
Abstract. Several kinds of sesquiterpene lactones have been
proven to inhibit NF-κB and to retard atherosclerosis by
reducing lesion size and changing plaque composition. The
anti-malarial artemisinin (Art) is a pure sesquiterpene lactone
extracted from the Chinese herb Artemisia annua (qinghao,
sweet wormwood). In the present study, we demonstrate that
artemisinin inhibits the secretion and the mRNA levels of
tumor necrosis factor (TNF)-·, interleukin (IL)-1ß, and IL-6
in a dose-dependent manner in phorbol 12-myristate 13-acetate
(PMA)-induced THP-1 human monocytes. We also found
that the NF-κB specific inhibitor, Bay 11-7082, inhibited
the expression of these pro-inflammatory cytokines,
suggesting that the NF-κB pathway may be involved in the
decreased cytokine release. At all time-points (1-6 h),
artemisinin impeded the phosphorylation of IKK·/ß, the
phosphorylation and degradation of IκB· and the nuclear
translocation of the NF-κB p65 subunit. Additionally,
artemisinin inhibited the translocation of the NF-κB p65
subunit as demonstrated by confocal laser scanning micro-
scopic analysis and by NF-κB binding assays. Our data
indicate that artemisinin exerts an anti-inflammatory effect
on PMA-induced THP-1 monocytes, suggesting the potential
role of artemisinin in preventing the inflammatory progression
of atherosclerosis.

Introduction

Atherosclerosis is widely recognized as a chronic inflam-
matory disease. Inflammatory processes not only promote the
initiation and evolution of atheroma, but also contribute to
the acute thrombotic complications of atherosclerosis (1,2).
Monocytes/macrophages play important roles in the
development of atherosclerosis. Circulating monocytes
migrate under the subendothelial space and differentiate
into macrophages as a key inflammatory response in the
development of atherosclerotic lesions (3,4). As a result of
activation, macrophages release a host of pro-inflammatory
mediators, including tumor necrosis factor (TNF), interleukins
(IL) and several kinds of proteases, such as the matrix
metalloproteinases. Activated macrophages also express
scavenger receptors, which mediate the uptake of oxidized
low-density lipoprotein and formation of foam cells (5-8).
Thus, inflammatory processes not only promote initiation
and evolution of atheroma, but also contribute decisively to
plaque vunerability and to the precipitating acute thrombotic
complications of atheroma (9).

Artemisinin (C15H22O5) is a natural pure product isolated
from the traditional Chinese herb Artemisia annua (qinghao,
sweet wormwood) (10). It is a novel sesquiterpene lactone
containing an endoperoxide bridge, which is used in China
as a treatment for fever and malaria for over 2,000 years.
Artemisinin has been recommended by the World Health
Organization for malaria control because of its high efficiency
and low toxicity (11). Like other sesquiterpene lactones, it
also exhibits a wide variety of activities, including immuno-
suppressive, anti-inflammatory, anti-tumor, anti-angiogenic,
and anti-parasitic (12-18). In several kinds of inflammatory
reactions, artemisinin has been found to have potent anti-
inflammatory effects. It is reported that artemisinin could
significantly inhibit the TNF-· and IL-6 release induced by
CpG-containing oligodeoxy-nucleotides (CpG ODN),
lipopolysaccharide (LPS) or by heat-killed Escherichia coli
in RAW264.7 cells and it could protect mice from a lethal
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challenge by CpG ODN, LPS, or heat-killed E. Coli (14). In
addition, artesunate, an artemisinin derivative, decreases
TNF-·-induced secretion of IL-1ß, IL-6 and IL-8 and NF-κB
translocation in rheumatoid arthritis fibroblast-like syno-
viocytes (15). These data suggest that artemisinin may be
effective in the anti-inflammatory process. However, no studies
have elucidated the effects of artemisinin on the inflammatory
response in atherosclerosis-related monocytes/macrophages.

The present study assessed the novel anti-inflammatory
properties of artemisinin with respect to the differentiation of
monocytes into macrophages. Phorbol 12-myristate 13-acetate
(PMA) was used as an inducer and THP-1 cells were used as
the target cells to mimic the differentiation progression of
monocytes into macrophages, as recommended by Auwerx
(19). Moreover, PMA was able to induce NF-κB activation
during the differentiation of monocytes into macrophages
(43). The artemisinin involvement in the NF-κB signaling
pathway was also demonstrated. Overall, this study suggests a
potential role for artemisinin in preventing the inflammatory
progression of atherosclerosis.

Materials and methods

Cell culture and treatment. A human monocytic cell line
(THP-1 cells, obtained from the American Type Culture
Collection) was cultured in RPMI-1640 medium (Gibco)
supplemented with 10% FBS, 10 mM HEPES (Sigma), and
100 U/ml penicillin/streptomycin solution. To induce
differentiation of monocytes into macrophages, THP-1 cells
were cultured in 100 nM PMA (Calbiochem) for 48 h as
previously described (20).

Determination of cell viability (MTT assay). The MTT assay
was used to assess the cytotoxicity of artemisinin (Sigma-
Aldrich, Taufkirchen, Germany) on PMA-induced macro-
phages. Cells were seeded in 96-well plates in a medium
containing 10% FBS and were pre-treated with increasing
concentrations of artemisinin for 4 h (14). PMA was
subsequently added to the cells at a final concentration of
100 nM for another 48 h. Cell viability was assessed by
measuring the absorbance of the MTT product at 570 nm
with a spectrophotometer.

ELISA assay of inflammatory markers. In a previous study,
we have confirmed that the appropriate dose range of
artemisinin to PMA-induced THP-1 cells is <80 μg/ml (data
not shown). On this basis, cells were preincubated in the
presence or absence of artemisinin (10-80 μg/ml) for 4 h or
10 μM Bay 11-7082 (NF-κB-specific inhibitor) for 30 min.
PMA was added to the cells at a final concentration of 100 nM,
and the cells were further incubated for 48 h. Culture
supernatants were analyzed to determine TNF-·, IL-1ß, and
IL-6 concentrations using sandwich enzyme immunoassay
kits (R&D Systems Europe Ltd., Abingdon, UK) according
to the manufacturer's instructions.

Real-time PCR analysis. Cells were preincubated in the
presence or absence of artemisinin (10-80 μg/ml) for 4 h or
10 μM Bay 11-7082 (NF-κB specific inhibitor) for 30 min
(21). PMA was added to the cells at a final concentration of

100 nM, and the cells were further incubated for 48 h. Total
RNA was then extracted and reverse-transcribed into cDNA.
The mRNA levels were analyzed using the SYBR green
reagent kits, with gene-specific primers, on an Applied
Biosystems 7500 real-time PCR System, according to the
manufacturer's instructions. Primer sequences are listed in
Table I. All results were normalized against GAPDH.

Protein isolation and Western blot analysis. Cells were
preincubated in the presence or absence of 60 μg/ml
artemisinin for 4 h. PMA was added to the cells at a final
concentration of 100 nM, and the cells were further incubated
for various time-points (1-6 h). THP-1 cells were washed
twice with ice-cold PBS and scraped in 1 ml of the same
buffer. After centrifugation at 600 x g, the cell pellet was
suspended in ice-cold lysis buffer (10 mM HEPES, pH 7.9,
1.5 mM MgCl2, 0.2 mM KCl 0.2 mM phenyl-methyl-
sulphonyl-fluoride, 0.5 mM dithiothreitol), vortexed for 10 sec
and then centrifuged at 10,000 x g for 5 min. The packed
cells were suspended in ice-cold hypotonic lysis buffer in
the presence of 50 μl of 8% Nonidet P-40 and then kept on
ice for 30 min. The nuclear fraction was precipitated by
centrifugation at 10,000 x g for 15 min. The supernatants,
corresponding to the cytosolic fraction, were transferred to
fresh precooled tubes and assayed for protein content by
BCA protein assay (Pierce, Rockford). The nuclei pellet was
resuspended in 50-100 μl low salt extraction buffer (20 mM
HEPES, pH 7.9, 1.5 mM MgCl2, 25% glycerol, 20 mM KCl,
0.2 mM EDTA, 0.2 mM phenyl-methyl-sulphonyl-fluoride,
0.5 mM dithiothreitol) and added to an equal volume of high
salt extraction buffer (20 mM HEPES, pH 7.9, 1.5 mM
MgCl2, 25% glycerol, 80 mM KCl, 0.2 mM EDTA, 0.2 mM
phenyl-methyl-sulphonyl-fluoride, 0.5 mM dithiothreitol) in
a dropwise fashion, and then incubated at 4˚C for 45 min
under continuous shaking. The sample was centrifuged for
20 min at 10,000 x g. The concentration of the nuclear
extract was measured by the BCA protein assay (Pierce).
After denaturation, the solubilized proteins (20 μg) were
subjected to electrophoresis on 10% polyacrylamide SDS-
gels and subsequently transferred onto polyvinylidene
difluoride membranes (Millipore, MA, USA).This was
followed by probing with primary antibodies for rabbit anti-
phospho-IKK·/ß, rabbit anti-IκB·, rabbit anti-phospho-IκB·,
rabbit anti-p65 (Cell Signaling) (diluted 1:1000 in TBST),
or mouse anti-actin (diluted 1:5000 in TBST) for 2 h. After
incubation with horseradish peroxidase-conjugated goat or
mouse anti-rabbit secondary antibody (Cell Signaling) for 2 h,
the protein-antibody conjugates were detected by chemi-
luminescence (Immobilon Western chemiluminescent HRP
substrate, Millipore). Densitometric analysis was performed
by using the Quantity One software (Bio-Rad) to scan the
signals.

Confocal laser scanning fluorescence microscopy of NF-κB.
Cells were seeded onto flame-sterilized coverslip placed in a
6-well tissue culture plate. Cells were preincubated in the
presence or absence of 60 μg/ml artemisinin for 4 h. PMA was
added to the cells at a final concentration of 100 nM and the
cells were further incubated for 3 h. The cells were immuno-
fluorescence-labeled according to the manufacturer's protocol
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using a cellular NF-κB translocation kit (Beyotime Biotech)
by the method of Musa et al (22). Briefly, after washing and
fixing, cells were incubated with a blocking solution at 4˚C
overnight and then anti-NF-κB p65 antibody for 2 h. After
washing 3 times, anti-rabbit IgG antibody conjugated with
Cy3 was added and later incubated for 1 h. Cells were then
incubated with DAPI for 5 min to stain the nuclei. Activation
of NF-κB p65 was visualized with a confocal laser scanning
microscope (FluoView™ FV1000; Olympus) at an excitation
wavelength of 350 nm for DAPI and 540 nm for Cy3. The
red and blue images were overlaid to create a two-color
image in which purple fluorescence indicated the areas of co-
localization.

NF-κB binding assay. Cells were pretreated with 60 μg/ml
artemisinin for 4 h and exposed to 100 nM PMA for 3 h. The
DNA binding activity of NF-κB (p50/p65) was determined
using an ELISA-based non-radioactive NF-κB (p50/p65)
transcription factor assay kit (Chemicon, Temecula, CA).

Statistical analysis. Results are expressed as means ± SD.
Differences were compared by one-way ANOVA, with P<0.05

considered to be statistically significant. All experiments
were performed at least three times.

Results

Effects of arteminisin on cell proliferation. The effect of
artemisinin on the proliferation of PMA-stimulated THP-1
monocytes was measured using the MTT assay (Fig. 1), with
the concentration ranging from 0-160 μg/ml for 48 h. No
significant differences in cell proliferation was observed in
response to up to 80 μg/ml artemisinin for 48 h (Fig. 1B). On
this basis, we used artemisinin doses ranging from 10 μg/ml
to 80 μg/ml for subsequent experiments. The relative cell
proliferation of artemisinin-treated monocytes exceeded 80%.
The chemical structure and molecular weight of artemisinin
are shown in Fig. 1A.

Artemisinin inhibited the secretion of inflammatory cytokines.
Protein levels of TNF-·, IL-1ß, and IL-6 in cell culture
supernatants were quantitated using sandwich enzyme
immunoassay kits (Fig. 2). Cells were incubated with
increasing concentrations (10-80 μg/ml) of artemisinin for 4 h
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Table I. Primers for real-time PCR.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene Sequences Size (bp)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
TNF-· 5'-CTCCAGTGGCTGAACCG-3' 186
NM_000594.2 5'-GTAGGAGACGGCGATGC-3'

IL-1ß 5'-AGTGGCAATGAGGATGAC-3' 245
NM_000576.2 5'-ATGAAGGGAAAGAAGGTG-3'

IL-6 5'-CAGTGCCTCTTTGCTGCTTTC-3' 121
NM_000600.2 5'-GCCACTCACCTCTTCAGAACG-3'

GAPDH 5'-ACCCAGAAGACTGTGGATGG-3' 200
NM_002046 5'-TTCTAGACGGCAGGTCAGGT-3'

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 1. The effects of artemisinin on the proliferation of PMA-induced THP-1 cells. Chemical structure and molecular weight of artemisinin. THP-1
monocytes were incubated with various concentrations of artemisinin (0-160 μg/ml) for 4 h and exposed to 100 nM PMA for 48 h. Cell proliferation was
assessed using the MTT assay. Cells incubated in a medium without artemisinin and PMA were defined as control and were considered to have a 100%
proliferation rate.
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or with 10 μM of the NF-κB-specific inhibitor, Bay 11-7082,
for 30 min and were exposed to 100 nM PMA for 48 h. As
shown in Fig. 2, treatment with PMA alone (48 h) markedly
increased the secretion of TNF-·, IL-1ß, and IL-6 compared
to unstimulated cells. Pretreatment with different artemisinin
concentrations (10-80 μg/ml) for 4 h, dose-dependently
antagonized the PMA-induced increase in TNF-·, IL-1ß, and
IL-6 secretion (Fig. 2A, C and E). In addition, 80 μg/ml

artemisinin almost completely inhibited the PMA-induced
TNF-·, IL-1ß, and IL-6 secretion. To investigate the related
mechanism of the artemisinin effect on cytokine release, the
cells were pre-treated with 10 μM Bay 11-7082 for 30 min
before addition of PMA. When cells were cultured in the
presence of Bay 11-7082, complete inhibition of the secretion
of all cytokines assayed was observed, which was congruent
with the artemisinin-pretreated groups (Fig. 2A, C and E).
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Figure 2. ELISA assay and real-time PCR analysis showing the effects of artemisinin (Art) on the secretion and the mRNA levels of TNF-· (A and B), IL-1ß
(C and D), and IL-6 (E and F) in PMA-stimulated THP-1 monocytes. (A), (C) and (E) Cells were incubated with increasing concentrations (10-80 μg/ml) of
artemisinin for 4 h or 10 μM of the NF-κB specific inhibitor Bay 11-7082 for 30 min and exposed to 100 nM PMA for 48 h before collection. Concentrations
of representative cytokines in cell culture supernatants are detected by ELISA. Inhibitory dose response of the induction of TNF-· (A), IL-1ß (C), and IL-6
(E) to artemisinin in PMA-stimuated THP-1 cells was shown. (B), (D) and (F) Confluent THP-1 monocytes were incubated with increasing concentrations
(10-80 μg/ml) of artemisinin for 4 h or 10 μM of the NF-κB specific inhibitor Bay 11-7082 for 30 min and then exposed to 100 nM PMA for 48 h. PMA-
alone induced THP-1 cells was defined as control and set to 100%. All the other dada was compared to the PMA-induced group as percent. Inhibitory dose
response of the induction of TNF-· (B), IL-1ß (D) and IL-6 (F) mRNAs to artemisinin in PMA-stimuated THP-1 cells was shown. *P<0.05 and **P<0.01,
relative to PMA-alone incubation. Data (mean ± SD) are from three independent experiments.
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Artemisinin inhibited the mRNA expression of inflammatory
cytokines. Next, we investigated whether the mRNA levels of
inflammatory cytokines were affected by artemisinin. As
shown in Fig. 2, there were weak signals for the basal mRNA
expression of TNF-·, IL-1ß, and IL-6 in quiescent THP-1
cells. In contrast, their mRNA was greatly increased in PMA-
alone stimulated THP-1 cells. When artemisinin (10, 20, 40
or 80 μg/ml) was added prior to the stimulators, TNF-·, IL-1ß
and IL-6, mRNA levels were markedly decreased in a dose-
dependent manner (Fig. 2B, D and F). In addition, an almost
complete inhibition of the mRNA expression of all the
cytokines assayed was observed when the cells were cultured
in the presence of 80 μg/ml artemisinin or Bay 11-7082.
These results indicate that artemisinin could inhibit the

transcription of cytokines such as TNF-·, IL-1ß, and IL-6,
which may in turn affect protein production and release, in
which the NF-κB canonical activation pathway might play a
pivotal role.

Artemisinin inhibited activation of the NF-κB signaling
pathway.NF-κB is a key transcription factor for the expression
of inflammatory genes, including TNF-·, IL-1ß, and IL-6
(23-26). To further elucidate the mechanism of action of
artemisinin, the key protein levels in the activated NF-κB
signaling pathway at different time-points (1, 3 or 6 h) were
examined by Western blot analysis. As shown in Fig. 3,
PMA-induced phosphorylation of both IKK·/ß (Fig. 3A
and B) and IκB· protein (Fig. 3A and C) was significantly
blocked by artemisinin treatment. In parallel, subsequent IκB
degradation in the cytoplasm of macrophages was decreased,
which led to an increased IκB protein level (Fig. 3A and D).
The protein level of NF-κB p65 in the nucleus was decreased,
which is a direct proof of the reduced translocation of NF-κB
(Fig. 3A and E). p-IKK·/ß, p-IκB·, and p65 were found to be
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Figure 3. The effect of artemisinin (Art) on the key protein levels
[phosphorylated IKK·/ß (p-IKK·/ß), phosphorylated IκB· (p-IκB·), IκB· in
the cytosolic part and NF-κB p65 subunit in the nuclear part] of the PMA-
induced NF-κB signaling pathway, as assessed by Western blot analysis.
THP-1 cells were pretreated with 60 μg/ml artemisinin for 4 h, then induced
with PMA for different time-points (1-6 h). Cytosolic and nuclear extracts
were prepared and subjected to 8% SDS-PAGE and Western blot analysis
with primary antibodies against p-IKK·/ß, p-IκB·, IκB·, and NF-κB p65 (3
separate experiments). ß-actin protein was used as an internal control.
*P<0.05 and **P<0.01, relative to PMA-alone incubation.
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inhibited as early as at 1 h, and this inhibitory effect reached
its peak at 3 h. p-IKK·/ß, p-IκB· and p65 were still lower
than the PMA-alone group at 6 h. As compared to the PMA-
alone group, IκB· was also found to be higher as early as at
1 h, reached its peak at 3 h and gradually declined but was
still higher than the PMA-alone group at 6 h. Accordingly,
the time-point of 3 h was chosen for subsequent experiments.

Artemisinin blocked NF-κB translocation. It was tested
whether artemisinin inhibits PMA-induced stimulation of
TNF-·, IL-1ß, and IL-6 secretion by interfering with the
translocation of the transcription factor NF-κB. Intracellular
localization of NF-κB p65 in THP-1 cells was evaluated by a
confocal laser scanning microscope using NF-κB p65-
specific antibody and Cy3-conjugated secondary antibody
(Fig. 4). DAPI was used to mark the nucleus. Cytoplasmic
red area (representative of the area that contains p65) was
observed in PMA-free cells (Fig. 4A), while nuclear blue
staining in PMA-alone-exposed cells was observed (Fig. 4B),
indicative of nuclear localization of activated NF-κB p65 at
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Figure 4. Representative microphotographs showing effect of artemisinin on the translocation of NF-κB p65 in PMA-treated THP-1 monocytes. The NF-κB
locatization was visualized by binding with a Cy3-conjugated secondary antibody. Cells were then incubated with DAPI to stain the nuclei. Microscopic
images were obtained using a confocal laser scanning microscope (three independent experiments) and the red area (representative of the area that contains
p65) and blue area (representative of the nucleus part that is DAPI-conjugated) images were overlaid to create a purple fluorescence in areas of co-
localization. In quiescent THP-1 cells, the NF-κB p65 subunit was predominantly localized in the cytoplasm (A). Cells stimulated with PMA for 3 h showed
significant translocation of p65 to the cell nucleus (B). In cells pretreated with 60 μg/ml artemisinin for 4 h and exposed to 100 nM PMA for 3 h, NF-κB p65
was significantly retained in the cytoplasm (C).

Figure 5. The effect of artemisinin (Art) on the PMA-induced increase of
p50/p65 DNA binding activity. THP-1 cells were pretreated with 60 μg/ml
artemisinin for 4 h, then induced with PMA for 3 h. Nuclear extracts were
prepared. The DNA binding activity assay showed a marked decrease in
p50/p65 DNA binding activity in nuclear fractions from THP-1 monocytes
treated with PMA and artemisinin compared to cells treated only with PMA.
Results are expressed as the mean ± SD. **P<0.01, relative to PMA-alone
incubation.

233-241.qxd  23/12/2010  11:09 Ì  ™ÂÏ›‰·238



single cell level. In contrast, artemisinin- and PMA-treated
cells had diminished staining levels of nuclear p65 (Fig. 4C).
As shown in Fig. 5, treatment of cells with PMA led to a
robust activation of p50 and p65. This activation was partially
blocked by 60 μg/ml artemisinin.

Discussion

The present study demonstrates for the first time that the
anti-malarial agent artemisinin could effectively inhibit the
production of TNF-·, IL-1ß, and IL-6 in PMA-induced
monocyte-derived macrophages in a dose-dependent manner.
The results also provide evidence that the inhibitory effect of
artemisinin on cytokines is mediated by the NF-κB canonical
activation pathway. Therefore, these findings strongly
support that artemisinin has a unique anti-inflammatory
effect in atherosclerosis-related monocytes/macrophages, and
may provide novel insights into the protection against
atherosclerosis inflammation.

Inflammation plays a fundamental role in mediating all
stages of atherosclerosis, from initiation to progression, and
the associated thrombotic complications. Pro-inflammatory
cytokines play a strict proatherogenic role in atherosclerosis,
which has been demonstrated in numerous animal studies
and has been suggested by their expression in atherosclerotic
human plaques. For example, TNF-·, produced by THP-1
cells, macrophages and NK cells, could activate NF-κB and
inhibit key metabolic enzymes including lipoprotein lipase.
IL-1ß, also produced mainly by macrophages and the action of
which overlaps partly with TNF, induces metalloproteinases,
nitric oxide synthase, and adhesion molecules. Moreover, IL-6
and TNF-· have been proven to be clinical markers to identify
and track inflammation (27-30). Targeting inflammatory
cytokines has been prosperously developed and been proven
to successfully protect against atherosclerosis. Pentoxifylline,
a TNF-· antagonist, inhibits plaque formation in apoE-/-
mice and the production of the atheroprotective cytokine
IL-10 (31). Blockade of TNF-· ameliorates atherosclerosis
progression in apoE-/- mice (32). Therefore, the inhibitory
effect of artemisinin on pro-inflammatory cytokines indicates
that artemisinin might prove to be a novel and promising
natural medicine for preventing atherosclerosis.

In the present study, we found that artemisinin inhibited the
production of pro-inflammatory cytokines TNF-·, IL-1ß, and
IL-6 in atherosclerosis-related monocytes/macrophages in a
dose-dependent manner. In fact, artemisinin and its derivates
have been reported to possess anti-inflammatory effects, acting
through suppression of several inflammatory cytokines
(13-15). Artemisinin was found to suppress CpG ODN- and
LPS-induced TNF-· and IL-6 release in RAW264.7 cells,
which has also been demonstrated in animal models of sepsis
(14) Another study reported that artemisinin inhibits nitric
oxide synthesis in cytokine-stimulated human astrocytoma
T67 cells (33). Hou et al showed that artesunate, an
artemisinin derivative, could decrease TNF-·-induced
secretion of IL-1ß, IL-6 and IL-8 and NF-κB translocation in
rheumatoid athritis fibroblast-like synoviocytes (16). A novel
derivative of artemisinin, SM933, has been shown to be
effective in the treatment of autoimmune diseases and
inflammation (13). Furthermore, it has been reported that

artemether exhibited potent immunosuppressive activity on
T cells both in vitro and in vivo (12). Our findings, coupled
with other studies on the anti-inflammatory effect of
artemisinin, unveiled the possible role of artemisinin in
preventing atherosclerosis-related inflammation.

Secondly and more importantly, we demonstrated that
artemisinin exerts anti-inflammatory actions in monocytes/
macrophages through its unique inhibition of NF-κB signaling
pathways. NF-κB is one of the key regulators of inflammation
and oxidative stress, which controls the transcription of many
genes with an established role in atherosclerosis. The
classical NF-κB activation pathway involves the activation of
the IKK complex with the subsequent degradation of IκB·
and nuclear translocation of the NF-κB dimer (34). A number
of factors implicated in the development of atherosclerosis,
such as cytokines, oxidized lipids, hemodynamic forces,
angiotensin II, and integrin/matrix signaling, have all been
shown to activate NF-κB (35-38). NF-κB regulates the
expression of many genes with an established role in athero-
sclerosis, such as cytokines (e.g., TNF, IL-1ß, and IL-6),
chemokines (e.g., MCP-1), adhesion molecules (e.g., VCAM-1
and ICAM-1), proteases (e.g., MMP-9) and antiapoptotic
proteins (e.g., c-IAP and Bcl-2) (39-43). Several studies have
demonstrated that TNF-·, IL-1ß, and IL-6 are the target genes
of NF-κB (23-26). It has been shown that several kinds of
sesquiterpene lactones, such as parthenolide, could inhibit
NF-κB and retard atherosclerosis by reducing lesion size
and changing plaque composition in apoE-/- mice (44). Aldieri
et al reported that artemisinin blocks the LPS/cytokine-
induced activation of NF-κB by electrophoretic mobility shift
assay in T67 human astrocytoma cells, and Western blotting
showed an increased IκB· level as compared to artemisinin-
untreated cells (33). In our present study, a significant
inhibition of the NF-κB canonical activation pathway at
different time-points (1, 3, or 6 h) was observed as compared
to the artemisinin-untreated groups. Additionally, the
inhibitory effect of artemisinin reached its peak in 3 hours.
Furthermore, a direct view of the impeded nuclear translocation
of NF-κB p65 was observed using a confocal laser scanning
microscope. The DNA binding activity assay also determined
a marked decrease in p50/p65 DNA binding activity in
nuclear fractions from THP-1 monocytes treated with PMA
and artemisinin compared to cells treated only with PMA.
The NF-κB specific inhibitor, Bay 11-7082, reversed the
PMA induced pro-inflammatory cytokine (TNF-·, IL-1ß, and
IL-6) production in the current study. These results suggest
that the NF-κB canonical activation pathway is at least partly
responsible for PMA-induced TNF-·, IL-1ß, and IL-6
production. Artemisinin blocked PMA-induced TNF-·, IL-1ß,
and IL-6 production via the NF-κB canonical activation
pathway in THP-1 monocytes differentiated into macrophages.

In summary, our findings provide strong evidence for the
first time that artemisinin attenuates PMA-induced production
of TNF-·, IL-1ß, and IL-6 via inhibition of the NF-κB
canonical activation pathway in PMA-induced human THP-1
monocytes. Considering the critical role of the suppression of
the inflammation process in protecting the development of
atherosclerotic plaque, our study suggests that artemisinin
may have a potential role in the inhibition of the inflammatory
progression of atherosclerosis.
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