
Abstract. The cellular events leading to cerebral vasospasm
after subarachnoid hemorrhage (SAH) are poorly understood,
although the family of protein kinase C (PKC) is already
known to play crucial roles in this pathology. Hemoglobin
(Hb) is one of the major causes of the cerebral vasospasm that
follows SAH. In the present study we investigated whether
Hb can in vitro regulate PKC expression in endothelial as
opposed to smooth-muscle cells. The levels of expression of
PKCα and PKCζ were quantitatively determined by means of
computer-assisted fluorescence microscopy in the A7r5
smooth-muscle rat cells and human umbilical endothelial
cells (HUVECs). Hb significantly modified both calcium-
dependent PKCα and calcium-independent PKCζ expression
in HUVECs and A7r5 smooth-muscle rat cells. Our data
showed that, in vitro, Hb promptly and markedly modified the
levels of expression of both calcium-dependent PKCα and
calcium-independent PKCζ. We are currently investigating
the effects of specific PKC antagonists associated or not with
calcium channel blockers on the expression of PKC and the
in vivo severity of SAH-induced vasospasm. Our results
encourage the prophylactic use of specific PKC isoform
antagonists associated with calcium channel blockers early
after SAH to prevent cerebral vasospasm.

Introduction

Subarachnoid hemorrhage (SAH) is a unique disorder and a
major clinical problem that most commonly occurs when an
aneurysm in a cerebral artery ruptures and causes bleeding

and clot formation (1). Despite advances in the treatment of
aneurysmal SAH, cerebral vasospasm remains a common
complication and has been correlated with a 1.5- to 3-fold
increase in death during the first 2 weeks after hemorrhage
(2). A number of medical, pharmacological, and surgical
therapies are currently in use or being investigated in an
attempt to reverse cerebral vasospasm, but only a few have
proven to be useful (2). 

Two major mechanisms concur to cause cerebral
vasospasm after SAH, i.e. first, activation of calcium-
calmodulin-dependent protein kinases, and second, the
increase in protein kinase C (PKC) (3-11). Whereas the first
mechanism leads to a transient contraction, most of the
experimental results in vitro or in animal models support the
view that activation of PKC in cerebral vasospasm results in
a delayed but prolonged contraction of major arteries after
SAH (9-11). We have recently shown that SAH-induced
vasospasm in rat basilar artery markedly modifies the levels
of expression of PKCα and PKCζ, and, to a lesser extent, of
PKCß and PKCη in endothelial and smooth-muscle cells
(12). While PKCα and PKCß are Ca2+-dependent, PKCη and
PKCζ are calcium-independent (13,14). 

The PKC family consists of at least 12 isoforms with clear
differences in structure, substrate requirements, expression
and locus (13,14). Differences in their structures and
substrate requirements have enabled them to be divided into
three groups, namely i) the conventional PKCs (cPKC)α ßI,
ßII and γ, which are Ca2+-dependent and activated by both
phosphatidylserine (PS) and the second messenger diacyl-
glycerol (DAG); ii) the novel PKCs (nPKC)δ, ε, η and θ,
which are Ca2+-independent and regulated by PS and DAG;
and iii) the atypical PKCs (aPKC)ζ and ι/λ, which are Ca2+-
independent and do not require DAG for activation even
though PS does regulate their activity (13,14).

Oxyhemoglobin (oHb) is also suspected of being one
of the causes of the cerebral vasospasm that follows SAH
(15-18). This indicates that endothelin-1 (ET-1), which is a
potent vasoconstrictor, can be induced with Hb in both
vascular endothelial and smooth-muscle cells through PKC
activation (19). In cerebrovascular smooth muscle, oHb
induced Rho and both PKCα and PKCε translocation (15),
and a threshold concentration of ET-1 potentiated the
contraction induced by oHb via RhoA/Rho kinase- and
PKCε-dependent mechanisms (20). Moreover, in a canine
two-hemorrhage model, PKC and Rho kinase proteins
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interacted in the development of cerebral vasospasm (21).
Therefore, we investigated in vitro the influence of
hemoglobin on the calcium-dependent PKCα and the
calcium-independent PKCζ levels of expression in A7r5
smooth-muscle rat cells and human umbilical endothelial
cells (HUVECs).

Materials and methods

Cell lines and reagents. The A7r5 smooth-muscle cells from
thoracic rat aorta from the American Type Culture Collection
(ATCC CRL-1444; Manassas, VA) were grown as mono-
layers cultured at 37˚C in closed Falcon plastic dishes (Nunc,
Life Technologies, Merelbeke, Belgium) containing Eagle's
minimum essential medium (MEM, Gibco, Life
Technologies), to which 5% fetal calf serum (FCS; Gibco)
was added. The FCS was heat-inactivated for 1 h at 56˚C.
The HUVECs were grown as in vitro monolayers. The
monolayers were obtained by means of a method adapted
from the procedure described by Gimbrone et al (22) and
cultured at 37˚C in Endothelial Cell Growth Medium 2
(ECGM2, ImTec Diagnostics, Antwerp, Belgium). The same
batch of HUVEC primo-culture was used in the present
study. All the media were supplemented with a mixture of
0.6 mg/ml glutamine, 200 IU/ml penicillin, 200 g/ml
streptomycin and 0.1 mg/ml gentamycin (all from Gibco).

The two anti-PKC antibodies were purchased from Santa
Cruz Biotechnology (Boechout, Belgium) and used at a
dilution 1/200.

Fluorescent detection of protein expression
Experimental conditions. The levels of PKCα and PKCζ
expression in the A7r5 and HUVECs were analyzed in the
absence (control) or the presence of hemoglobin (with
concentrations ranging from 10-11 M to 10 μM) for 30 min
and 3 h. 

Immunocytochemical procedures. A7r5 and HUVEC
suspensions were seeded onto glass coverslips 48 h prior to
the immunofluorescence staining, after which the cells were
fixed with 4% formaldehyde in PBS, pH 7.4, for 20 min.
Five coverslips were available for each experimental condition
and for each cell line. In order to detect the PKC isoforms,
the cells were permeabilized with 0.2% Triton X-100 for
5 min, and unspecific bounds were blocked for 20 min with
1% horse serum (Vector Laboratories; Burlingame, CA). The
binding of the primary antibodies was detected by Alexa
Fluor-594-conjugated secondary antibody (10 μg/ml;
Molecular Probes, Invitrogen, Merelbeke, Belgium).

Computer-assisted microscopy. The level of expression of each
PKC isotype (relating to the intensity of the fluorescence
staining) was quantitatively determined by means of computer-
assisted fluorescence microscopy using a Provis Olympus
Microscope (Omnilabo S.A., Antwerp, Belgium) coupled to
a Megaview 2 camera (Omnilabo S.A.) feeding digitized
information into a computer using an AnalySIS® software
(Soft Imaging System, GmbH, Munster, Germany). Five
hundred cells were analyzed per cell line for PKCα and
PKCζ in each of the experimental conditions under study.

Data analysis. All the values shown are the means ± standard
error (SEM). All the statistical analyses were carried out
using Statistica (Statsoft, Tulsa, Oklaoma). The statistical
significance of the comparisons between the different
experimental conditions was tested by the non-parametric
Mann-Whitney U test and is indicated by *p<0.05, **p<0.01,
and ***p<0.001.

Results

In vitro characterization of hemoglobin (Hb)-induced
modifications to the expression of the calcium-dependent
cPKCα and the calcium-independent aPKCζ in smooth-
muscle and endothelial cells. The influence of the Hb-induced
effects on PKCα and PKCζ expression was determined
30 min and 3 h after its addition to the culture medium.
Fig. 1A illustrates the influence of Hb-induced effects on
PKCα expression in HUVECs 30 min after its addition to the
culture medium. The data show that 30 min after addition of
Hb, the levels of PKCα were markedly decreased for Hb
concentrations ranging from 10-11 to 10-9 M (Fig. 1A). These
marked effects vanished almost completely 3 h after Hb
addition to the HUVEC culture medium (data not shown). In
sharp contrast to what was observed concerning the negative
influence of Hb on the expression of PKCα in the HUVECs
(Fig. 1A), Hb stimulated the expression of PKCζ in these
cells in doses ranging from 10-10 to 10-8 M, 3 h after its
addition to the culture medium (Fig. 1B). No statistically
significant influence was observed 30 min after its addition
to the culture medium (data not shown). 

Fig. 1C and D give morphological illustrations of PKCα
expression in the control HUVECs as opposed to the
HUVECs cultured for 30 min in the presence of 10-10 M Hb. 

No statistically significant Hb-induced modifications to
the PKCα expression were observed in the A7r5 cells 30 min
after the addition of Hb to the culture medium (data not
shown). Hb significantly decreased the PKCζ expression in
the A7r5 cells 3 h after its addition to the culture medium
(Fig. 2B). We observed no statistically significant effects of
Hb on PKCζ expression in the A7r5 cells 30 min after its
addition to the culture medium (data not shown). Fig. 2C and
D illustrate the morphological patterns of PKCζ expression in
the A7r5 control cells as opposed to the A7r5 cells cultured
for 3 h in the presence of 10-9 M Hb.

Discussion

Over the past decade a variety of molecular mechanisms
have been explored and a number of mediators including
endothelium-derived mediators (nitric oxide, oxygen-free
radicals, endothelin, lipooxygenases, and cyclooxygenases
and their metabolites) (3,4); vascular smooth-muscle-derived
mediators [potassium channel inhibition, calcium channel
activation, reduction in second messengers (cAMP and
cGMP), PKC activation] (3,4); pro-inflammatory mediators
involved in blood-brain barrier disruption (serotonin,
histamine and bradykinin), cytokines (IL-1, TNF-α and IL-6),
and adhesion molecules (23); and stress-induced gene
activation (heat shock proteins and hemeoxygenase-1)
(3,4,24) have been implicated in SAH-induced vasospasm
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Figure 1. Quantitative determination (by means of computer-assisted fluorescence microscopy) of PKCα (A) and PKCζ (B) expression in HUVECs cultured
with Hb concentrations ranging from 10-11 to 10-5 M (control, 0 M). (A) The influence of the Hb-induced effects on PKCα expression was determined 30 min
after the addition of Hb to the culture medium. (B) The effects of Hb on PKCζ expression were determined 3 h after its addition to the culture medium.
(C,D) Morphological illustrations of the PKCα expression in control HUVECs as opposed to HUVECs cultured for 30 min in the presence of 10-10 M Hb. The
data are presented as the means ± SEM. The levels of statistical significance; *p<0.05, **p<0.01 and ***p<0.001.

Figure 2. Quantitative determination (by means of computer-assisted fluorescence microscopy) of PKCα (A) and PKCζ (B) expression in A7r5 smooth-
muscle rat cells cultured with Hb concentrations ranging from 10-11 to 10-5 M (control, 0 μM). (A,B) The Hb-induced effects on PKCα (2A) and PKCζ (B)
expression in A7r5 smooth-muscle rat cells 3 h after its addition to the culture medium. (C,D) The morphological patterns of PKCζ expression in the A7r5
control cells as opposed to the A7r5 cells cultured for 3 h in the presence of 10-9 M Hb. The data are presented as the means ± SEM. The level of statistical
significance, **p<0.01.
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pathogenesis. Thus, PKC seems to be a key in cerebral
vasospasm. PKC plays a role in the regulation of myogenic
tone by sensitization of myofilaments to calcium (9). PKC
phosphorylates various ion channels including augmenting
voltage-dependent Ca2+ channels and inhibiting K+ channels,
which both lead to vessel contraction (9). Many signaling
pathways interact with PKC activities during vasospasm
(10). These factors include nitric oxide (NO) and cGMP,
ET-1 and potassium channels (3,4,25) and Rho kinase
(21,26). The rise in the intracellular diacylglycerol level
causes PKC activation in spastic cerebral arteries, presumably
because of the overexpression of ET-1 as well as the
generation of free radicals; at the same time the cGMP level
is inversely reduced owing to the inactivation of soluble
guanylate cyclase by means of some as yet unknown
mechanism (3,4,18). In fact, whereas NO induces vascular
relaxation by inhibiting PKC activity (3,4,27), SAH impairs
this inhibition causing PKC-dependent vascular contraction,
such as vasospasm (27,28). Our previous results (12) have
shown that, in vivo, SAH-induced vasospasm in rat cerebral
arteries mainly modifies PKCα expression in smooth-muscle
cells and PKCζ expression in endothelial cells. These
modifications have been observed over an extensive period
with respect to the potential role of Hb in PKC expression
following SAH-induced vasospasm since the quantitative
determination of PKC expression was carried out 24 h after
the second cisternal injection of autologous blood. In the
current series of in vitro experiments and with the goal of
pinpointing early molecular events, we investigated the early
effects of Hb on calcium-dependent PKCα and calcium-
independent PKCζ expression in HUVECs and A7r5 smooth-
muscle rat cells. Our results showed that the levels of both
calcium-dependent and calcium-independent PKC expression
were promptly modified when Hb was added to the culture
medium of both endothelial and smooth-muscle cells,
consistent with an early modification of PKC expression
after SAH.

The treatment of patients with vasospasm remains a
challenge in clinical practice (2). At present, the mainstay of
treatment of cerebral vasospasm includes triple-H (hyper-
volemia, hemodilution, and hypertension) therapy and oral
administration of nimodipine and intracranial angioplasty (2).
Nimodipine, the most widely administered calcium channel
blocker, was introduced as a therapeutic agent for the
prophylaxis of vasospasm based on findings of a small
randomized clinical trial in the US (29) and a large clinical
trial in the UK (30). Both trials revealed modest improvements
in neurological outcomes following nimodipine administration.
In a metaanalysis of nimodipine treatment after SAH, Barker
and Ogilvy (31) demonstrated that the prophylactic use of
this drug is effective in increasing the odds of a good outcome
after SAH. Although the drug is accepted as the standard of
care, the mechanism by which it works remains controversial
(32). Rinkel and colleagues (33) examined the efficacy of
calcium antagonists from 12 different trials in a systematic
review. The use of calcium antagonists was associated with
improved outcomes, but, although calcium channel blockers
significantly diminished the rate of secondary ischemia after
aneurysmal SAH (from 40 to 27%), their use did not reduce
the high mortality rate associated with SAH. Our study

shows that, in vitro, Hb markedly and promptly modifies the
levels of expression of calcium-dependent PKCα and also
calcium-independent PKCζ. Our results encourage the
prophylactic use of specific PKC isoform antagonists
associated with nimodipine in cerebral vasospasm trials.
Because cerebrospinal fluid (CSF) from SAH patients with
cerebral vasospasm accumulates various components like NO,
endothelin-1, transferin, bilirubin, bilirubin oxidation products,
heme oxygenase and peroxidized lipids (34) which are
directly involved in cerebral vasospasm following SAH, we
are now investigating the effects of CSF on PKC levels of
expression. We also intend to investigate the effects of specific
PKC antagonists associated or not with calcium channel
blockers on the expression of PKC and the in vivo severity of
SAH-induced vasospasm.
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