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Abstract. Atherosclerosis, a chronic inflammatory disease char-
acterized by plaque buildup within the arteries that obstructs 
blood flow and significantly increases the morbidity and 
mortality rates associated with cardiovascular diseases caused 
by impaired blood flow due to vascular stenosis or occlusion, 
such as angina and myocardial infarction. The development 
of atherosclerosis involves a complex interplay of endothelial 
dysfunction, accumulation of oxidized low‑density lipoprotein 
and macrophage‑driven inflammation. The risk factors for 
atherosclerosis include chronic inflammation, hyperlipidemia 
and hypertension. Effective management of these risk factors 
can prevent and delay the onset and progression of atheroscle-
rosis. Garlic and its processed preparations have previously been 
utilized to mitigate cardiovascular risk factors and continue to 
be used in traditional medicine in several countries. Among 
these preparations, aged garlic extract (AGE) has been shown to 
improve atherosclerosis in clinical trials and animal studies. AGE 
contains various compounds with potential anti‑atherosclerotic 
properties, such as S‑1‑propenylcysteine, S‑allylcysteine and 
other sulfur‑containing constituents, which may help prevent 
the development and progression of atherosclerosis. The present 
manuscript reviewed and discussed the anti‑atherogenic effect 
of AGE and its constituents by highlighting their mode of 
action and potential benefits for prevention and therapy in the 
management of atherosclerosis.
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1. Introduction

Cardiovascular diseases (CVDs) including coronary heart 
disease, cerebrovascular disease and rheumatic heart disease 
are the leading cause of death worldwide, claiming ~17.9 
million lives annually. The major cause of CVDs is athero-
sclerosis, an inflammatory disease that occurs in vessel 
walls (1,2). The development of arteriosclerosis is associated 
with various factors, including increased shear stress due to 
hypertension (3,4), inflammation induced by damage‑associ-
ated molecular patterns (DAMPs) from dead cells (5‑7) and 
augmentation of oxidation and glycation products resulting 
from hyperlipidemia including hypercholesterolemia (8,9) and 
hyperglycemia (10,11). These factors contribute to the damage 
of vascular endothelial cells, which subsequently leads to the 
accumulation of low‑density lipoprotein (LDL) cholesterol 
and migration of circulating monocytes into the blood vessel 
wall  (12,13). The infiltrated monocytes differentiate into 
macrophages, which phagocytose oxidized LDL (oxLDL) and 
become foam cells, leading to the formation of plaque with 
a lipid core (14,15). Subsequently, the progression of fibrosis 
and calcification of the plaque make the plaque unstable and 
prone to rupture. Plaque rupture and subsequent thrombus 
formation can trigger cerebral or myocardial infarction (16). 
Thus, proper reduction of these risk factors can help prevent 
and/or slow both the onset and progression of atherosclerosis.

Garlic has been previously reported to be effective in 
inhibiting the pathogenesis of CVDs and to help prevent 
chronic diseases such as diabetes mellitus, cranial nerve 
disease and cancer (17). Aged garlic extract (AGE), prepared 
by aging crushed raw garlic in water‑soluble ethanol for at 
least 10 months, contains a variety of compounds produced 
through aging processes. These constituents include S‑alk(en)
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ylcysteine compounds such as S‑allylcysteine (SAC), 
S‑1‑propenylcysteine (S1PC™; Wakunaga Holdings Co., Ltd.), 
S‑allylmercaptocysteine (SAMC), S‑propylcysteine (SPC) and 
S‑ethylcysteine (SEC); diallyl polysulfide compounds such 
as diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl 
trisulfide (DATS); Maillard reaction‑related compounds such 
as fructosyl‑L‑arginine (Fru‑Arg); phenolic compounds such 
as dehydrodiconiferyl alcohol (DDC) and dihydrodehydrodi-
coniferyl alcohol (DDDC); and amino acids such as L‑arginine, 
L‑cysteine and L‑methionine (Fig. 1) (18,19). However, AGE 
contains fewer irritating compounds, such as allicin, when 
compared with raw garlic and causes little damage to the 
gastric mucosa (20,21). Efendy et al (22) first reported in 1997 
that AGE inhibits the development of experimental atheroscle-
rosis in rabbits. Since then, the anti‑atherosclerotic effects of 
AGE have been demonstrated in various clinical (23‑36) and 
animal studies (19,22,37‑40). For example, clinical trials have 
shown that AGE can reduce lipid‑rich low attenuation plaque 
by ~30% (24,26) and inhibit the progression of vascular calci-
fication by ~65% (27,29,30).

This review aimed to highlight the beneficial effects 
and underlying mechanisms of action of AGE and its active 
constituents in mitigating risk factors associated with the 
onset of atherosclerosis and modulating key processes in its 
progression. Additionally, the clinical relevance, availability 
and potential applications of AGE in the prevention and treat-
ment of atherosclerosis was explored.

2. Effect of AGE and its constituents on risk factors for 
atherosclerosis

Atherosclerosis is a complex multifactorial disease triggered 
by several risk factors, such as chronic inflammation, hyper-
cholesteremia and hypertension. The prevention and treatment 
of atherosclerosis requires the control of risk factors. In the 
following section, the effect of AGE and its key constituents 
on these risk factors will be reviewed (Fig. 2).

Chronic inflammation. Chronic inflammation associated with 
obesity and aging is characterized by persistent and prolonged 
low‑grade inflammation, often triggered by DAMPs released 
from dead cells (41,42). This type of inflammation serves a 
crucial role in the initiation and progression of atherosclerosis. 
Furthermore, autoimmune diseases such as systemic lupus 
erythematosus, antiphospholipid syndrome and rheumatoid 
arthritis, which also induce chronic inflammation, are associ-
ated with an increased risk for atherosclerosis. Patients with 
these autoimmune diseases face a significantly increased risk 
of developing new atherosclerotic plaques, 3.3‑50.0  times 
higher compared with healthy individuals (43,44). Notably, the 
production of DAMPs, which mediate chronic inflammation, 
is influenced by various factors, such as smoking, obesity and 
hyperlipidemia (6). The key DAMPs involved in this process 
include the chromatin protein high mobility group box 1, 
S100 calcium‑binding protein A (S100A) 8, S100A9, S100A12 
and oxLDL  (5,6). These molecules further perpetuate the 
inflammatory response, contributing to the progression of 
atherosclerosis. In addition, these DAMPs serve a critical role 
in inducing the release of pro‑inflammatory cytokines, such as 
IL‑6 and TNF‑α. The recognition and binding of DAMPs by 

pattern recognition receptors, particularly Toll‑like receptor 4 
(TLR4) and receptor for advanced glycation end products, are 
central to this inflammatory response. This pathway under-
scores the complex interplay between chronic inflammation 
and the pathophysiological processes driving atherosclerosis, 
DAMPs being key mediators in both the initiation and progres-
sion of the disease (7,45,46).

Previous studies have demonstrated that AGE induced a 20% 
decrease in IL‑6 production in patients with coronary artery 
calcium scores <5 and in healthy adults with obesity (47,48). 
In addition, in  vitro studies have reported that several 
AGE‑constituents, S1PC, DADS and DATS inhibit IL‑6 produc-
tion induced by lipopolysaccharide (LPS), a TLR4 agonist (49‑52). 
Among these components, DADS and DATS suppress TLR4 
signaling by inhibiting NF‑κB, whereas S1PC acts through a 
distinct mechanism. Specifically, S1PC induces the degradation 
of the adapter protein myeloid differentiation primary response 
88 by activating autophagy (51,52). Thus, S1PC has been reported 
to exhibit anti‑inflammatory effects through a novel mechanism 
involving the suppression of TLR4 signaling by activating 
autophagy. However, since the mechanism of autophagy activa-
tion by S1PC is not yet fully understood, the anti‑inflammatory 
effects mediated by this mechanism require further investiga-
tion. In addition, several AGE constituents have been reported 
to inhibit autoimmune diseases. For example, DADS prevents 
cartilage destruction, ameliorates arthritis and reduces inflamma-
tion by decreasing the expression of pro‑inflammatory cytokines 
in arthritis rat models (53). Furthermore, L‑arginine improves 
arthritis and mitigates inflammatory bone loss by reducing the 
number of osteoclasts (54).

These findings suggest that AGE may suppress chronic 
inflammation, a key risk factor for atherosclerosis by 
suppressing TLR signaling, which is a primary trigger of 
inflammation, potentially acting prophylactically to inhibit the 
progression of atherosclerosis.

Hypercholesterolemia. Hypercholesterolemia contributes to 
the development of atherosclerosis. The risk for atherosclerosis 
increases by 2‑3% for each 1% rise in the serum cholesterol 
level (55,56). Conversely, lowering serum cholesterol by 10% 
can reduce the risk for atherosclerosis by 50% in 40 year old 
men and by 25% in 60 year old men over a 5 year period 
according to the results of an epidemiological survey (55,56). 
Hypercholesterolemia enhances the production of reactive 
oxygen species (ROS), which promotes the secretion of 
several pro‑inflammatory cytokines, including IL‑1, IL‑2, 
IL‑6, IL‑8, TNF‑α and IFN‑γ, by activating NF‑κB (55,57,58). 
Supplementation with AGE alone or in combination with B 
vitamins has been shown to decrease total cholesterol (TC) 
level by ~7% in clinical studies (36,59‑61) and ~15% in animal 
studies (40,59). AGE has also been shown to inhibit choles-
terol synthesis in rat hepatocytes, thus it is suggested that the 
cooperative action of several components of AGE, such as 
SAC, SPC, SEC, γ‑glutamyl SAC and γ‑glutamyl SPC, may 
contribute to its effect (59). These studies suggest that AGE 
decreases TC, which may contribute to the prevention of 
atherosclerosis.

Hypertension. Hypertension has been shown to significantly 
elevate the risk for developing atherosclerosis in clinical 
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trials (62). According to epidemiological research, arterial 
hypertension was identified as the most crucial cardiovascular 
risk factor, contributing to 48% of all strokes and 18% of all 
coronary events (62). A randomized trial with 3,845 partici-
pants, averaging 83 years in age, demonstrated that reducing 
blood pressure from 161/84 to 144/78 mmHg decreased the risk 
for cerebral circulatory disorders by 30% and cardiovascular 
events by 23% (62,63). Additionally, in patients with vascular 

disease or diabetes mellitus plus an additional cardiovascular 
risk factor, treatment with ramipril, an angiotensin‑converting 
enzyme inhibitor, resulted in a 22% reduction in the composite 
endpoint of cardiovascular death, myocardial infarction and 
stroke (64). Therefore, antihypertensive therapy is important 
for the prevention or improvement of atherosclerosis. AGE 
has been reported to improve not only atherosclerosis but also 
hypertension in several clinical trials. The AGE‑treated group 

Figure 1. Chemical structure of major constituents in aged garlic extract. (A) S‑Alk(en)ylcysteine, (B) ɤ‑glutamylpeptide derivatives, (C) allylpolysulfides, 
(D) maillard reaction‑relating compounds, (E) phenolic compounds and (F) amino acids.
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demonstrated a decreased mean systolic blood pressure (SBP) 
by ~10 mm Hg after 12 weeks of administration (65‑67). In 
addition, it has been reported that active components of AGE, 
including S1PC and SAC, reduce blood pressure. The repeated 
administration of S1PC for 10 weeks significantly decreases 
SBP of spontaneously hypertensive rats (68). Furthermore, it 
was reported that the single administration of S1PC reduces 
SBP after 3 h via the central histamine H3 receptor by altering 
histidine metabolism (69,70). Moreover, administration of SAC 
has been shown to decrease SBP in both ovariectomized and 
five‑sixths of a group of nephrectomized rats (71,72). These 
results suggested that AGE may help prevent atherosclerosis 
by mitigating hypertension, which is a risk factor for the devel-
opment of atherosclerosis.

Since AGE contains multiple bioactive components that 
act on various targets through different mechanisms, they have 
the potential to simultaneously improve major risk factors for 
atherosclerosis, such as chronic inflammation, dyslipidemia 
and hypertension. By acting on these factors, AGE may help 
prevent the progression of atherosclerosis.

3. Effect of AGE and its components on vascular endothelial 
function

Vascular endothelial cells, located on the innermost layer of 
blood and lymphatic vessels, serve crucial roles in delivering 
oxygen and nutrients, regulating blood flow, modulating immune 
cell trafficking and maintaining tissue homeostasis  (73). 
C‑reactive protein (CRP), induced by inflammation, can cause 
endothelial dysfunction by directly damaging endothelial cells 
and reducing the number and function of endothelial progenitor 
cells (43,44,74). Endothelial injury triggers ROS production 
and vascular inflammation, increasing the expression levels of 
intercellular adhesion molecule‑1 (ICAM‑1) and vascular cell 
adhesion molecule‑1 (VCAM‑1) on the cell surface and the 
secretion of C‑C motif chemokine ligand 2 (CCL2) (75). This 
disrupts tight junctions, which normally restrict the entry of 
circulating substances and immune cells from the bloodstream 
into the vessel wall, allowing monocytes to infiltrate the vessel 
wall  (76). Non‑inflammatory Ly6Clow monocytes typically 
patrol the vasculature to phagocytose and scavenge debris 
and maintain endothelial integrity. By contrast, the number 
of inflammatory Ly6Chi monocytes increases during chronic 
inflammation and hypercholesterolemia, preferentially adhere 
to activated endothelium, infiltrate the vessel wall and differ-
entiate into lesional macrophages (77‑80).

This infiltration of Ly6Chi monocytes corresponds to 
the early stages of atherosclerosis development, with Ly6Chi 
monocytes eventually transforming into foam cells that 
accumulate in blood vessels (Fig. 2A) (76‑79). The following 
mechanisms of actions discussed relate to the effects of AGE 
and its components in protecting vascular endothelial function.

Antioxidative effect on vascular endothelial cells. AGE, SAC 
and Fru‑Arg have been reported to inhibit the production of 
H2O2 and lipid peroxides induced by oxLDL through ROS. 
These compounds promote the nuclear accumulation of nuclear 
factor erythroid 2‑related factor 2 (Nrf2), which is a transcrip-
tion factor activated in response to oxidation, and increase the 
gene and protein expression level of the antioxidant enzymes 

heme oxygenase 1 (HO‑1) and glutamate‑cysteine ligase 
modifier subunit (GCLM) in human umbilical vein endothelial 
cells (HUVECs), thereby improving endothelial dysfunction. 
This change is accompanied by an increase in the intracel-
lular level of the antioxidant glutathione, suggesting that 
AGE and its constituents exert antioxidant activity to prevent 
oxLDL‑induced oxidation and cellular damage  (81‑86). It 
has also been shown that S1PC enhances activation of the 
Nrf2 pathway in the presence of a nitric oxide (NO) donor by 
promoting the degradation of broad complex, tramtrack and 
bric‑a‑brac domain and cap'n'collar homology 1, a transcrip-
tional repressor of Nrf2 (87,88). Additionally, SAC has been 
shown to activate endothelial nitric oxide synthase (eNOS) 
in endothelial cells and promote NO production  (89,90). 
These results suggest that AGE and its constituents may act 
together to increase the cellular antioxidant capacity through 
enhancement of the Nrf2 pathway and ameliorate the vascular 
endothelial cell dysfunction and exacerbated inflammation 
caused by oxidation (Fig. 3A).

Monocyte adhesion. DDC and DDDC, identified as anti-
oxidants in AGE, have been shown to suppress VCAM‑1 
expression induced by LPS or advanced glycation end prod-
ucts in HUVECs by inhibiting the JNK/c‑Jun pathway, but not 
the NF‑κB pathway, thereby preventing the adhesion of THP‑1 
monocytes to the surface of HUVECs (91). Similarly, DAS, 
DADS and DATS, which are minor constituents of AGE (18), 
suppress oxLDL‑induced VCAM‑1 and E‑selectin expression 
levels on the cell surface, reducing the adhesion of the human 
promyelocytic leukemia cell line HL‑60 to HUVECs (92). 
Notably, the inhibitory potency of these sulfur‑containing 
compounds increases with the number of sulfur atoms, in 
the order of DATS > DADS > DAS (92). Their mechanisms 
involve activation of the PI3K/protein kinase (PK) B signaling 
pathway to suppress E‑selectin expression and dephosphoryla-
tion of PKA and cAMP response element binding protein to 
reduce VCAM‑1 expression levels, each of which is mediated 
through the PKB/PI3K signaling pathway (92). Additionally, 
AGE and S1PC inhibit the secretion of CCL2, a chemokine 
that attracts monocytes (51,93). In addition, L‑arginine, a major 
amino acid in AGE, suppresses IL‑1β‑induced VCAM‑1 and 
ICAM‑1 expression, inhibiting the adhesion of human periph-
eral blood‑derived monocytes to HUVECs (94). L‑arginine 
also exhibits anti‑atherosclerotic effects, such as reducing lipid 
deposition in the aorta, improving flow‑dependent vasodila-
tion and preventing monocyte adhesion to the vascular surface 
in a hypercholesterolemic rabbit atherosclerosis model (95,96).

These findings suggest that multiple constituents in AGE 
suppress the adhesion of monocytes to vascular endothelial 
cells by not only reducing the expression of adhesion mole-
cules on endothelial cells but also inhibiting the secretion of 
chemokines, such as CCL2, that attract monocytes (Fig. 3A).

Endothelial barrier function. Vascular endothelial cells adhere 
to each other through adherens junctions including vascular 
endothelial (VE)‑cadherin, and tight junctions including 
claudin, occludin and zonula occludens‑1 (ZO‑1). These junc-
tions restrict the entry of circulating substances and immune 
cells from the blood into the vessel wall (13). Disruption of this 
barrier function by inflammation and oxidation leads to the 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  29:  104,  2025 5

entry of lipids and circulating immune cells into the intima, 
increasing lipid deposition and vascular inflammation in the 
aorta  (12,13). Kunimura et al  (97) reported that AGE and 
S1PC, but not SAC and SAMC, inhibited cell permeability by 
suppressing TNF‑α‑induced downregulation of VE‑cadherin, 
claudin‑5 and ZO‑1 through the suppression of the Rho 
guanine nucleotide exchange factor‑H1/RhoA/Rac pathway in 
HUVECs. These results suggest that AGE prevents the disrup-
tion of tight junctions caused by inflammation and maintains 
the integrity of intercellular adhesion (Fig. 3A).

In summary, AGE and its components maintain vascular 
endothelial barrier function and prevent monocyte adhesion 
and infiltration, which may consequently inhibit atheroscle-
rotic plaque development (Fig. 3A).

4. Effect of AGE and its constituents on foam cell formation

LDL in blood enters the vascular intima through the gaps 
between endothelial cells, where it is oxidized by ROS derived 
from vascular endothelial cells and macrophages, and is 

Figure 2. Process of plaque formation. (A) Endothelial dysfunction. Damage to vascular endothelial cells by inflammatory mediators and ROS reduces 
endothelial barrier function and induces infiltration of circulating monocytes and lipids into the vascular intima. (B) Foam cell formation and macrophage 
polarization. Infiltrating monocytes differentiate into macrophages, which take up oxLDL via scavenger receptors, including CD36, to form foam cells. 
Macrophages polarize into inflammatory M1 macrophages and anti‑inflammatory M2 macrophages depending on the plaque microenvironment. M1 macro-
phages release inflammatory factors to exacerbate inflammation, promoting plaque formation, while M2 macrophages release anti‑inflammatory cytokines 
and efferocytose foam cells and apoptotic cells, contributing to plaque regression. (C) Plaque calcification and platelet aggregation. Dedifferentiated VSMCs, 
which have been dedifferentiated by exacerbated inflammation, migrate and proliferate in the intima, inducing uptake of oxLDL and fibrosis and calcification 
on the plaque surface. As the disease progresses and the plaque becomes unstable, platelets adhere and aggregate at the site of endothelial cell loss, forming a 
thrombus that can occlude blood vessels and induce cardiovascular disease. CCL2, C‑C motif chemokine ligand 2; ECM, extracellular matrix; ECs, endothelial 
cells; ICAM‑1, intercellular adhesion molecule‑1; LDL, low‑density lipoprotein; MMP, matrix metalloproteinase; oxLDL, oxidized LDL; ROS, reactive 
oxygen species; VCAM‑1, vascular cell adhesion molecule‑1; VSMCs, vascular smooth muscle cells.
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Figure 3. Effect of AGE and its constituents in the processes of plaque formation. The inhibitory effects of AGE and their constituents on the plaque forma-
tion processes. (A) Endothelial dysfunction, (B) foam cell formation (macrophage cholesterol influx/efflux), (C) macrophage polarization and (D) plaque 
calcification and platelet aggregation. ABCA1, ATP‑binding cassette transporter A1; ABCG1, ATP‑binding cassette transporter G1; AGE, aged garlic extract; 
CCL2, C‑C motif chemokine ligand 2; DADS, diallyl disulfide; DAS, diallyl sulfide; DATS, diallyl trisulfide; DDC, dehydrodiconiferyl alcohol; DDDC, dihy-
drodehydrodiconiferyl alcohol; ECM, extracellular matrix; Fru‑Arg, fructosyl‑L‑arginine; HDL, high‑density lipoprotein; IL, interleukin; LDL, low‑density 
lipoprotein; MMP, matrix metalloproteinase; oxLDL, oxidized LDL; ROS, reactive oxygen species; SAC, S‑allylcysteine; SAMC, S‑allylmercaptocysteine; 
S1PC, S‑1‑propenylcysteine; TBX2, thromboxane B2; VSMCs, vascular smooth muscle cells.
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subsequently deposited in the vascular intima as oxLDL (2). 
Macrophages take up oxLDL via scavenger receptors (SRs) 
such as SR‑AI, CD36 or lectin‑like oxidized low‑density 
lipoprotein receptor 1 (LOX‑1), and the excessive uptake of 
oxLDL transforms macrophages into foam cells, resulting in 
the development of an atherosclerotic plaque (Fig. 2B) (14‑16). 
Atherosclerotic lesions were reduced in an atherosclerosis 
model of mice lacking theses SRs  (98‑100). Thus, the 
suppressed expression of SRs in macrophages may contribute 
to the inhibition of foam cell formation and plaque develop-
ment. It has been reported that AGE suppresses peroxisome 
proliferator‑activated receptor γ‑mediated CD36 expression 
and inhibits the intracellular uptake of oxLDL in macrophages 
derived from the human monocyte THP‑1 cell line (101‑103). 
On the other hands, macrophages also efflux free cholesterol 
(FC) converted from oxLDL via ABC transporters, such as 
ABCA1 and ABCG1, which are necessary for high‑density 
lipoprotein (HDL) synthesis. This FC is subsequently incor-
porated into HDL and transported back to the liver (15,104). 
In clinical trials and animal experiments, AGE increased 
plasma HDL‑cholesterol concentration, suggesting that it may 
improve cholesterol metabolism (36,40,59‑61). In addition, 
SAC increased ABCA1 gene and protein expression levels 
in THP‑1‑derived macrophages, which may improve choles-
terol metabolism (105). It has been reported that depletion of 
macrophage‑specific ABCA1 and ABCG1 exacerbates plaque 
formation (106‑108), whereas overexpression of ABCA1 is 
protective against atherosclerosis (109).

Thus, AGE may reduce cholesterol accumulation in macro-
phages by suppressing the expression of SRs and increasing 
the expression of ABC transporters. These results also suggest 
that AGE inhibits the progression of atherosclerotic lesions by 
reducing foam cell formation (Fig. 3B).

5. Effect of AGE and its constituents on macrophage 
polarization

Macrophages polarize into two major phenotypes: 
Inflammatory M1 macrophages and anti‑inflammatory M2 
macrophages, depending on the arterial plaque microenvi-
ronment (110). In plaque lesions, M2 macrophages are more 
dominant compared with M1 macrophages from the early 
stages of plaque formation until plaque stabilization. They 
contribute to plaque stabilization through the efflux of choles-
terol, production of anti‑inflammatory cytokines, phagocytosis 
of apoptotic cells and collagen production induced by TGF‑β, 
thereby regulating plaque progression  (110). However, as 
plaque formation progresses and a lipid and necrotic core is 
formed, M1 macrophages become dominant. This shift leads 
to the production of inflammatory cytokines, increased lipid 
accumulation due to decreased cholesterol efflux and thinning 
of the cap caused by the production of matrix metalloprotein-
ases, resulting in an unstable plaque and an increased risk 
of rupture (Fig. 2B) (111‑113). Crocin, an active ingredient 
of Crocus sativus L., and pomegranate juice increased the 
number of M2 macrophages and inhibited the progression 
of aortic plaque formation in atherosclerotic mice (114,115). 
Therefore, it is important to maintain the predominance of M2 
macrophages over M1 macrophages to inhibit plaque progres-
sion or to stabilize plaques (110,116).

AGE has been reported to decrease the expression levels of 
M1 macrophage markers and increase the expression levels of 
M2 macrophage markers in aortic and splenic lymphocytes. The 
active component responsible for this effect of AGE is S1PC, 
which has been shown in vitro to prolong IL‑10‑mediated STAT3 
activation, thereby promoting polarization into M2c macro-
phages with a high IL‑10 production capacity (38). Additionally, 
DADS, another active component of AGE, reduces the number 
of M1 macrophages by suppressing LPS‑induced NF‑κB activa-
tion through the Nrf2 pathway, thereby inhibiting polarization 
into M1 macrophages and reducing inflammation (117).

However, since macrophage polarization is influenced by 
the microenvironment, it is crucial to investigate whether AGE 
or its components can induce M2 macrophage polarization 
within the context of a chronic inflammatory environment, 
such as that found in atherosclerotic plaques. Notably, clinical 
trials have demonstrated that drugs such as pioglitazone and 
thiazolidinediones, which promote polarization towards M2 
macrophages, significantly suppressed atherosclerosis in 
patients with type 2 diabetes  (116,118‑120). Consequently, 
therapeutic strategies targeting M2 macrophage polarization 
have emerged as promising avenues for atherosclerosis treat-
ment  (116). These clinical observations suggest that AGE 
and its components might contribute to atheroprotection by 
promoting a shift towards the M2 macrophage phenotype 
(Fig. 3C). However, the polarization of macrophages within 
atherosclerotic plaques is a complex process involving various 
subpopulations. Further research is needed to pinpoint the 
specific macrophage subsets affected by AGE and to elucidate 
the underlying molecular mechanisms that drive these changes.

6. Effect of AGE and its constituents on vascular 
calcification and platelet aggregation

Vascular calcification. Vascular smooth muscle cells (VSMCs) 
are typically present in the vascular media and are involved 
in vascular contraction and relaxation. However, they dedif-
ferentiate and migrate into the vascular intima in response to 
cytokines, growth factors released from damaged vascular 
endothelial cells and activated macrophages  (121,122). 
Migrated VSMCs proliferate in the vascular intima and 
change to various phenotypes, such as foam cell‑like and 
osteoblast‑like cells, and are involved in the development 
of plaque formation  (121,122). In calcified plaque lesions, 
VSMCs upregulate the expression of osteogenesis‑related 
factors including alkaline phosphatase (ALP), runt‑related 
transcription factor 2, osteopontin and bone morphogenetic 
protein 2, suggesting that the proliferation of osteoblast‑like 
VSMCs contributes to plaque calcification (Fig. 2C) (122).

Several clinical trials have reported that AGE adminis-
tered for 1 year improved the coronary artery calcification 
scores of patients with coronary artery disease (27,29,30,123), 
suggesting that AGE may regulate the activation of osteo-
blast‑like VSMCs. In addition, DDC has been shown to 
significantly inhibit ALP activity induced by culturing human 
coronary artery smooth muscle cells with dexamethasone and 
the culture supernatant of THP‑1 derived macrophages (124). 
These findings suggest that AGE and DDC may inhibit plaque 
calcification by suppressing the osteogenic differentiation of 
VSMCs (Fig. 3D) (27,29,30,123,124).
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Platelet aggregation. Plaque rupture and subsequent thrombus 
formation trigger arterial stenosis and disrupt blood flow in the 
late stage of atherosclerosis. Platelets bind to von Willebrand 
factor (VWF) present in the exposed subendothelial collagen 
layer due to plaque rupture via the glycoprotein (GP) 
complexes. Platelets adhering to subendothelial tissue release 
ADP, thrombin and thromboxane A2, promoting platelet 
activation. Activated platelets bind to VWF and fibrinogen via 
GP complex (GPIIb/IIIa) to form platelet aggregates, which 
become thrombi  (125,126). The thrombus is stabilized by 
fibrin, which is produced from fibrinogen, and promotes the 
blood clotting reaction on the platelet membrane (125‑127). 
This thrombus can cause stenosis, occlusion or dissection of 
blood vessels (Fig. 2C).

Steiner and Li (128) reported that in the blood of patients 
with moderate hypercholesterolemia taking AGE for 6 weeks, 
collagen‑, epinephrine‑ and ADP‑induced platelet aggregation 
was reduced, and platelet adhesion to collagen, VWF and 
fibrinogen was inhibited. Additionally, ADP‑induced platelet 
aggregation was suppressed in the blood of normolipidemic 
subjects who took AGE for 13 weeks (129). Although AGE 
inhibits platelet aggregation, no serious adverse events have 
been reported when AGE is used in combination with the 
anticoagulant warfarin, indicating it may be relatively safe to 
use (130). Furthermore, serum from apolipoprotein E‑knockout 
mice, whose atherosclerosis improved after 12 weeks of AGE 
feeding, showed a significant decrease in the concentration of 
thromboxane B2, a marker of platelet activation, suggesting 
that AGE may inhibit platelet aggregation by suppressing 
platelet activation (39). Platelets are activated through MAPK 
kinase by several agonists, such as ADP and collagen (131‑133). 
It has been reported that platelets from rats treated with 
AGE for 2 weeks exhibit inhibited collagen‑induced platelet 
aggregation and suppressed the phosphorylation of ERK, p38 
and JNK (134). In addition, studies on human platelets have 
suggested that AGE may inhibit platelet activation by reducing 
ADP‑induced Ca2+ influx into the cell, thereby inhibiting 
GPIIb/IIIa activation  (135‑137). It has been reported that 
L‑arginine, L‑cysteine and L‑methionine, which are compo-
nents of AGE, inhibit ADP‑induced platelet aggregation, 
while DATS inhibits collagen‑ and thrombin‑induced platelet 
aggregation (19,138). Therefore, it is possible that AGE may 
inhibit atherothrombosis by suppressing platelet aggregation 
through the collaborative action of its multiple pharmacologi-
cally active components (Fig. 3D).

These findings suggest that AGE may prevent plaque 
rupture by inhibiting calcification of advanced atherosclerotic 
lesions. Additionally, if plaques do rupture, AGE may inhibit 
platelet aggregation, thereby reducing the risk of subsequent 
myocardial infarction and angina pectoris (Fig. 3D).

7. Future directions and limitations of current assessments

Establishing the causal relationship between AGE intake and its 
diverse pharmacological effects in clinical trials has inherent 
limitations due to the complexity of its mechanisms of action 
and various confounding factors. Furthermore, the underlying 
mechanisms driving AGE's broad biological activities remain 
largely elusive, in part due to the presence of numerous bioac-
tive compounds. Developing robust targeting and screening 

systems is essential for identifying these active constituents 
and their specific roles. A comprehensive understanding of 
AGE's multifaceted biological effects is therefore imperative, 
and OMICS‑based approaches, including proteomics and 
miRNA analysis using clinical, animal and cell samples, could 
facilitate this process by identifying key molecular targets and 
regulatory pathways (139‑144).

In clinical studies conducted to date, the effect of AGE 
has been evaluated for up to 1 year; however, its effects on 
the onset and progression of atherosclerosis are expected to 
become clearer with longer‑term follow‑up studies. Therefore, 
large, randomized, double‑blind clinical trials with long‑term 
treatment and follow‑up periods are needed to assess the 
effects of AGE on the development and progression of athero-
sclerosis, as well as their impact on the clinical outcomes of 
patients with atherosclerosis. Additionally, the dosage of AGE 
in clinical trials for atherosclerosis treatment varies between 
1,000‑2,400 mg/day, depending on the trial (27,29,30,123). 
Determining the optimal dosage for each target disease 
through dose‑response testing and similar assessments 
remains a critical challenge.

To advance AGE research, it is essential to comprehensively 
characterize its bioactive components, their kinetics and their 
precise mechanisms of action. Future investigations should 
also focus on identifying key active constituents, elucidating 
their molecular targets and exploring AGE's potential syner-
gistic effects with existing drugs, its applicability to clinical 
trials and its relevance beyond atherosclerosis.

8. Conclusion

The multifactorial mechanism involving endothelial dysfunc-
tion, oxLDL accumulation, macrophage‑induced inflammation 
and other risk factors in the development of atherosclerosis 
makes it difficult to prevent and treat the disease with a single 
target or mechanism. In this context, AGE has potential 
therapeutic and preventive applications, as it contains multiple 
active components and causes few side effects. AGE and its 
components exhibit diverse mechanisms of action that affect 
various aspects of disease progression, such as reducing risk 
factors like chronic inflammation, hyperlipidemia and hyper-
tension, suppressing endothelial dysfunction, reducing oxLDL 
formation and increasing in HDL levels, reducing foam cell 
formation and promoting M2 macrophage polarization and 
suppressing platelet aggregation.

These effects of AGE can be attributed to its pharma-
cologically active sulfur‑containing components, which 
have demonstrated inhibitory actions on various stages of 
atherosclerosis progression. By acting on multiple pathways 
simultaneously, AGE exhibits a unique multi‑target approach 
to atherosclerosis prevention and treatment, with its constitu-
ents acting synergistically (Fig. 3). Notably, AGE has also 
been shown to delay coronary artery calcification in patients 
undergoing statin therapy without affecting side effects, 
suggesting its potential to complement the effects of existing 
atherosclerosis drugs.

Despite promising preclinical and clinical evidence, the 
intricate mechanisms underlying the diverse biological activities 
of AGE remain largely elusive. Contributing to this complexity 
is the presence of a wide array of bioactive compounds within 
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AGE. Developing robust targeting and screening systems is 
crucial for identifying these active constituents. To this end, 
a comprehensive understanding of the multifaceted biological 
effects of AGE is imperative. Future research should utilize 
chemical proteomics and network pharmacology approaches 
to identify active constituents, target molecules and mecha-
nisms of action, thereby elucidating the effects of AGE. A 
comprehensive characterization of AGE is essential, and these 
findings should be leveraged to explore its potential synergistic 
effects with existing drugs, its applicability to clinical trials 
and its relevance beyond atherosclerosis.
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