
Abstract. On the advent of a completely assembled human
genome, modern biology and molecular medicine stepped into
an era of increasingly rich sequence database information and
high-throughput genomic analysis. However, as sequence
entries in the major genomic databases currently rise expo-
nentially, the gap between available, deposited sequence data
and analysis by means of conventional molecular biology is
rapidly widening, making new approaches of high-throughput
genomic analysis necessary. At present, the only effective
way to keep abreast of the dramatic increase in sequence and
related information is to apply biocomputational approaches.
Thus, over recent years, the field of bioinformatics has rapidly
developed into an essential aid for genomic data analysis and
powerful bioinformatics tools have been developed, many of
them publicly available through the World Wide Web. In this
review, we summarize and describe the basic bioinformatics
tools for genomic research such as: genomic databases, genome
browsers, tools for sequence alignment, single nucleotide
polymorphism (SNP) databases, tools for ab initio gene
prediction, expression databases, and algorithms for promoter
prediction.
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1. Introduction

Officially initiated in 1990, it was not until the end of the last
decade that the Human Genome Project began to effectively
deliver sequence data to the research community. However,
since then, and complimented by the commercial operations
of Celera Genomics (1), these two major sequencing initiatives
have generated a vast amount of genomic sequence data. The
latest release of GenBank (Build 35) contained 47 million
sequences with a current exponential increase of novel sub-
missions (2). This enormous increase in available sequence
information leads to a rapidly widening gap between the
amount of raw sequence data and their analyses by means
of molecular biology or other genetic approaches.

Thus, over recent years, an increasing need for high-
throughput analysis methods has led to the development of
sophisticated bioinformatics approaches. Such computational
tools are currently the only way to rapidly and cost-effectively
screen and analyze large quantities of sequence and gene
expression information in order to close the gap between the
generation of genomics data and their analysis by conventional
biological approaches.

The field of bioinformatics is currently developing rapidly
and multifaceted tools and approaches are being established
for genomic biology and medicine applications. Many of
these approaches have become excellent aids to answer detailed
genome-related questions. In this review, we focus on widely-
used bioinformatics tools that are readily accessible over the
World Wide Web. Importantly, in relation to general use by
biomedical investigators, these tools do not require extensive
computational knowledge.

2. Genomic databases

Besides the large sequencing facilities, multiple individual
laboratories across the world contributed sequence information
to the public Human Genome Project. The generated sequence
data are stored in large genomic repositories, of which the most
commonly used are the database of the European Molecular
Biology Laboratory (EMBL)/European Bioinformatics Institute
(EBI) (3), the National Center for Biotechnology Information
(NCBI, GenBank) database (4) and the DNA Database of
Japan (DDBJ) (5). These three main repositories work in
close collaboration, exchanging their sequence information on
a daily basis. Furthermore, these organisations have agreed
upon a common terminology, making sequence information
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and files highly compatible between the individual databases.
At present, each individual database contains between 46
(EBI) and 48 (DDJB) million sequence entries, consisting of
45-79 billion nucleotides. Given the primary focus of the
Human Genome Project, i.e. the accurate sequencing of the
human genome, and the general research bias towards health-
related questions, most of the sequences currently deposited
are human. Thus, approximately 30 million entries within
GenBank are of human origin. However, more recently, an
increasing number of sequences of other species, especially
the biological model organisms of the mouse, rat, fish, fly,
frog and worm have been deposited in these genomic data-
bases. With the completion of the human genome, the main
sequencing effort has now shifted towards these model
organisms, the analysis of expressed sequence tags (ESTs)
for gene expression/characterization studies and also towards
an examination of human cancer genomes in an attempt to
identify disease-linked mutations.

3. Genome browsers

Making these millions of sequences available to the entire
biomedical community, through easily accessible and user-
friendly systems has become essential. Hence, in recent years
several web-accessible tools, so-called genome browsers, have
been developed in order to provide such easy access. Currently,
the most commonly used browsers are the EntrezGene
browser (6), the UCSC genome browser (7) and the EBI/
Ensembl browser (3). The focus of these genome browsers
differs slightly; EntrezGene focuses more on individual
sequences whereas the UCSC and EBI/Ensembl genome
browsers have advantages when browsing large genomic
contigs (of essentially up to chromosomal length) and also for
comparative genomics when comparing data from different
species. However, all three genome browsers provide essential
genomic data, such as genomic sequence, exon structure,
mRNA sequence, and EST or SNP data, through simple web-
based text search interfaces. In addition, these databases may
be installed locally, an interesting option for high-throughput
analyses, which can be considerably more time-consuming if
carried out via the World Wide Web.

4. Sequence alignment

Sequence comparison and alignment programs are essential
bioinformatics tools. To date, the most widely utilized
algorithms are the basic local alignment search tool (BLAST)
(8) and its derivative, Gapped BLAST (9), as well as the
FASTA (10,11) and ClustalW (12,13) algorithms. In contrast
to earlier sequence alignment tools, such as the Smith et al
(14) or Needleman-Wunsch (15) algorithms, BLAST uses a
heuristic approach by first finding short contiguous
matches. Each match is subsequently extended in order to
yield higher scoring alignments, resulting in an optimal final
alignment. This heuristic approach represents a balance
between speed and sensitivity, which may be varied by
changing a threshold value, T. Besides its advantage in
speed, the algorithm and indeed the complete family of
BLAST programs are easily accessible through the NCBI
website (http://www.ncbi.nlm.nih.gov/BLAST). The sequence

of interest may simply be pasted into a web form for further
analysis. The database to be searched may be chosen; with nr
(non-redundant), htgs (high-throughput genome sequence) and
EST (expressed sequence tags) databases of several organisms
being the most commonly used options for genomic research.
In addition, the size of the short initial contigs to be searched
(‘word size’) may be chosen to be 7, 11, or 15, changing the
stringency of the search.

Looking at the BLAST output, the quality of the alignment
may be estimated by the alignment score and the e-value.
The BLAST alignment score is a measure of the extent of the
local ungapped alignments and is partly dependent on the
underlying scoring matrix; the higher the score, the better the
alignment. The e-value measures the statistical significance
threshold for reporting sequence matches against the individual
genome database; for example, a default threshold value of
1E-5 means that, in 1E-5, matches would be expected to
occur by chance (16).

In addition to scores and e-values of the individual
alignment, BLAST also returns the individual alignments
along with percentage rates of identity and similarity of
nucleotides or amino acids. Finally, these individual alignments
are then linked to other NCBI genomic databases, such as
EntrezGene, Geo Profiles, or UniGene (4), providing easy
access to genomic data for the matched sequence of interest.

In a similar way, FASTA (10,11) examines only identities
that occur in a run of an adjustable number of consecutive
matches. During further steps in the comparison of sequences,
the regions with the most matches and smallest distance
between the matches are further evaluated, allowing replace-
ments and, thus, leading to a completed optimum alignment of
sequences. Applying different scoring matrices for insertions,
deletions and mismatches of the alignment, a measure of
similarity is provided. Depending on the applied matrix, the
stringency may be varied due to individual needs. FASTA
programs may be installed locally through the Virginia Bio-
informatics web server (fasta.bioch.virginia.edu) or can be
conveniently accessed through a web interface at the server
of the EBI (www.ebi.ac.uk).

In order to demonstrate or visualize conserved structural
features of a number of related sequences, a multiple alignment
tool is necessary. The most commonly used program for
multiple sequence alignment is currently the ClustalW (12)
algorithm. ClustalW was implemented as a combination of a
phylogenetic and an heuristic approach. In an initial step, a
phylogenetic tree is generated utilizing neighbour-joining
methods. Thereafter, beginning with the two least distant
sequences, all neighbouring sequences are subsequently aligned
by a heuristic algorithm, finally leading to a complete alignment
of all sequences. ClustalW is publicly available through the
EBI or GeneBee (http://www.genebee.msu.su) web servers.

5. Mutation repositories and single nucleotide poly-
morphism (SNP) databases

Human genome and EST sequencing programs have generated
large amounts of overlapping sequence data for both coding
and non-coding regions. Such multiple sequence reads,
complemented by specific programs of SNP discovery, have
resulted in the submission of over 10,000,000 human SNPs
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Figure 1. Screenshot of the UCSC genome browser displaying the human FOXP4 genomic region (37).

Figure 2. Screenshot of the GeneNote expression profile for human FOXP4 (37).
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to the NCBI dbSNP database (17). Although they may be
very useful in relation to genetic linkage studies, most of
these genetic variations are likely to be functionally silent as
they will be localized in intron sequences or else in coding
sequence positions that do not lead to amino acid changes in
the translated protein. However, a considerable number of
these SNPs, especially those in amino acid coding positions
or the regulatory regions of genes will have a biological and/or
medical impact. For example, hemochromatosis or sickle cell
anaemia are prominent examples of diseases caused by single
nucleotide changes. Furthermore, the efficacy of several drugs
has been demonstrated to be significantly modulated by
single nucleotide changes. Thus, the identification of SNPs
and investigations of their role in disease development and pre-
disposition as well as their pharmacological impact is of
high relevance.

One of the most comprehensive and commonly searched
SNP repositories is the dbSNP database, which contains
~10 million human SNPs . This magnitude of identified poly-
morphisms obviously provides a rich source of largely
unstudied genetic variations, all of which are potentially
informative with respect to disease development or drug
interaction. However, the scale of such variation may also
represent something of a problem as the investigation of a
large number of SNPs per gene may be difficult and time
consuming. For example, searching for SNPs in the human
TP53 suppressor gene results in 1436 entries in dbSNP, a
number far to big for conventional manual analysis aimed
at an evaluation of their possible clinical relevance.
Increasingly therefore, rational large-scale population-based
technology-driven solutions to such issues will be required.
However, excellent links within dbSNP to other NCBI
databases, especially the sequence databases, makes the
transfer from the identification of an interesting variant to a
more detailed positional examination and molecular
verification convenient.

A further source of validated and reported mutations is
the Online Mendelian Inheritance in Man (OMIM) database
(18). Entering a gene of interest, the OMIM database report
page, as well as directly detailing SNPs and mutations in
some cases, allows the user to quickly link to the relevant
dbSNP entry for the gene of interest via a drop-down menu.
Gene-specific reports provided by OMIM are of excellent
quality and provide direct links to key Pubmed citations.
However, perhaps one slight disadvantage of OMIM is that
hyperlinks to the corresponding sequence information of
other SNP databases are not provided.

Furthermore, mutation databases such as the Human
Gene Mutation Database (HGMD) (19), the Japanese Single
Nucleotide Polymorphism database (JSNP) (20) and
HGVBase (21) may be helpful for individual questions but
do not display major advantages over NCBI dbSNP.

6. Ab initio gene prediction

Although sequence alignment is very useful, in the context of
the localization of a human gene or EST to a particular
region of the genome (for example through the use of the
BLAT search program in the UCSC genome browser) (7),
such approaches contribute little to the task of gene discovery

from non-annotated regions of genomic sequence, where no
EST matches are present. Such regions may often be identified
from genetic linkage or similar studies. Consequently, they
are often large, containing several tens or hundreds of kilo-
bases of sequence, the bulk of which will usually be non-
coding. It is therefore essential for further analysis to identify
the coding regions of any novel genes within such genomic
regions.

The latest generation of gene prediction programs such as
GENESCAN (22) or AUGUSTUS (23) provide an acceptable
level of accuracy coupled with ready usability, and are
therefore of significant use in the analysis of uncharacterized
genomic sequences. These programs essentially rely on a
statistical model, the Hidden Markov Model (24), for predicting
either an intronic or exonic state of the sequence in a given
region. Thus, the algorithm does not rely directly on sequence
homology to known genes. However, the statistical models
that underpin the operation of the software have been trained
on a set of training data relating to known genes and character-
istic structure. Therefore, parts of the genome that are of
significantly different structure compared to these training data
may be only poorly annotated. However, exon level specificity
was reported to be as high as 80% for such approaches and,
thus, for most genomic sequences, these algorithms provide
reasonable accuracy for an initial scan of exons within a given
region.

GENESCAN and AUGUSTUS may be accessed via the
World Wide Web. Both take large genomic fragments via a
web interface and return the predicted exon-intron structure
as well as predicted promoters for both strands as a graphical
output and a table detailing the exact start and end nucleotide
positions of any exon, intron, and promoter within the given
sequence.

7. Expression profiling

The determination of the expression level of a gene in one
tissue over another may be critically important in the context
of evaluating its importance in normal function or disease
processes and in highlighting whether a particular gene
product might have potential as a future drug target. As the
expression level of a gene relies on many complex factors,
including specific transcription factor levels, epigenetic
modification, genetic variation and somatic or constitutional
mutation, there are no efficient algorithms for ab initio gene
expression profiling and expression data are therefore derived
from observational studies. Whilst it has been possible to
readily and accurately examine the expression of small
numbers of genes for many years, the rapid increase in the
amount of genomics data, with 25-30,000 human genes now
described, has necessitated the development of efficient
ways to investigate genome-wide expression, such as high-
throughput EST sequencing, serial analysis of gene expression
(SAGE), and gene expression microarray analysis. Data so
derived are now generally stored in large, web-accessible
database repositories.

SAGE tags are short sequence tags derived from the 3' end
of mRNA molecules. The advantage of this approach lies in
the small size of the tags. After an intermediate cloning step,
10-20 of these tags are sequenced with one single sequencing
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reaction, significantly saving time and money. These tags in
many cases allow an allocation to individual genes through
database sequence alignment and thus allow high-throughput
expression analysis by analysing the number of sequenced
tags per gene and tissue. Large SAGE and EST sequencing
efforts are currently underway and data from multiple experi-
ments may be accessed through open-source web interfaces.
Two of the most commonly used are the Stanford SOURCE
web tool (25) and the NCI CGAP (4) sites. The advantage of
the SOURCE site lies in its convenient web interface allowing
the user to search SAGE and EST expression profiles by
gene names or accession numbers. The resulting predicted
expression profile can also be viewed as a graphical output,
sorting the individual tissues by the level of a gene's prediction/
normalized number of sequenced ESTs per tissue. The NCI
CGAP suite is more sequence oriented, giving the user the
opportunity of accessing the individual EST sequences and
additional background information, e.g. the RNA library and
vectors used in the EST profiling experiment that the tag was
derived from. However, although these EST-based expression
profiling tools may complement future expression profiling
strategies, they suffer from a number of practical drawbacks
and so have been largely superseded for global analyses by
gene expression micorarrays.

Each gene expression microarray may contain tens of
thousands of specific elements, each representing an individual
gene or splice variant. Such arrays can simultaneously measure
absolute expression for each element in a single sample (or
relative expression in paired samples). Throughout the past
decade, a vast number of microarray studies have been
published. Mostly analyzed from only one or a small number
of perspectives, these data contain a vast amount of untapped
expression information. Lately, several databases have been
established in order to make the corresponding sets of raw
data from these experiments openly accessible. Most widely
used are the Stanford Microarray Database (26), the EBI
ArrayExpress (27,28), and the NCBI Gene express omnibus
(4). Thus, these data may now be downloaded and examined
in different and especially new ways and perspectives.

In order to make expression data from normal tissues
available, the GeneNote (29) group at the Weizman Institute
of Science established 12 microarray data sets from normal
tissues and made the data freely available via the internet.
Users may search these data by entering a gene name and
retrieving the normalized levels of expression in graphical
and numerical form. Similarly, tissue-specific and disease-
specific gene expression microarray information is now
associated with many of the annotated gene descriptions in
the UCSC genome browser (7). To reach such data, following
a sequence-based alignment search, the user need simply
click on the gene map in the browser window. Despite the
documented problem of variations of expression in multiple
microarray experiments, these data must currently be regarded
to be more reliable than the SAGE and EST sequence-based
estimations of gene expression.

8. Promoter prediction

Essential to the regulation of a gene's expression level is the
corresponding promoter region. The prediction of a promoter

remains problematic since the sequence may not correspond
closely to a standard consensus sequence. Adding to this
problem, unless the gene is very well characterised, the position
of the promoter may not be obvious, as the transcription
initiation point, which represents the extreme 5' end of the
mRNA, may not be known with accuracy. Coupled with the
possibility of splicing within the 5' leader at any position
beyond the initiation point, this means that the promoter may
be some considerable distance, perhaps many kilobases,
upstream of the actual coding sequence of the gene. Further-
more, promoters of mammalian genes do not share many
regions of sequence similarity, making the recognition of
promoters even more difficult. To solve this structural problem,
most bioinformatic (and molecular biological) searches focus
on the ‘core region’ of the promoter.

Some of the main structural features of interest are the
TATA box [a consensus of TATA(T/A)A(T/A)] and the
potential binding sites for transcription factors. The TATA
box is recognized by the TATA binding protein (TBP), which
is a part of the TFIID transcription initiation factor. Thus, the
consensus sequence of the TATA box or the position weight
matrix is often used to recognize the location of the promoter
region. In addition, around the transcription start site, a loosely
conserved so called initiator region has been reported, which
may be bound by several proteins. These proteins may be
capable of initiating transcription even in absence of TBP.
Specific transcription factor binding sites are thought to be
typically between 5 and 15 bp long and the presence of such
sites in the vicinity of a putative coding sequence may signal
the presence of a promoter. Thus, the potential promoter
sequences may be searched either by consensus sequences or by
positional weight matrices. However, significant improvements
in promoter prediction have only been made within the last
few years. PromoterScan (30) has been viewed as one of the
first promoter prediction algorithms with acceptably high
specificity. Recently, PromoterInspector (31) and Dragon
Promoter Finder (32) made further progress in specificity and
sensitivity of promoter prediction algorithms.

PromoterScan (30) identifies promoters using a TATA
box positional weight matrix combined with the density of
specific transcription factor binding sites. The algorithm has
been demonstrated to be of comparatively high specificity
but low sensitivity.

9. Future prospects; data integration and gene ontology

With the availability of large quantities of biological
information for many individual genes, from multiple
bioinformatics sources, efficiently integrating these data into
the context of specific analyses has become essential to
enhance the speed and quality of genomic research. With
the increasing use of high-throughput methods, the field of
biology is increasingly faced with the problem of storing,
indexing and retrieving vast amounts of data (of often related
but different forms) from a range of sources. Furthermore, the
nature of the data to be integrated is becoming increasingly
diverse; including genomic, mRNA and protein sequences,
protein structures and modifications, protein function, bio-
molecular interactions, gene expression, alternative splicing,
epigenetic modification, DNA polymorphisms, taxonomic
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data, molecular pathways, genetic networks, bibliographic
data, and evolution.

As such data derive from different and often independent
fields of biological research, these areas generally have
their own terminology and data requirements. Much of the
information that the biological researcher is interested in is
available in public reference databases and in the millions of
articles of scientific research literature, mostly accessible on
the World Wide Web. It is estimated that 80% of biological
data are in text form, and even the abstracts are written in
free text utilizing a complex biological vocabulary, which
may vary significantly in different areas of research. Thus,
despite their wide availability, these data are not generally
machine-readable. Consequently, no promising, significant
increase in the efficiency of data integration may be expected
from automation of Pubmed data retrieval (33,34).

In order to make these data machine accessible and to
integrate different data sources, there is an obvious need for a
standard vocabulary and to translate the available data into
clear defined standard data sets and terms. At present, several
approaches to meet these obvious needs are underway and
the most commonly used annotation standards currently
rely essentially on ontologies. These ontologies provide
conceptualizations of domains of knowledge and facilitate
both communication between researchers and the use of
domain knowledge by computers for multiple purposes (35).

The functional data annotated for individual genes are
currently mostly dependent on the available gene ontology
annotations of the Gene Ontology (GO) Consortium (36).
The Gene Ontology project uses standardized GO terms,
which describe three major aspects of a gene's biological
information: its biological processes, molecular function and
cellular localization. Although GO annotations may develop
into a powerful tool in the future, they are currently often
limited and incomplete as they are dependent on database
entries by individual investigators. This is particularly
problematic, as the translation of biological data into GO
terms is highly dependent on a researchers view and scientific
background on a given subject. In many cases, there is no
perfectly fitting GO term available to describe the biological
data, making a ‘best fit’ annotation necessary. Even more
concerning is the very limited quality control of the data
entries. In addition, just as the initial GO assignments may
initially be time consuming and difficult to make, the problem
of keeping results and annotations up to date adds another
layer of complexity to the problem.

However, the advantages of such annotations are obvious.
Once a gene's GO characteristics are recorded, the ontology
is thereby optimized for computational high-throughput
analysis, allowing a highly time-saving comparison of a large
amount of functional data. Thus, despite any disadvantages,
GO annotations may develop into a powerful tool in the future,
especially with a rapidly increasing amount of available
datasets.

In summary, many sophisticated, extremely valuable,
easily-accessible and user-friendly tools have been developed
for bioinformatics analysis in genomic biomedical research.
However, the integration of these bioinformatics tools and
data is the current challenge and, if successfully met, will
significantly accelerate genomic biomedical research.
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