
Abstract. Prostate cancer is the most common cancer in men
in Western countries, with a high incidence of bone metastasis.
The bony metastasis is incurable and contributes significantly
to disease-specific morbidity and mortality. The molecular
and cellular mechanisms leading to the development of bone
metastasis in prostate cancer remain unclear, but are currently
under intensive investigation. In this review, we summarized
the current understanding of bone metastasis in prostate
cancer. The rapid progress in the genetic predisposition that
makes prostate cancer cells more prone to spread to bone,
bone-derived factors which are involved in the development
of bone metastasis at the level of the local microenvironment,
the interactions between metastatic prostate cancer cells and
bone marrow endothelial cells, osteoblasts, and osteoclasts,
are discussed in this article.
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1. Introduction

Prostate cancer is the most commonly diagnosed male cancer
in the UK, the US and in most other Western countries. More
than 30,000 new cases are diagnosed each year in the UK
alone. It is also the second leading cause of mortality from
cancer after lung cancer in men in the UK, accounting for
10,100 deaths each year (1). 

Bone metastases are a frequent complication of certain
solid tumours. Breast cancer and prostate cancer have the
highest frequency of bone involvement, as well as lung and
kidney involvement with less frequency. Bone is the most
common metastatic site of prostate cancer; ~90% of patients
with advanced prostate cancer (haematogenous metastasis)
have skeletal metastasis (2). Importantly, once tumours
metastasize to bone, they are virtually incurable and result in
significant disease morbidity prior to a patient's death. Bone
metastases can lead to pain, pathological fractures, nerve
compression syndromes, and hypercalcemia. Current
treatments are mainly palliative. Although a century ago,
Peget proposed the ‘seed and soil’ hypothesis to describe
cancer metastasis (3), knowledge in this critical area remains
weak. However, recent years have seen a rapid progress in
elucidating the role of certain signal pathways, epithelial-
mesenchymal transition (EMT), interaction between tumour
cells and bone tissue, and certain protein factors in the
development of bone metastasis. This article aims to provide
an overview of the progress in these areas. 

2. The modes of disseminating prostate cancer

At an early stage, prostate cancer cells are confined to the
prostate gland within the thin surrounding capsule. As the
disease progresses, some cancer cells, as the result of genetic
predisposition or environmental interaction/stimulation or
indeed the combination of both elements, become more
aggressive and begin to breach the surrounding structure.
These cells either directly invade the surrounding tissue, or
disseminate via lymphatic and haematogenous routes. The
direct invasion may result in the direct spreading of cancer
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cells to the erectile nerves, seminal vesicles, bladder and
rectum situated near the prostate. The lymphatic and vascular
routes, however, frequently result in the systemic spread of
cancer cells to distant organs, including the bones, lung, and
liver.

The primary lymphatic drainage of the prostate is via the
internal iliac, perivesical, external iliac, obturator, and
presacral nodes. The secondary lymphatic drainage includes
the inguinal, common iliac and para-aortic nodes. These nodes
are therefore prime locations where one searches for
involved positive lymph nodes. At the end of the last century,
a new technique, sentinel lymph node dissection, was
developed and introduced in the detection, staging and
management of lymph node involvement in prostate cancer.
The detection of a positive sentinel node indicates the need
for a wide dissection of lymph nodes during surgery. However,
a convincing negative sentinel node may spare an extensive
procedure of dissection, thus avoiding certain complications
associated with wide dissection during radical prostectomy
(4). 

Both lymphatic and haematogenous dissemination
frequently occur, even during the early stage of the disease,
and are seen in a vast majority of the patients who have
advanced prostate cancer. How to determine if systemic
spread has ‘occurred’ or not is a highly controversial topic, a
conclusion dependent on a wide variety of factors, from the
type of samples to test, location and timing of sampling,
techniques to detect cancer cells, to the interpretation of ‘the
presence of cancer cells or a cancer cell’ in a sample. This topic
is beyond the realm of the current discussion. Nonetheless,
the bone, lung and liver are the leading haematogenous sites
of prostate cancer where it is more likely to find a metastatic
prostate cancer cell (2).

3. The process of bone metastasis from prostate cancer

The process of bone metastasis is complex and arduous, and
incorporates multiple cells, factors and stages (Fig. 1). A few
reviews summarizing this process have been published (5-7).
During the development and progression of the primary
tumour, certain clones of tumour cells having acquired
genotypic and phenotypic characteristics are able to interact
with the local microenvironment. For example, tumour cells
release vascular endothelial growth factor (VEGF) to initiate
angiogenesis, thus enhancing the blood supply to the tumour.
The stromal cells are rich sources of protein factors that
directly act on cancer cells thus stimulating the growth of
tumours and the dissemination of cancer cells. On the other
hand, some of the stromal cell-derived factors directly induce
angiogenesis thus supporting the growth and dissemination of
an aggressive tumour. A good example of these stroma-
derived protein factors is hepatocyte growth factor (HGF), a
cytokine secreted by the stroma cells, which has been
implicated in angiogenesis and the dissemination of tumour
cells (8). The disruption of the intercellular adhesion in the
tumour causes some tumour cells to detach from the tumour
mass (detachment), and then invade the extracellular matrix
(invasion) which incorporates the motility, migration of
tumour cells and the breakdown of extracellular matrix.
Some tumour cells will penetrate the blood vessel, thus

entering the circulation (intravasation). From this point, these
tumour cells migrate from the primary site and circulate in
the blood where they are preyed upon by the immune system
and the mechanical stresses of blood flow. Some tumour
cells eventually survive and adopt a process to leave the
blood circulation (extravasation), by which cells adhere and
penetrate the blood vessel again (a virtual reversal of the
intravasation process). Once the tumour cells escape from the
circulation and manage to survive, they finally develop a
secondary tumour at another site, in this case in bone. This
complex process also needs the integration of multiple
factors and events, such as invasion of tumour cells, angio-
genesis, interaction between tumour cells and the local micro-
environment of bone.

4. The orientation of metastases to bone in prostate
cancer

The question of why the bone is the most preferred metastatic
site of prostate cancer has aroused significant interest in
investigation. One would first contemplate the anatomical
characteristics of the prostate gland. The blood supply to
prostate cancer may provide a shortcut for the haemato-
genous dissemination of tumour cells from the prostate to
certain type of bone. A rich venous plexus surrounds the
prostate and connects to the venous drainage of the spine.
This collection of veins (Batson's plexus) is potentially one of
the reasons why lumbosacral spinal metastases are common
in advanced prostate cancer (9). However, the anatomical
explanation is unable to explain why the axial skeleton, skull
and ribs may also be involved in bone metastasis from prostate
cancer.
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Figure 1. Schematic illustration of the bone metastatic process from prostate
cancer.
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The ‘seed and soil’ theory proposed by Paget may provide
some clues from a different standpoint (3). Osteotropic
‘seeds’ (tumour cells) may be developed during the
progression of prostate cancer. These tumour cells may have
acquired a specific genetic phenotype, or activation of specific
cytokine and proteases. These features direct the metastasis
to bone. The elevated expression of bone morphogenetic
proteins (BMPs) and TGF-ß in prostate cancer cells has been
implicated in bone metastasis (10-13). The ‘seeds’ may also
attach to the bone endothelium more effectively than to the
endothelia of other organs (14). It has been suggested that the
protease-activated receptor (PAR1, thrombin receptor) and
integrin αVß3 which are highly expressed in primary prostate
cancer cell lines and metastatic prostate cancer cells derived
from bone metastasis, may contribute to bony metastases
through facilitating the attachment of tumour cells to blood
vessel walls and the process of extravasation (7,15-17). The
vascular endothelial growth factor (VEGF) secreted by the
tumour cells may also contribute to bone metastasis due to
both the promotion of angiogenesis and the activation of
osteoblasts (18-20).

On the other hand, bone also provides a fertile ‘soil’ for
the ‘seeds’. The bone matrix synthesized by osteoblasts is
particularly abundant in cytokines and non-collagen proteins,
which may attract prostate cancer cells and allow them to
survive and proliferate in the bone matrix. For example,
BMPs and TGF-ß which enrich bone matrix can facilitate the
development of bone metatstasis. Osteonectin, osteopontin,
osteocalcin, and bone sialoprotein can also modulate the
properties of prostate cancer cells and facilitate their
spreading and growth, including promoting their migration,
invasion and proliferation (21-26). Bone turnover as a
characteristic of adult bone, occurs most often in bone rich in
trabecular bone, such as the vertebrae, proximal femur,
calcaneous, and ultradistal radius. During bone turnover,
cytokines and non-collagen proteins (NCPs) released or
synthesized through bone resorption and bone formation
generate a fertile ‘soil’. This may also provide an additional
insight toward the explanation for probable locations in bone
metastases.

5. Non-collagen proteins (NCPs)

The bone matrix comprises inorganic and organic parts. The
inorganic fraction is mainly crystalline mineral salts and
calcium, which is present in the form of hydroxyapatite. The
matrix is initially laid down by osteoblasts as unmineralized
osteoid. After the subsequent mineralization, osteoblasts
secrete vesicles containing alkaline phosphatase to cleave the
phosphate groups which later act as the foci for calcium and
phosphate deposition. 

The organic part of the matrix is mainly type I collagen.
This is synthesized intracellularly as tropocollagen and then
exported. It then assembles into fibrils. Fibres of this collagen
comprise 90% of the organic material in the mineralized
bone matrix. Bone matrix is enriched with various growth
factors and cytokines, such as TGF-ß1 and bone morpho-
genetic proteins (BMPs). The functions of these factors are
not fully known. Bone matrix also contains a number of non-
collagenous proteins (NCPs), including fibronectin,

osteonectin, thrombospondin-2, ßig-h3, bone gla protein
(BGP, or osteocalcin), matrix gla protein (MGP), small
integrin-binding ligand N-linked glycoproteins (SIBLINGS)
and Small Leucine-Rich Proteoglycans (SLRPs).

One of the most abundant NCPs in bone matrix is fibro-
nectin, which is accumulated extracellularly at sites of osteo-
genesis and plays a profound role in the differentiation,
proliferation and survival of osteoblasts (27-29). Osteonectin
(‘bone connector’) was initially called ‘bone-specific
nucleator’ of mineralization as it has high affinity for both
collagen and minerals (30). It has been subsequently found to
be present throughout the body, particularly at sites of tissue
remodelling and matrix assembly. Evidence suggests that it is
crucial in maintaining bone turnover (31). Thrombospondin-2
is also abundant in bone, and promotes bone resorption and
inhibits bone formation through negative control of the
differentiation of bone cell precursors (32-34). Another
abundant NCP ßig-h3, which is induced by TGF-ß, inhibits
the differentiation of osteoblasts through interacting with
the integrins αVß3 and αVß5 (35,36). Osteocalcin may inhibit
bone formation (37), while MGP is a powerful inhibitor of
mineralization in arteries and cartilage (38). Members of the
SIBLING family include bone sialoprotein (BSP), osteo-
pontin (OPN), dentin matrix protein (DMP), dentin sialo-
phosphoprotein (DSPP) and matrix extracellular protein
(MEPE). BSP has been suggested to be involved in hydroxy-
apatite nucleation (39), and to promote adhesion, differentiation
and other biological functions of osteoclasts (40). Osteopontin
is crucially involved in anchoring osteoclasts to the mineral
matrix of bone surface via the integrin αVß3 (41,42). Osteo-
pontin is required and probably indispensable during the
process of bone resorption (43,44). Nine of the 12 known
SLRPs have been found in skeletal tissue (45). The best
characterized SLRP in bone is biglycan, which plays an
important role in the differentiation of osteoblast precursors
(46). It is also involved in osteoblast differentiation induced
by BMP-2/4 (47,48).

6. Bone formation and resorption

Bone formation and resorption are crucial processes during
skeletal development, skeletal homeostasis, turnover of adult
bone, fracture and other diseases, particularly during bone
metastasis. The process of bone formation (osteogenesis)
involves three main steps: production of the extracellular
organic matrix (osteoid); mineralization of the matrix to form
bone; and bone remodeling by resorption and reformation.
There are two categories of factors that are involved in the
formation and resorption of bones: systemic hormones/
factors which include parathyroid hormone, 1,25-dihydroxy-
vitamin D3, thyroxine (T4) and prostaglandins; and local
factors such as bone morphogenetic proteins (BMPs), TGF-ß,
insulin-like growth factor (IGF), interleukin (IL)-1 and IL-6.

The cellular activities of osteoblasts, osteocytes, and
osteoclasts are essential in the process of bone formation and
resorption. Osteoblasts synthesize the collagenous precursors
of bone matrix and also regulate its mineralization. As the
process of bone formation progresses, the osteoblasts come
to reside in the tiny spaces (lacunae) within the surrounding
mineralized matrix and are then called osteocytes. The cellular
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process of osteocytes occupying the minute canals (canaliculi)
permits the circulation of tissue fluids. To meet the
requirements of skeletal growth and mechanical function,
bone undergoes dynamic remodeling by a coupled process of
bone resorption by osteoclasts and reformation by osteoblasts.
Bone lesions are formed when the regulation of bone mass,
which is maintained by a balance between bone-forming
osteoblasts and bone-reabsorbing osteoclasts, is perturbed.
Details of the molecular interactions between osteoblasts and
osteoclasts during the processes of bone formation and
resorption have been previously published (5,6,49).
Probably, the best understood molecular crosstalk between
osteoblasts and osteoclasts is that of RANK and RANKL
(Fig. 2). RANK is a transmembrane receptor expressed on
osteoclast precursor cells, while RANKL is expressed by
osteoblasts which, upon binding to RANK, lead to osteoclast
formation. This process can be interrupted by osteoprotegerin
(OPG), a soluble competitive decoy receptor for RANKL,
which can be secreted by stromal cells, B lymphocytes,
dendritic cells and osteoblasts (50,51). This crosstalk also
appears to be the mechanism underlying the response of bone
to some hormones or local factors, including parathyroid
hormone, 1,25-dihydroxyvitamin D3, oestrogen, IL-11 and
prostaglandin E2 (6,49,52,53).

7. Tumour-derived osteotropic factors contribute to the
predominantly osteoblastic metastasis in prostate
cancer

Bone metastasis has been characterized as either osteolytic or
osteoblastic. This classification actually represents two
extremes of a continuum in which dysregulation of the normal
bone remodeling process occurs. Patients can have both
osteolytic and osteoblastic metastasis or mixed lesions
containing both elements. Most metastatic bone tumours

from breast cancer have predominantly osteolytic lesions. In
contrast, the metastatic lesions from prostate cancer are
predominantly osteoblastic. During osteoblastic bone
metastases, the balance between bone resorption and bone
formation is tipped in favour of the latter. Patients suffer
severe bone pain and the poor quality of bone produced in
osteoblastic bone metastases frequently leads to bone
fractures. Models to investigate osteoblastic metastases are
rather rare, compared with models of osteolytic metastasis.
The mechanisms which determine the incidence of a
metastatic lesion being osteoblastic or osteolytic remain
unclear. However, a number of factors produced by cancer
cells, such as platelet-derived growth factor (PDGF), insulin-
like growth factors (IGFs), fibroblast growth factors (FGFs),
VEGF, Wingless and NT-1 (WNT1), parathyroid hormone-
related protein (PTHrP), urokinase-type plasminogen
activator (uPA), prostate-specific antigen (PSA), endothelin-1
(ET-1) and BMPs, have been implicated in osteoblastic
lesions.

PDGF is a dimeric polypeptide growth factor. Its subunit
A and subunit B form AA, BB and AB isoforms. The BB
isoform is a potent osteotropic factor, which contributes to
osteoblastic lesions through promoting the migration and
proliferation of osteoblasts (54,55). 

IGF system consists of two ligands, IGF-I and IGF-II,
two receptors and seven binding proteins (IGFBPs). IGFs can
elicit mitogenic stimulation of osteoblasts, increase bone
matrix apposition and decrease the degradation of collagen.
Evidence exists to implicate the osteoblast-stimulating factor
IGF-I in the formation of metastasis from prostate cancer.
First, serum IGF-I levels have been found to correlate with
the risk of developing prostate cancer (56), and second, plasma
IGFBP-3 levels were lowest in patients with bone metastases,
while IGFBP-2 levels were elevated in prostate cancer patients
(57,58). Although high IGF-I levels and low IGFBP-3 levels
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Figure 2. Interactions among the osteoblasts, osteoclasts and bone matrix during bone formation and resorption.
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may predict the risk of developing advanced-stage prostate
cancer (58), a most recent study showed that IGF-I is neither
necessary nor sufficient for the osteoblastic response to the
metastases of prostate cancer (59). The role of IGF system
in bone metastasis of prostate cancer still requires further
investigation.

FGFs, both acidic (FGF-1) and basic (FGF-2) are
expressed in prostate cancer cells (60). Both FGFs increase
the proliferation of osteoblasts, while FGF-2 is able to
suppress the formation of osteoclasts (61). The implication of
the interplay between these FGFs in bone metastasis remains
unclear.

VEGF has been shown to promote bone formation by
directly activating osteoblasts and facilitating angiogenesis
thus indirectly stimulating the process (62-64). The elevated
level of VEGF has been implicated in the development of
bone metastasis in prostate cancer (18-20).

WNT1 was elevated in the prostate cancer cells of
advanced metastatic prostate carcinoma (65). Wnts produced
by prostate cancer cells act in a paracrine fashion to induce
osteoblastic activity in bone metastases (66). WNT signaling
can be inhibited by its WNT antagonist DKK1 (67).
Inhibition of WNT signaling in osteoblasts can suppress
osteoblast function and result in the osteolytic phenotype.
DKK-1 production occurs early in the development of skeletal
metastases, which results in the masking of osteogenic Wnts,
thus favoring osteolysis at the metastatic site. As metastasis
progresses, DKK-1 expression is decreased, thus allowing
the unmasking of Wnt osteoblastic activity and ultimately
resulting in osteosclerosis at the metastatic site (66).

PTHrP is an osteolytic factor, which was found abundant
in bone metastases of prostate cancer. However, even in
metastatic tumours where PTHrP is highly expressed,
osteoblastic lesions remain predominant. The explanation for
this paradox is that NH2-terminal fragments of PTHrP share
strong sequence homology with ET-1, thus stimulating new
bone formation by activating the ETAR (68). The osteoblastic
fragments of PTHrPs are the products of the cleavage of
PTHrPs by prostate-specific antigen (PSA). This provides a
partial molecular explanation for the osteoblastic phenotype
of PTHrP-positive prostate cancer bone metastases (69).

uPA is also implicated in osteoblastic bone metastasis. uPA
produced by prostate cancer cells has been shown to increase
the osteoblastic bone metastases (70,71). uPA can cleave and
activate TGF-ß which is produced in a latent form by osteo-
blasts. TGF-ß regulates osteoblast and osteoclast differentiation
but also regulates the growth of tumour cells themselves. uPA-
stimulated osteoblast proliferation may also be due to the
hydrolysing IGF-binding proteins and a resulting increase in
the level of free IGF (72).

PSA is a kallikrein serine protease, which is secreted by
prostate cancer cells and used routinely as a marker of prostate
cancer progression. PSA not only can cleave PTHrP to
release osteoblastic PTHrP fragments, it also activates osteo-
blast growth factors such as TGF-ß (73). Like uPA, PSA can
also cleave IGFBP-3, thereby IGF-I is capable of binding to
its receptor and stimulating osteoblast proliferation (74,75).

MDA-BF-1 is a 45-kDa secreted form of the ErbB3 growth
factor receptor (76). Immunohistochemical analyses showed
that MDA-BF-1 was expressed in prostate cancer cells that

metastasized to bone, but not in cancer cells from the primary
tumours of patients with localized disease (i.e., PCa confined
to the prostate). Moreover, MDA-BF-1 was not found in
prostate cancer cells that metastasized to the liver, adrenal
glands, or lungs. Its function is mediated through a receptor
expressed by osteoblasts (77). Further functional studies
showed that MDA-BF-1 mediated specific interactions
between prostate cancer cells and bone and assisted in the
osteoblast-mediated progression of PCa in bone (78).

ET-1 is a well-known vasoconstrictor, and is also a
mitogenic factor for osteoblasts (79). The serum level of ET-1
was found increased in patients with bone osteoblastic lesions
(80). ET-1 tends to be elevated in androgen-independent
advanced prostate cancers (81). The expression of ET-1 can
also be enhanced by bone contact (82). ET-1 has been
suggested to be a central mediator of osteoblastic metastasis
(83). ET-1 mediates its effects on bone formation through the
Endothelin A receptor (ETAR). An ETAR antagonist
(atrasentan) has been shown to prevent osteoblastic bone
metastases in a mouse model and to reduce skeletal morbidity
in men with advanced prostate cancer (84,85). ET-1 can
increase prostate cancer cell proliferation and enhance the
mitogenic effect of other growth factors, including IGF-I,
PDGF and EGF (86). Recent evidence suggests that ET-1
increases osteoblast proliferation and new bone formation by
activating the Wnt signaling pathway through suppression of
the Wnt pathway inhibitor DKK1 (87).

8. The vicious cycle of osteoblastic metastases in prostate
cancer

During the development of osteoblastic metastasis from
prostate cancer, the interactions among tumour cells, bone
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Figure 3. Vicious cycle of the osteoblastic metastasis in prostate cancer.
Interactions between tumour and bone microenvironment which includes the
osteoblasts, osteoclasts and bone matrix, contribute to the predominant
osteoblastic lesions in the bone metastases from prostate cancer.
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cells and bone matrix constitute a ‘vicious cycle’ of osteo-
blast-mediated bone metastasis (78,88). In the early stage of
bone metastasis, prostate cancer cells produce osteogenic
factors such as ET-1, BMPs and PDGF, to activate osteo-
blasts. The osteoblasts differentiated from their progenitor
cells deposit new matrix for bone formation. However, this
unmineralized new matrix provides a more fertile ‘soil’ for
tumour cells, enriched with growth factors and NCPs. These
factors help prostate cancer cells survive and proliferate in the
bone microenvironment. The prostate cancer cells then further
activate osteoblasts. In addition to this vicious cycle, at a
certain stage, both tumour-derived factors and osteoblasts
expressing RANKL can activate osteoclasts, leading to some
level of bone resorption, and subsequently generate bigger
spaces for dominant osteoblastic lesions. The cytokines and
NCPs released from bone matrix during bone resorption can
also enhance this ‘vicious cycle’ through facilitating the
proliferation of both prostate cancer cells and osteoblasts
(Fig. 3).

9. The role of osteolytic activity in bone metastasis of
prostate cancer

It has been demonstrated that osteoblastic metastasis also
involves considerable osteolysis (89,90). Both the osteolysis
itself and the factors released from bone matrix during bone
resorption contribute to the vicious cycle of osteoblastic
lesions. In patients with osteoblastic lesions from prostate
cancer, blood and urinary levels of bone resorption markers
are often elevated (91). Clinical trials have suggested that
blocking osteoclastic bone resorption reduces related skeletal
events in prostate cancer patients (92). In a mouse model of
bone metastasis, the numbers of osteoclasts were shown to
markedly increase at sites of early tumour invasion (90).
Factors produced by prostate cancer cells within the bone
microenvironment, such as RANKL, PTHrP, IL-1, IL-6 and
IL-11, may directly or indirectly promote osteoclastogenesis
(93). The bone resorption by osteoclasts releases a variety of
growth factors, which are stored as inactive forms in the bone
matrix. The activation of growth factors may be required by
cancer cells to maintain viability and to proliferate and
therefore is the key to the establishment of bone metastases.
On the other hand, androgen ablation, a standard treatment
for prostate cancer, increases osteoclastic bone resorption
and bone loss (94-96). The increased bone resorption due to
androgen deprivation may result in a more fertile environ-
ment for the development of bone metastasis. Bone resorption
inhibitors, such as biphosphonates which can prevent bone
loss, may also decrease skeletal metastases. Taken together,
both osteoblasts and osteoclasts cooperate to actuate the
settlement and growth of prostate cancer in bone.

10.  The pivotal role of bone morphogenetic proteins
(BMPs) in bone metastasis from prostate cancer

BMPs belong to the TGF-ß superfamily. BMPs are the most
powerful bone inductive factors which enrich bone matrix
(97). BMPs are synthesized not only by osteoblasts and
stored in bone matrix, but are also secreted by prostate cancer
cells. The aberrant expression of BMPs in prostate cancer has

been implicated in the progression of the disease. Primary
and metastatic prostate tumours have a different phenotypic
pattern of BMP expression and adopt different signaling
pathways downstream of the BMP receptor. Most BMPs and
their receptors are detectable at a relatively high level in
normal prostate tissue. Their expression decreases in a manner
that correlates with progression of the primary tumour,
except BMP-6 which shows an increase in this case. The
expression of BMP-7, GDF15 and BMPR-IB can be induced
by exposure to androgens in androgen-sensitive prostate
cancer cell lines and in ‘normal’ prostate epithelial cell lines.
The same androgen-inducible effects were not seen with
BMP-6 (98-101). Aberrant expression of BMPs and BMP-
associated molecules has also been shown to have a
prognostic value (102). The pattern of BMP expression has
a clear and close relationship with the development and
progression of primary prostate tumours and also contributes
to the onset and development of bone metastases. For example,
BMP-6 remains highly expressed in both primary prostate
tumours and metastatic bone lesions. In contrast, BMP-7 and
GDF15, which are expressed at low levels in normal prostate
and in primary prostate tumours, are re-expressed at a high
level in skeletal metastatic lesions. This re-expression in
metastatic bone lesion can be seen at a higher level than that
in the normal bone tissues around the metastatic lesions
(10,103). In addition to the direct stimulation of the
aggressiveness of prostate cancer cells, some BMPs are also
known angiogenic factors, and thus indirectly facilitate the
development of bone metastases via the angiogenic route.
Taken together, it is clear that BMPs play a key role in the
vicious cycle of metastatic bone formation from prostate
cancer. On one hand, prostate cancer cells produce BMPs
that activate and induce the osteoblastic activities leading to a
predominantly osteoblastic lesion. On the other hand, BMPs
synthesized by osteoblasts or released from bone matrix
subsequently enhance the growth and aggressiveness of
prostate cancer cells, allowing more BMPs to be produced
from the tumour cells.

BMPs are partly involved in the occasional osteolytic
appearance in bone metastasis. The expression of BMP
receptors in prostate cancer cells can also be influenced by
stromal factors, such as hepatocyte growth factor (104). In an
in vivo bone tumour model, exposure of tumour-bearing
subjects to Noggin, an antagonist of BMPs, reduced the size
of bone lesions by a mechanism that involved both osteo-
blastic and osteolytic processes. The BMP antagonists,
Noggin and follostatin, are also determining factors in cell
response to BMPs. Interestingly, the expression of these
antagonists can be regulated by BMPs themselves probably
through an autocrine or paracrine feedback loop. A good
example is BMP-7, whose endogenous expression is
intimately linked to the levels of Noggin and follistatin in the
same cell (105). These findings collectively indicate the
value of BMPs and their antagonists in the management of
bone metastasis.

11.  Conclusions and perspectives

Men with advanced prostate cancer have a high risk of
developing bone metastasis. The interaction between the
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metastatic tumour cells (‘seeds’) and bone microenvironments
(‘soil’) constitutes a vicious cycle and finally leads to the
development of bone metastatic lesions. The metastatic
prostate cancer cells, via genetic predisposition (BMP-6 for
example) and/or acquired stimulation from the environment,
are able to develop a lesion in bone. At the same time, bone
matrix (microenvironment) facilitates the adaptation of
prostate cancer cells in the ‘new home’. The latter involves
the bone matrix itself, where matrix components and a
variety of factors derived from bone cells attract and
facilitate the prostate cancer cells' migration and settlement
in bone. This process may be enhanced by bone turnover,
aging, and androgen deprivation which release pro-metastatic
protein factors in bone matrix. On the other hand, prostate
cancer cells in bone undergo changes in order to adapt to the
new environment, to survive and to regrow (re-expression of
certain BMPs, for example). Once prostate cancer cells settle
in the bone environment, they produce factors that are
predominantly osteotropic, activate bone formation with
some degree of bone resorption, and finally lead to osteo-
blastic lesions. The subsequent bone formation and resorption
generates more factors to further facilitate the process. All
these steps constitute the vicious cycle of bone metastasis in
prostate cancer. 

The study of bone metastasis in prostate cancer is of vital
importance and has significantly progressed in the past
decade. However, a number of areas remain to be elucidated.
For example, it is presently not possible to predict if a
prostate tumour will develop bone metastasis from the onset
or at an early stage. A molecular signature(s) is yet to be
found for this purpose. We have yet to develop suitable
models, in vitro and in vivo, that closely mimic bone
metastasis for biological investigation and for pre-clinical
research. A number of factors are now known to be associated
with bone metastasis. Successful development of these
factors, either as targets or as therapeutic modalities, is yet to
be seen. These are essential areas to explore in the future.
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