% APH saline solu‑
tion on day 4, the rats were intraperitoneally injected with CP 
saline solution on days 4, 5, 6 and 7 at a dose of 20 mg/kg. 
A similar modeling method has been previously reported in 
mice; however, the dose of CP was 40 mg/kg on days 4, 5, 
6 and 7 (55). Then, the blood deficiency model was created. 
APH and CP decreased WBCs, RBCs, HGB, PLTs and Rets, 
and model rats exhibited mental sluggishness, movement 
retardation, peripheral blood cell count reduction and weight 
loss (25,53). Liu et al (56) reported that PN extract treated 
with a microwave processing method increased the WBCs and 
HGB of blood deficiency model mice induced by APH and CP 
compared with raw PN. In an additional study, steamed PN 
was demonstrated to elevate the levels of WBCs, RBCs, HGB 
and PLTs in mice with blood deficiency induced by APH and 
CP. The PN contents were examined and the main saponins 
included the notoginsenoside R1, Rg1, Re, Rh1, Rb1, Rd, Rk3, 
Rh4 and Rg3 (7). The results of the present study demon‑
strated that FNS and NS significantly improved the blood cell 
parameters. Notably, the levels of WBCs and LYMPHs of rats 
treated with FNS were increased compared with those of rats 
treated with NS.

BM is a key site of hematopoiesis and is responsible 
for producing new blood cells (57). A series of hematopoi‑
esis‑related cytokines, including GM‑CSF, EPO and TPO are 

Figure 4. Effect of FNS and NS on inflammatory cytokines of blood deficiency rats. Levels of (A) IL‑4, (B) IL‑10, (C) IL‑12, (D) IL‑13, (E) TGF‑β, (F) IL‑6, 
(G) IFN‑γ and (H) TNF‑α were detected using an ELISA. The data are presented as the mean ± SD (n=8). *P<0.05, **P<0.01 and ***P<0.001 compared with the 
model group; and #P<0.05 and ##P<0.01 compared with the NS group. NS, notoginseng saponins; FNS, fermented notoginseng saponins; ns, not statistically 
significant.
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required for blood cell formation (58). TPO has been reported 
to improve thrombocytopenia and markedly augment mega‑
karyopoiesis (59). EPO and GM‑CSF have been suggested 
to promote erythropoiesis and the generation of myeloid cell 
subsets, respectively (60). CP damage the BM and cause cell 
apoptosis by increasing the expression of the pro‑apoptotic 
protein Bax and decreasing the expression of anti‑apoptotic 
proteins in the model mice, such as Bcl‑2 (61). CP induce G0/G1 
phase arrest of BM (62) and inhibit the protein expressions of 
Cyclin D1 (63). NS has previously been reported to decrease 
the apoptosis rate, Bax expression and caspase‑3 activity of 
BM stromal cells induced by hydrogen peroxide  (64,65). 
Ginsenoside CK could control apoptosis and promote cells to 
enter the normal cell cycle via the Bcl‑2/Bax and MEK/ERK 
signaling pathways in myelosuppression mice induced by 
CP (66). Ginsenoside Rg1 increased the number of hematopoi‑
etic stem and progenitor cells and restored the function of BM 
in CP‑treated myelosuppressed mice.

The results of the present study demonstrated that both FNS 
and NS reduced the cell apoptosis rate, recovered the normal 
pattern of the cell cycle of BM cells and increased the levels 

of GM‑CSF, EPO and TPO. Furthermore, treatment with FNS 
further increased the levels of WBCs, LYMPHs, GM‑CSF, 
EPO and TPO, and the protein expression levels of cyclin A 
and D1 compared with NS treatment. FNS treatment further 
decreased the total apoptosis rate of BM cells compared with 
NS treatment.

The liver stores blood and regulates the quantity of blood 
in circulation. CP is converted to phosphoramide mustard and 
acrolein by the liver cytochrome P450, which can result in 
liver damage (24). ALT and AST indicate the degree of liver 
damage. A high level of ALT suggests liver damage (67). DBIL 
represents the liver metabolic capacity, acting as an indicator 
of liver damage, and the level of DBIL is increased in patients 
with hepatitis and cirrhosis (68). ALP is released from the liver 
and bones, and its levels are increased in certain liver diseases 
and bone disorders (69). TRF is responsible for transporting 
iron from the digestive tract and degrading RBCs that enter the 
BM as a complex of TRF‑Fe3+ (70). Due to the barrier of iron 
utilization by RBCs, the TRF is reduced during anemia (71). 
NS can improve hepatic function in non‑alcoholic fatty 
liver disease and acute ethanol‑induced liver injury (72,73). 

Figure 5. Effect of FNS and NS on the cell cycle of BM cells of blood deficiency model rats. (A) Flow cytometry analysis of the cell cycle. (B) Quantification 
of each cell cycle phase. (C) Western blotting and semi‑quantification of cyclin A and cyclin D1 protein expression in BM cells normalized to β‑actin. The 
data are presented as the mean ± SD (n=6). *P<0.05, **P<0.01 and ***P<0.001 compared with the model group; and #P<0.05 and ##P<0.01 compared with the NS 
group. BM, bone marrow; NS, notoginseng saponins; FNS, fermented notoginseng saponins; ns, not statistically significant.
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Zhong et al (74) reported that NS promoted liver regeneration 
through activation of the PI3K/AKT/mTOR cell prolifera‑
tion pathway and upregulation of the AKT/Bad cell survival 
pathway in mice. The results of the present study indicated 
that FNS and NS protected the liver and maintained normal 
biochemical parameters in blood deficiency rats by reducing 
the ALP, ALT and DBIL levels and increasing the AST, LDH 
and TRF levels. The effect on ALT and AST levels in FNS rats 
was greater than that in NS treated rats.

APH and CP can damage the spleen and thymus, immune 
cells, such as T cells, B‑LYMPHs and granulocytes, and 
cause a reduction in levels of inflammatory cytokines, such 
as IL‑2, IL‑4 and IL‑6 (27,75). Lcs are produced in the BM 
and mature in the thymus gland or BM (76), and are the 
key cells involved in the regulation of immune function 
throughout the body (77). CD4+ T cells are activated by 
antigen‑presenting cells and regulate immune responses via 
the production of cytokines and helper T (Th) cells, such 
as Th1, Th2, Th17 and regulatory T cells (78). T‑bet can 

induce Th1 cells to produce IL‑2, IFN‑γ and TNF‑α, which 
are pro‑inflammatory cytokines. These cytokines enhance 
antigen presentation and facilitate phagocytic function by 
macrophages (79). GATA‑3 can induce Th2 cells to secrete 
IL‑4, IL‑10 and IL‑13, which are anti‑inflammatory cyto‑
kines involved in humoral immunity  (80). Th1 and Th2 
serve essential roles in the coordination and intercellular 
communication of lymphoid, inflammatory and hemato‑
poietic cells in the immune system (81). CP inhibits the 
expression of TNF‑α, IFN‑γ, IL‑4 and IL‑10, and decreases 
the Th1/Th2 cytokine secretion ratio (17,82). Both APH and 
CP decrease the levels of TNF‑α and IL‑6 (38). In radia‑
tion‑induced aplastic anemia mice, NS regulates Th1 and 
Th2 immune responses by downregulating the production 
of Th1 cytokines and T‑bet protein expression, and upregu‑
lating the production of Th2 cytokines and expression of 
GATA‑3 (83). Furthermore, Rd can promote the Th1 and 
Th2 immune responses by increasing IL‑2, IFN‑γ, IL‑4 and 
IL‑10 mRNA expression in mice splenocytes (84).

Figure 6. Effect of FNS and NS on the apoptosis of BM cells of blood deficiency rats. (A) Flow cytometry analysis of the apoptosis rate in BM cells. (B) Early, 
late and total apoptosis rate. (C) Western blotting and semi‑quantification of Bcl‑2 and Bax protein expression in BM cells normalized to β‑actin. The data are 
presented as the mean ± SD (n=6). *P<0.05, **P<0.01 and ***P<0.001 compared with the model group; #P<0.05 compared with the NS group. BM, bone marrow; 
NS, notoginseng saponins; FNS, fermented notoginseng saponins; ns, not statistically significant; PE, phycoerythrin.
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Figure 7. Effect of FNS and NS on T cells of blood deficiency rats. (A) Flow cytometry analysis of the distribution of CD4+, CD25+ and CD4+CD25+ T cells in 
the rat spleen and the percentage of (B) CD4+, (C) CD25+ and (D) CD4+CD25+ T cells. The data are presented as the mean ± SD (n=8). *P<0.05 and **P<0.01 
compared with the model group. NS, notoginseng saponins; FNS, fermented notoginseng saponins; ns, not statistically significant; PE, phycoerythrin.

Figure 8. Effect of FNS and NS on (A) body weight, (B) spleen index and (C) thymus index, and hematoxylin‑eosin staining of histological structure of blood 
deficiency rat (D) spleen and (E) thymus at x400 magnification. The data are presented as the mean ± SD (n=8). **P<0.01 and ***P<0.001 compared with the 
model group. WP, white pulp; RP, red pulp; CA, central artery; SS, splenic sinus; SC, splenic cord; T, trabecula; MED, medulla; MEC, medullary epithelial 
cell; Lc, lymphocyte in tissues; TC, thymic corpuscle; ERC, epithelial reticular cell; COR, cortex; NS, notoginseng saponins; FNS, fermented notoginseng 
saponins; ns, not statistically significant.
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The results of the present study demonstrated that FNS 
and NS increased the protein expression levels of IL‑4, 
IL‑10, IL‑12, IL‑13, TGF‑β, IL‑6, IFN‑γ and TNF‑α, and 
regulated Th1 and Th2 immune responses by increasing the 
protein expression levels of GATA‑3 and T‑bet. Furthermore, 
FNS treatment significantly increased the levels of immune 
cytokines (IL‑10, IL‑12, IL‑13 and TNF‑α) and transcription 
factor T‑bet compared with NS treatment. This difference 
may be due to the increase of certain ginsenosides during 
fermentation.

Most ginsenosides in NS have low oral bioavail‑
ability (85). In L. plantarum fermentation, the hydrophilic 
ginsenosides (nR1, Rb1, Rg1, Rc, Re and R1) are deglycosyl‑
ated and converted into hydrophobic ginsenosides (Rd, Rh2, 
CK, PPT and PPD). This increased hydrophobicity allows 
passage through cell membranes and increases bioavail‑
ability  (86‑88). In the present study, the total contents of 
nR1, Rg1, Rb1 and Re, as the main bioactive components in 
NS (89,90), were reduced from 53.91 g/100 g to 36.67 g/100 g, 
and the total content of Rd, Rh2, CK, PPT and PPD was 
increased from 20.16 g/100 g to 34.11 g/100 g, during the 
NS Lactobacillus fermentation process. Zhu  et  al  (91) 
reported that the levels of Rb1, Rd, Rk1, Rg5, Rk3, Rh4 and 
20(S)‑PPD increased in steamed PN and could be used as 
pharmacokinetic markers of the steamed PN based on their 
elevated levels in the plasma. The ginsenosides in PN are 
classified as oleanane type, protopanaxadiol (PPD) and 
protopanaxatriol (PPT) types, according to the chemical 
structure. The PPD‑type ginsenosides showed improved 

absorption compared with PPT‑types in rat gastrointestinal 
systems. The peak concentration (Cmax) and area under the 
concentration‑time curve (AUC) of PPD‑type ginsenosides 
Fa, Rb1, Rd, Rk1 Rg5 and PPD were higher than PPT‑type 
ginsenosides R1, Re, Rg1, Rg2, F4, Rh1 and PPT; the peak 
time (Tmax) of the PPT‑types ginsenosides Rg1 (0.83 h), R1 
(1.17 h), Re (1.33 h), Rg2 (1.00 h), Rh1 (0.63 h) and 20(R)‑Rh1 
(0.79 h) was shorter than that of the PPD‑types ginsenosides 
Fa (8.00  h), Rb1 (8.00  h), Rb2 (8.00  h), Rd (9.33  h), CK 
(12.00 h), Rk1 (3.67 h), Rg5 (3.67 h) and PPD (12.00 h) (91).

The present study demonstrated that the content of 
PPD‑type ginsenosides Rd, CK and PPD in FNS was increased 
during the fermentation process, with results suggesting 
increased blood concentration, prolonged the drug duration 
and increased activity, and so served an important role in the 
treatment of blood deficiency rats.

CK is a secondary ginsenoside, which is more bioavailable 
and soluble than its parent ginsenoside (92). The Cmax of CK 
is double that of ginsenoside Rb1, and the Tmax of CK is higher 
than that of Rb1 (93). Fukami et al (94) reported that the Tmax, 
Cmax and AUC were different between Lactobacillus para‑
casei A221 fermented ginseng (FG) and non‑FG (NFG). 
The Tmax of CK was 2.2 and 16 h and the Cmax was 41.5 and 
1.16  ng/ml in the FG and NFG group, respectively. The 
AUC0‑12 h and AUC0‑24 h of healthy adults treated with FG were 
58.3 and 17.5‑fold higher than those in the NFG group (94). 
Choi et al (95) reported that the AUC0‑24 h and Cmax of CK from 
FG were 6.3‑fold and 6.0‑fold higher than those from NFG in 
rats. The Tmax of CK in humans and rats was 2.54 and 3.33 h 

Figure 9. Effect of FNS and NS on mRNA expression levels in the spleens of blood deficiency rats. mRNA expression levels of (A) GM‑CSF, (B) EPO, (C) TPO, 
(D) IL‑4, (E) IL‑6, (F) IFN‑γ, (G) GATA‑3 and (H) T‑bet. The data are presented as the mean ± SD (n=8). *P<0.05, **P<0.01 and ***P<0.001 compared with the 
model group; and #P<0.05, ##P<0.01 and ###P<0.001 compared with the NS group. GM‑CSF, granulocyte‑macrophage colony‑stimulating factor; EPO, eryth‑
ropoietin; TPO, thrombopoietin; GATA‑3, GATA binding protein 3; T‑bet, T‑box expressed in T cell; NS, notoginseng saponins; FNS, fermented notoginseng 
saponins; ns, not statistically significant.
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for FG and 9.11 and 6.75 h for NFG, respectively. The results 
of the present study demonstrated that the content of CK in 
FNS was higher than that in NS. These results suggested that 
administration of FNS resulted in a higher and faster absorp‑
tion of CK in blood deficiency rats compared with NS.

In conclusion, both FNS and NS treatment appeared to 
reduce the changes in the blood deficiency parameters induced 
by APH and CP. For certain parameters, FNS exhibited a 
greater impact compared with NS, improving the function of 
the BM, spleen, thymus and liver.
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