
Abstract. Renal cell carcinoma (RCC) is known to
effectively prevent immune recognition. However, little is
known about the mechanisms that underlie this phenomenon.
Thus, the identification of immunogenic molecules associated
with RCC and the elucidation of the corresponding signaling
pathways are crucial to the development of effective treat-
ments. We performed transcriptional and functional profiling
with cDNA microarrays (1070 cDNA probes) on a total of
17 RCCs, 11 clear cell  and 6 papillary, and on corresponding
normal tissue. Samples were clustered based on their
expression profiles. We found a total of 45 genes to be
regulated equally by both tumor types compared to the normal
tissue. A set of 13 differentially expressed genes was identified
between the examined tumor subtypes. Functional analysis
was performed for both gene sets and showed a significant
enrichment of cell surface genes regulated in both tumor
subtypes. Within these we found five surface marker genes to
be upregulated (TNFRSF10B, CD70, TNFR1, PDGFRB, and
BAFF) which are involved in immune responses via the
regulation of lymphocytes and can also induce apoptosis.
Their overexpression in both tumor subtypes suggests a
possible involvement in the immune escape strategies of
RCC. The combination of transcriptional and functional
profiling revealed potential target molecules for novel
therapy strategies that must be studied in more detail.

Introduction

Renal cell carcinoma (RCC) is the third most common tumor
within urological oncology and comprises 2-3% of all

malignancies. The most frequent histological subtypes of
RCC are clear cell (80%) and papillary (10% to 15%) (1-3).
Even though RCC is known to prevent immune recognition
through induct ion of  apoptosis  in  T-lymphocytes
only a  few genes, like FasL, are known to be involved in
this phenomenon (4). In order to elucidate more mechanisms
involved in RCC immune escape strategies, we compared two
separate gene expression studies using cDNA arrays. The
highly parallel analysis of gene expression has already been
successfully applied for biomarker discovery (5,6). However,
it is possible to extract even more information from the
expression profiles generated via functional profiling. This
method was developed to translate the typical list created by
microarrays of tens or hundreds of genes found to be differ-
entially expressed into a better understanding of the biological
phenomena involved (7).

Functional profiling has been successfully used to elucidate
gene expression patterns in cancer on the basis of gene
expression studies (8,9). Nevertheless, to date no study has
been carried out to identify patterns enabled in RCC. We
therefore compared two independent gene expression datasets
for papillary (pRCC) and clear cell (ccRCC). The ccRCC
dataset was reported in an earlier study (10). For the pRCC, a
separate gene expression study was carried out. We found
several genes to be commonly and differentially expressed
and subjected them to a functional annotation analysis. The
functional annotations revealed an enrichment of immunogenic
molecules that were regulated in both tumor types. These genes
are likely to play a role in RCC immunogenicity and can serve
as target molecules for new therapies. These results extend
our existing knowledge about the organizational pattern of
gene expression in human RCC and lead to promising target
molecules for more effective therapies.

Materials and methods

Tissue samples. Samples from 11 patients with ccRCC and 6
patients with pRCC, containing normal non-tumor and tumor
tissue were obtained from fresh nephrectomy specimens
(Table I). The samples were snap frozen in liquid nitrogen
and stored at -80˚C at the Department of Urology of the
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Friedrich-Schiller-University, Jena. Paraffin sections from each
specimen were reviewed by a pathologist and classified
histologically according to UICC-TNM classification (1997).
All Fuhrmann grading spectra (1-3) are represented (Table I).
Additionally, 10 patients (3 pRCC and 7 ccRCC) have been
examined by CGH-analysis (Table II).

Total RNA extraction. Total RNA was isolated by standard
methods using a commercially available RNA isolation kit
(Qiagen, Hilden, Germany). A qualitative integrity test of
purified total RNA was performed with capillary electro-
phoresis using a Bioanalyser 2100 (Agilent Technologies,
Palo Alto, CA, USA). The amount of RNA was measured
with a UV-spectrophotometer.

Microarray experiments. Linear amplification of RNA was
performed using a protocol of a previously described method
(11). Amplified RNA (aRNA) samples were quantified by
spectrophotometry and the quality was reassessed by
capillary electrophoresis (Bioanalyser 2001, Agilent). aRNAs
were hybridized on the topic-defined PIQOR™ Immunology
microarray (Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany). Microarray experiments and data normalization

were carried out as previously described (10). On each array
the tumor and the corresponding normal tissue of one patient
were hybridized. Microarray experiments were performed
according to the MIAME guidelines (12).

Real-time RT-PCR. Four primer pairs for CALB1, CD98,
CD68 and CD37, as well as one reference gene primer pair
for IL1RAP, were used (QuantiTect primer assay, Qiagen).
RNA (2 μg) was reverse transcribed using SuperScript™ II
reverse transcriptase (Invitrogen) with 100 μM random
hexamer primers according to the manufacturer's protocol.
Real-time RT-PCR was performed with a LightCycler
(Roche Molecular Biochemicals, Mannheim, Germany) in
capillaries using a commercially available master mix
containing HotStartTaq DNA polymerase and SYBR-Green I
deoxyribonucleoside triphosphates (QuantiTect SYBR-Green
PCR-kit, Qiagen). The following real-time PCR protocol was
used for all genes: initial 95˚C denaturation phase of 15 min
to activate the HotStart enzyme followed by 45 rounds of
amplification and quantification (15 sec at 95˚C; 10 sec at
55˚C; 30 sec at 72˚C) each with a single fluorescence
measurement. The specificity of the desired RT-PCR products
was documented using gel electrophoresis and melting curve
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Table I. Overview of all examined patients with corresponding tumor relevant information.a

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Patient Cell type Appearance Grading pT (extension pN (infiltration pM 

of primary tumor) of lymph nodes) (metastasis)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 Papillary Papillary 2 1a - -

2 Papillary Papillary 3 1 0 -

3 Papillary Papillary 2 1b 0 x

4 Papillary Tubulo-papillary - 1 - -

5 Papillary Papillary - 3a - -

6 Papillary Tubulo-papillary 1 3a 0 x

7 Clear-cell - - 1 - -

8 Clear-cell Azinary, tubulary 2 - - -

9 Clear-cell - 2 3b 0 -

10 Clear-cell Azinary, tubulary 2 - - -

11 Clear-cell Solid, compact, 2 3a 0 x
trabeculary, tubulary

12 Clear-cell Solid 3 - - -

13 Clear-cell Azinary, tubulary 2 - - -

14 Clear-cell Trabeculary 2 - - -

15 Clear-cell Azinary, tubulary 2 - - -

16 Clear-cell - 2 - - -

17 Clear-cell Aleveolary 1 - - -
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aMedical Faculty, Institute of Urology, Jena, personal communication.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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analysis (LightCyler Software, version 3.5, 2001, Roche
Molecular Biochemicals). The ‘delta-delta CP method’ for
comparing relative expression results in real-time PCR was
applied (13).

Data preprocessing and clustering analysis. First, both
datasets for pRCC and ccRCC were analyzed separately. Genes
with missing data in the majority of experiments (>60%)
were discarded. For further analysis only genes that showed a
differential regulation in at least 50% of the samples (e.g.
upregulation in three of six pRCC experiments) and a 1.4-fold
regulation in at least one sample were used. From these
preliminary datasets, all genes with inconsistent expression
profiles, i.e. having a contradictory regulation in two or more
out of six (pRCC) and three or more out of 11 (ccRCC)
samples, were removed. Genes fulfilling these criteria were
referred to as ‘regulated equally’. If a sufficient number of
genes was identified in these searches, a functional analysis

was performed. Additionally, the results of ccRCC and pRCC
were then compared to find diagnostic markers common or
discriminative for these two variants of RCC.

As the papillary and clear cell datasets were generated
using different topic-defined microarrays, the analysis was
restricted to the subset of 562 PIQOR probes present on both
microarrays. For statistical analysis of the microarrays, a two-
class unpaired statistical analysis of microarrays (SAM) was
applied to the dataset assuming a false-discovery rate of zero
(14). Because SAM is not effective with missing data points
we performed a two-step approach: First, genes with missing
data in the majority of experiments (>60%) were discarded.
Subsequently, any missing values in the remaining genes
were estimated by 'N-nearest neighbour imputation' (15). The
data preprocessing resulted in two datasets: one containing
genes that were equally expressed by both tumor types and
one containing genes differentally expressed. Unsupervised
hierarchical cluster analysis (Average Linkage Clustering)
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Table II. Overview of the results obtained by CGH-analysis.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Patient CGH-analysis
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 dim(y), enh(7,17)
2 dim(8p11pter, Xp, Y), enh(2q22q34, 3p12qter, 9q22pter, 12q24pter)
3 dim(1p,20,y), enh(17)
4 enh(7,12,17)
5 enh(3q,7)
6 dim(9q22qter,17p), enh(8p12qter, 11q14q23,17q)
7 dim(3)
8 dim(3p21pter,8p,14q21q24), enh(5q21qter)
9 dim(3p13pter), enh(5q,7)

10 dim(3p,4q13q28,7q,10q22,14q13qter,16q17p), enh(2q32pter,5q31qter,6q,13q22qter)
11 dim(1p34qter,2p22pter,3,4,6,8,9,13,14,15,18q,x),enh(16q21pter,19,20)
12 dim(3p), enh(4, 5, 13, 21)
13 dim(3p13pter,14,17,20), enh(2,21)
14 dim(3p12pter,14,15,17,20,y), enh(2,7,11,12,21)
15 dim(3p13pter, 10q23qter) 
16 dim(3p14p24,8p,9q21qter,14,17,18,y), enh( 8q,9q21pter)
17 dim(3p,8p)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table III. Qualitative correlation of microarray and real-time RT-PCR data of four selected genes that discriminate between
normal and tumor tissue.a

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Regulated gene Gene ID Number of patients showing ≥ 2-fold Number of patients showing ≥ 2-fold

expression on microarray expression on LightCycler
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
CALB1 793 7/8 10/12
CD98 6520 8/8 10/12
CD37 951 7/8 10/12
CD68 968 7/8 9/12
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aThe number of patients in which the respective gene is ≥ 2-fold regulated is shown for both expression profiling platforms. We analysed 4
additional patients that have not been examined before on cDNA-microarrays
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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was carried out using ‘Cluster’ and ‘Tree View’ programs
according to Eisen (16).

Functional annotation analysis. Both datasets for equally and
differentially regulated genes in both tumor subtypes were
subjected to a pathway annotation analysis by using
Miltenyi's TreeRanker system (Miltenyi Biotec GmbH). This
software system analyses groups of genes for a statistically
significant enrichment of biological pathway annotation terms.
Term enrichment relative to the expected background
distribution was scored using Fisher's exact test. Two basic
features set TreeRanker apart from similar approaches
published recently (17-19). First, annotations derived from
fundamentally different sources (Gene Ontology, gene families,
sequence motifs, chromosomal proximity, literature keywords,
etc.) can be scored simultaneously for each given group of
genes, resulting in a joint statistical significance value. Second,
the scoring approach can be applied to entire hierarchical gene
trees, scoring individual sub-branches and reporting only
non-redundant instances of significant annotation enrichment
in specific clusters. In this mode, a Bonferroni-correction is
applied to the significance values to account for the multiple-
testing situations. Genes up or downregulated in both tumor
subtypes were subjected to further analysis with Interaction
Explorer Software Pathway Assist (version 2.5, Stratagene).
The ResNet database (as of August 30, 2005) was searched
for common cellular processes and protein complexes.

Results

Gene expression analysis of pRCC. From the 1070 available
genes present on the microarray, 602 (55.7%) genes were
found to be more than 2-fold differentially expressed in at least
one patient. We found a total of 10 genes to be overexpressed
that have not been described for pRCC (Table IV).
Additionally, we found a slight, but nevertheless consistent,
overexpression for the genes TNFR1 and TNFRSF10B. The
already known upregulation of the genes TIMP1 and THBS2
was confirmed (20,21).

The gene with the most prominent downregulation in the
pRCCs is PLCG2. We also found CD98, CCL13 and CXCL14,

and CALB1 to be downregulated in most samples. Genes with
a more moderate but nevertheless quite continuous down-
regulation include HSPA1A, DCN, MATRIXGLA, MGST2,
TTRAP, CD164, PLAT, SOD1, and CXCL12.

Confirmation of selected genes differentially expressed in
pRCC via real-time RT-PCR. A randomly selected subset of
genes (CD37, CALB1, CD96, CD68) found to be differentially
expressed in pRCC was confirmed via real-time RT-PCR
(Table III). In order to compare the quantified mRNA
molecules of the candidate genes in the relative expression
ratio model, IL1RAP was chosen as the reference gene
because it showed no significant regulation on the microarrays.
The real-time RT-PCR efficiency was set to 2 (E=2.0) for all
factors. The standard deviation in all experiments performed
is between 0 and 3.38%. The regulations found by cDNA-
microarrays were confirmed for all four genes. In order to
independently validate these regulations, we also performed
real-time RT-PCR on four additional patients that had not been
previously examined on microarrays. The detected regulations
were again confirmed.

Comparative functional analysis. For the comparative func-
tional analysis we combined the dataset for gene expression in
pRCC with a dataset for gene expression in ccRCC. First, we
performed a global correlation analysis to find out wether the
gene expression profiles of patients belonging to the same
tumor subtype cluster together. Second, we searched each
dataset for genes similarly regulated in patient samples and
third, we performed a functional analysis if a sufficient number
of genes regulated was identified (Fig. 1).

Global correlation analysis. We assessed the correlation
between the expression profiles of the clear cell and papillary
dataset (Fig. 2). For this purpose, we used all genes that
were found to be expressed in at least 55% of the patient
samples. The expression profiles of both datasets satisfactorily
cluster in clearly separable groups. Two patients of the ccRCC
dataset show a very divergent expression profile, neither
matching the ccRCC samples nor the pRCC. Additionally, one
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Table IV. Genes identified to be regulated, but not
previously described.
–––––––––––––––––––––––––––––––––––––––––––––––––
Gene name Gene ID
–––––––––––––––––––––––––––––––––––––––––––––––––
TGFBI 7040
TRADD 8717
FOSL2 2355
HSP70.2 3303
LTN 6375
MDC9 8754
CSF1R 1436
BAFF 10673
CD68 968
CD37 951
–––––––––––––––––––––––––––––––––––––––––––––––––

Figure 1. Overview of the analysis design carried out in this study.
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experiment belonging to the pRCC dataset correlates better
to the ccRCC dataset. A closer inspection of patient data
(histology, age, gender and other pathologically relevant data)
did not reveal possible reasons for this outlier.

Regulated genes in pRCC and ccRCC. The comparative
functional analysis revealed genes to be regulated in both tumor
subtypes in the same direction (equally) as well as
differentially. A total of 45 genes was identified to be
regulated equally in both RCC types (Table V). Among the
upregulated genes in both tumor types was a significantly
relevant group of 12 genes which are surface markers. The
downregulated genes in both tumor types were mostly enzymes
(10 genes) or genes involved in lipid and carbohydrate
metabolism (Table V).

The differentially expressed genes in both tumor subtypes
comprise thirteen genes (TNFR2, RPS7, CD151, VCAM1,
LUMAN, ATF4, HEVIN, CCND1, VEGF, CD40, PLGF,
CD70 and FOSL2) that are upregulated in the ccRCC patients
and downregulated in the pRCC patients (Fig. 3). This gene set
distinguishes between the tumor subtypes applying a false-
discovery rate of zero to the combined dataset. Only one gene
(FOSL2) was found to be upregulated in pRCC and
downregulated in ccRCC. CD70 as well as PLGF are strongly
upregulated (32-fold and 20.8-fold, respectively) in all ccRCC
samples, but only weakly (1.2-fold and 1.1-fold, respectively)

in the pRCC samples. FOSL2/FRA2 and HEVIN exhibit the
most contrary expression between the tumor subtypes.

Functional annotation analysis. The 45 equally regulated genes
(22 upregulated and 23 downregulated in both tumor subtypes)
were subjected to a functional annotation analysis (Table V).
The aim was to search for common cellular processes enabled
in RCC. The relations found for the upregulated genes are
shown in Fig. 4 and for the downregulated genes in Fig. 5.
The downregulated genes in both tumor types are mainly
enzymes and genes related to lipid and carbohydrate
metabolism (Table V). Several downregulated genes (CTGF,
ATF5, SOD1, HSPA8, FYN, COL18A1, HSPA1a) were found
that are related to apoptosis or cell death (Fig. 6). Among the
upregulated genes in both tumor subtypes, we found a statist-
ically significant group of 12 upregulated surface markers.
Five out of the 12 genes (TNFRSF10B, CD70, TNFR1,
PDGFRB and BAFF) are directly related to immune response,
apoptosis and cell death (Fig. 6).

Discussion

Renal cell carcinoma (RCC) is known to prevent an immune
response via induction of apoptosis in T-cells. Even though
various gene expression studies have been carried out, only a
few genes, such as FasL, are known to play a role in these
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Table V. Overview of genes up- or downregulated in both examined RCC types.a

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Genes upregulated in both tumor types Genes downregulated in both tumor types

–––––––––––––––––––––––––––––––––––––––––– ––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene Name Gene ID Annotation Gene Name Gene ID Annotation
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
TNFR1 7132 Surface marker CCNH 902 DNA-metabolism
BAFF 10673 Surface marker BAMACAN 9126 DNA-metabolism
TNFRSF10B 8795 Surface marker HSPA1A/HSPA1B 3303 DNA-metabolism/HSP70
PMP22 5376 Surface marker ANPEP 290 Enzyme
PDGFRB 5159 Surface marker SOD1 6647 Enzyme
CD53 963 Surface marker FYN 2534 Enzyme
FCGR1A 2209 Surface marker PLAT 2811 Enzyme
CD68 968 Surface marker RAR 10966 Enzyme
CD70 970 Surface marker PLCL 5334 Enzyme/lipid metabolism
CD19 930 Surface marker PRKCL2 5586 Enzyme/lipid metabolism
FCGR2 2212/2213 Surface marker PRSS11 5654 Enzyme/lipid metabolism
CD45 5788 Surface marker PIK3CB 5291 Enzyme/lipid metabolism
IL8 3576 m.a. PLCG2 5336 Enzyme/lipid metabolism
IL16 3603 m.a. HSPA8 3312 HSP70
TUBA 10376 m.a. HSPA9 3313 HSP70
CASP4 837 m.a. CTGF 1490 Lipid metabolism
BID 637 m.a. CYR61 3491 Lipid metabolism
PLGF 5228 m.a. COL18A1 80781 m.a.
CSK 1445 m.a. COL6A1 1291 m.a.
CX3CR1 1524 m.a. LTBP4 8425 m.a.
SPARC 8404 m.a. DCN 1634 m.a.
STAT1 6772 m.a. ATF5 22809 m.a.

BACH1 571 m.a.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
am.a., multiple annotation.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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mechanisms (4). The discovery of more genes that are involved
in this mechanism would lead to the development of more
effective immunotherapeutic approaches.

Gene expression studies carried out for RCC using
microarray technologies have already been successfully applied
toward the identification of cancer-associated expression
patterns (8,9). Several studies have also been published using
transcriptional profiling to identify genes that are differentially
regulated (6,22). However, most of these studies are often
restricted solely to changes in gene expression and do not

address functional patterns. So far no functional profiling
analysis has been carried out for RCC.

The aim of the present study was to compare the gene
expression of the RCC subtypes pRCC and ccRCC. First, we
analysed the gene expression of both tumor subtypes. Using
Miltenyi's TreeRanker system (Miltenyi Biotec GmbH) we
identified clusters of interacting genes that were coordinately
or differentially up or downregulated. We then identified a
dataset with differentially expressed genes (a total of 13 genes)
between pRCC and ccRCC (Fig. 3). Furthermore, we found a
dataset with 45 genes regulated equally in both tumor subtypes
(Table V). Functional profiling revealed differences and
similarities in the gene expression patterns of both tumor
subtypes.

Confirmation of microarray data. To confirm our data, we
compared the differentially expressed genes of this study with
earlier pRCC studies. Our results were consistent with those
studies that had overlapping datasets. For example, our results
match previously published data for the genes THBS2, C-Kit,
GRO-1, TIMP1, TIMP2, CXCR4, and IGFBP6 (20,21,23,24).
Additionally, we validated the cDNA microarray results via
real-time RT-PCR for randomly selected genes. We found a
strong correlation between the microarray and real-time RT-
PCR analyses for all examined genes. In order to confirm the
expression patterns found independently from the microarrays,
we subjected four separate (pRCC) patient samples that had not
been analysed on microarrays to a real-time RT-PCR analysis.
We again confirmed the expression patterns found with the
cDNA microarrays.

Genes differentially expressed between the tumor subtypes. The
first dataset analysed contained 13 genes that are differentially
expressed between both tumor subtypes. This dataset served to
discriminate between the two RCC subtypes. FRA2/FOSL2
and HEVIN exhibited the most contrary expression between
the examined tumor subtypes. FRA2 was strongly down-
regulated in ccRCC whereas HEVIN was downregulated in
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Figure 3. Overview of genes discriminating between the papillary and clear cell RCC datasets. (Unsupervised one-dimensional clustering of log2 data using
the 'Euclidean distance' metric).

Figure 2. Global inter-experiment correlation analysis of genes present on
both topic-defined PIQOR microarray compositions. Yellow color indicates
good correlation between two expression profiles, while black squares
represent poor or even anti-correlation (blue).
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pRCC. In some cases, expression of the FOS gene has also
been associated with apoptotic cell death (25). HEVIN is an
extra-cellular matrix-associated secreted glycoprotein
belonging to the secreted protein acidic and rich in cysteine
(SPARC) family of matricellular proteins. We identified a

number of genes upregulated in ccRCC but not in pRCC that
play a role in cell-cell recognition, such as VEGFA and
VCAM1. Interestingly, CD40, a gene upregulated in ccRCC,
was also involved in an immune response by regulating B-cell
proliferation. However, we also found an upregulation for the
gene TNFR2 that mediates most of the metabolic effects of
TNF· including blocking its apoptotic functions.

The findings that the genes RPS7, CD151, LUMAN, and
ATF4 were upregulated in ccRCC but not in pRCC is
congruent with previous studies that report discrete micro-
array patterns in RCC subtypes (6,22,24). Our study found
additional differences in regulation between the two tumor
subtypes for CD70, PLGF, and CCND1. The gene CCND1
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Figure 5. Network analysis of the downregulated genes in both tumor
subtypes (blue halo) to identify common cellular processes (yellow boxes)
and protein complexes (hexagons).

Figure 6. Schematic representation of genes commonly expressed by both
tumor subtypes involved in RCC immunogenicity (blue, upregulated genes;
red, downregulated genes; yellow, affected processes; green arrow,
activation; red arrow, inhibition; grey arrow, unkown influence).

Figure 4. Network analysis of the upregulated genes in both tumor subtypes (blue halo) to identify common cellular processes (yellow boxes) and protein
complexes (hexagons). Most of the processes involved are related to apoptosis or cell death.
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showed a rather heterogeneous expression pattern and was not
consistently expressed in all patient samples analysed.
Meanwhile, CD70 and PLGF were strongly upregulated in
ccRCC but nearly unaffected in the pRCC dataset. A closer
look at the induction revealed that while both genes were
only slightly induced in pRCC, they were more than 20-fold
upregulated in ccRCC. These ambiguous results for CD70
and PLGF might not only reflect the heterogeneity of the cell
population in the examined tumor tissues, but also patient-
specific differences in gene expression. Consequently we
included these genes in both the equally and differentially
expressed gene datasets.

Genes equally expressed in the tumor subtypes. The 45 genes
equally expressed (22 upregulated and 23 downregulated) by
both tumor types were analysed via functional profiling
(Table V).

Downregulation in both tumor subtypes. The majority of genes
downregulated in both tumor types were enzymes (10 genes)
and genes involved in lipid and carbohydrate metabolism
(7 genes) (Table V). The functional analysis revealed their
involvement in several cellular processes such as cell motility,
proliferation and angiogenesis. Most importantly, several of
these commonly downregulated genes were found to be
involved in mechanisms concerning apoptosis and cell death
(FYN, COL18A1, CTGF, SOD1, ATF and HSPA1A) (Fig. 5).

Upregulation in both tumor subtypes. Most of the up-
regulated genes in both tumor types were surface markers
(Table V and Fig. 4). Since these markers play a key role in
cell-cell communication and are crucial for adaptive and
antigen-directed immunity we constrained our analysis to
identifying the underlying functional relations between them
(Figs. 4 and 6). Among the genes found to be regulated are
FCGR1A, FCGR2, and CD45. They are known to be
regulators of T-cell antigen receptor signaling and are
therefore directly involved in an anti-immune response of RCC
(26). CD19 may be involved in the growth regulation of B-cells
and CD68 could play a role in phagocytic activities of tissue
macrophages, both in intra-cellular lysosomal metabolism and
extracellular cell-cell and cell-pathogen interactions. The
gene PMP22 might be involved in growth regulation whereas
PDGFRB is a receptor that binds specifically to PDGFB and
has a tyrosine-protein kinase activity.

Most interestingly, four of the twelve upregulated surface
markers, TNFRSF10B, CD70, TNFR1, and BAFF, belong to
the tumor necrosis factor/tumor necrosis factor receptor
related superfamily, a group of proteins that function as
communicators between cells. Additionally, a fifth surface
marker, PDGFRB, has been found to be upregulated in both
tumor subtypes. All five of these proteins mentioned before can
mediate apoptosis or are linked directly to an immune response
via their ability to regulate the reaction of lymphocytes to
pathogens (Fig. 6) (27).

It has already been speculated that CD70 could play an
important role in RCC immune escape, more so since
Chahlavi et al showed that the overexpression of CD70 in
glioblastoma leads to T-cell death (28). Given the strong
upregulation of CD70 in ccRCC and the accumulation of

upregulated immunogenic genes in RCC, we think that genes
belonging to the TNF receptor family could play a key role in
RCC immune escape. However, the role of CD70 as a possible
mediator of T-cell death for RCC should be investigated in
more detail.

Our approach provides information on the functional
similarities of the two most common RCC types. The
functional comparison of both tumor subtypes point on the one
hand to a remarkable difference between pRCC and ccRCC.
On the other hand, both tumor types seem to utilize similar
mechanisms and patterns to successfully escape the human
immune system. We found a subset of genes to be equally
regulated by both tumor subtypes, which are all related to
apoptosis or T-cell regulation. These findings elucidate genes
possibly involved in RCC immune escape strategies that
should be investigated in more detail. Some of these genes
could potentially be new targets for novel therapeutic agents.
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