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Abstract. Free radicals play major roles in the pathogenesis of 
tissue damage in many diseases and clinical conditions, and 
the removal of free radicals may offer a treatment option. 
Several modulators of free radical scavenger pathways have 
been developed and some have progressed to clinical trials. 

One such agent, edaravone, was approved in 2001 in Japan for 
the treatment of cerebral infarction. It has since been shown 
that edaravone can diffuse into many organs and, in addition 
to its effects on hydroxyl radical removal, edaravone modulates 
inflammatory processes, matrix metalloproteinase levels, 
nitric oxide production, apoptotic cell death, and necrotic cell 
death. Edaravone also exerts protective effects in a number of 
animal models of disease and tissue damage, including 
models of myocardial, lung, intestinal, liver, pancreatic and 
renal injury. Together with the proven safety of edaravone 
following 9 years of use as a modulator of free radical 
scavenging pathways in neurological disease, these additional 
effects of edaravone suggest that it may offer a novel treatment 
for several non-neurological diseases and clinical conditions 
in humans.
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1. Introduction

Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, MCI-186, 
Radicut; Mitsubishi Tanabe Pharma Corporation, Osaka, 
Japan) was the first neuroprotective drug to be introduced 
worldwide and, since 2001, has been used in Japan to treat 
patients with cerebral infarction (1-3).

Several free radical scavengers have been developed, and 
some of these, including ebselen, tirilazad, and NXY-059, 
have progressed to clinical trials (4). However, trials of ebselen 
and tirilazad in patients with cerebral infarction were terminated 
because of inadequate therapeutic effects (5,6), and NXY-059 
was shown to be ineffective against cerebral infarction when 
administered within 6 h of the onset of symptoms in the 
Stroke-Acute Ischemic NXY Treatment II trials (7).

In contrast, clinical trials have shown that administration 
of edaravone within 72 h of cerebral infarction significantly 
reduced infarct volume and provided sustained benefits over a 
3-month follow-up period (8,9). More recently, Unno et al 
reported that the total dose of edaravone was associated with 
rehabilitation gain (10). Edaravone has also been administered 
within 24 h of cerebral infarction in patients with lacunae, 
large-artery atherosclerosis, and cardioembolic cerebral 
infarction (11).

Edaravone is a low-molecular-weight agent that readily 
crosses the blood-brain barrier, and its activity is therefore not 
limited to the vascular compartment (12,13). It has been 
shown that edaravone exerts other effects, in addition to its 
direct antioxidant activity, that might make edaravone useful 
in the treatment of many non-neurological diseases and 
clinical conditions. Of particular interest is the potential use 
of edaravone in myocardial, lung, intestinal, liver, pancreatic, 
and renal injury. To the best of our knowledge, there have 
been no reviews of the therapeutic potential of edaravone 
beyond neurological disease. Therefore, the aim of this review 
is to present the current state of research on the effects of 
edaravone in animal models of various non-neurological 
diseases and conditions, and to highlight the potential for the 
use of edaravone in their treatment.

2. Myocardial injury

Reperfusion after myocardial infarction (MI) greatly exacerbates 
ischemia-related myocardial injury (14) via excessive 
accumulation of free radicals, which damage the myocardium 
(15). Edaravone protects against myocardial injury following 
ischemia/reperfusion (I/R) in patients with acute MI (AMI) 
(12). Monocyte chemoattractant protein 1 (MCP1; also called 
CCL2) plays an important role in the pathogenesis of acute 
coronary syndrome (16), and one study demonstrated that 
edaravone suppressed plasma MCP1, improved the left 
ventricular ejection fraction, and reduced rehospitalization 
due to heart failure in patients with AMI (16). In other studies 
of patients with AMI, edaravone was reported to reduce 
infarct size, reperfusion arrhythmia, and levels of serum 
thioredoxin, a marker of oxidative stress (17), in addition to 
decreasing serum concentrations of creatine kinase-MB 
isoenzymes and improving ventricular ejection (18).

Animal experiments have revealed protective effects of 
edaravone against myocardial I/R injury in an AMI model 

and in a transplantation model (19,20). Edaravone reduced the 
myocardial necrotic area following myocardial I/R in rats (21) 
and in rabbits (22). Edaravone also prevented lethal ventricular 
tachyarrhythmias upon reperfusion and deteriorations in 
cardiac function following ischemia and I/R in rats, by 
inhibiting lipid peroxidation (23). In an experimental rat 
model of coronary occlusion, edaravone reduced the MI area, 
maintained adequate myocardial ATP content, decreased 
mitochondrial swelling, reduced cytochrome-c release, 
increased the expression of Bcl2, and reduced the number of 
apoptotic cells and DNA fragmentation (24). Edaravone also 
protected cardiac function in rats and reduced infarct size by 
decreasing the production of tumor necrosis factor α (TNF-α) 
in the myocardium exposed to I/R injury, and by reducing the 
release of adhesion molecules, such as P-selectin, from 
vascular endothelial cells (25). In rabbits, edaravone 
significantly reduced MI size and improved cardiac function 
and left ventricle (LV) remodeling by decreasing hydroxyl 
radicals and superoxide levels in the myocardium and 
increasing the production of nitric oxide (NO) during 
reperfusion (14). Edaravone was also reported to preserve 
coronary microvascular endothelial function, increase NO 
levels, and decrease reactive oxygen species (ROS) levels in 
dogs with I/R injury (26).

Cardioplegic arrest is the main technique used for 
myocardial protection during open-heart surgery; however, it 
can lead to myocardial injury during reperfusion (20). Free 
radical scavengers attenuate I/R injury in various settings 
(20), and the addition of edaravone to the cardioplegic solution 
attenuated myocardial dysfunction following cardioplegic 
arrest in rats by suppressing oxidative stress (20). Edaravone 
also exer ted cardioprotective effects in a pig hear t 
transplantation model by inhibiting lipid peroxidation (19). 
In vitro, edaravone reduced I/R-induced cell death by 
attenuating ROS production in rabbit cardiomyocytes (27).

Plasma ROS levels are often elevated in patients with heart 
failure (28). Acute myocarditis is a potentially lethal disease 
that frequently precedes the development of acute and chronic 
heart failure. Two mechanisms have been proposed to explain 
how myocarditis progresses into heart failure: the first involves 
persistent viral or etiologic agent infection, and the second 
involves progressive autoimmune myocardial injury. 
Autoimmune giant cell myocarditis in rats mimics human 
fulminant myocarditis with heart failure (29). In rats with 
acute experimental autoimmune myocarditis (EAM), 
edaravone reduced the number of interleukin (IL)-1β-positive 
cells (30). In this animal model, edaravone reduced myocardial 
IL-1β-positive cells and myocardial oxidative stress overload 
with DNA damage, and decreased myocardial protein carbonyl 
content, myocardial thiobarbituric acid (TBA)-reactive 
substances, the formation of hydroxyl radicals, and the 
cytotoxic activities of lymphocytes. Furthermore, edaravone 
protected against acute EAM by scavenging hydroxyl free 
radicals and reducing oxidative stress, which ultimately 
suppressed autoimmune-mediated myocardial damage (31). In 
another study, edaravone was reported to ameliorate the 
progression of EAM, improve LV function, decrease LV 
expression of the nicotinamide adenine dinucleotide phosphate 
oxidase subunit p67-phox and endoplasmic reticulum stress 
signaling proteins (GRP78, caspase 12) and to reduce the 
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number of terminal deoxynucleotidyl transferase dUTP nick 
end labeling (TUNEL)-positive cells in rats with EAM (32).

3. Lung injury

Several recent studies have evaluated the potential use of 
edaravone to treat lung injury induced by I/R in animal 
models (33-35), lipopolysaccharide (LPS) (36), and bleomycin 
(37,38). Lung I/R injury is a common problem encountered in 
many clinical conditions, including lung transplantation and 
cardiopulmonary bypass (33-35). In dogs, edaravone blunted 
I/R-induced pulmonary dysfunction, pulmonary focal hyaline 
membrane formation, pulmonary neutrophil infiltration, 
pulmonary interstitial edema and oxidative stress markers, 
such as malondialdehyde (MDA) (33).

In an isolated rat lung model, edaravone abrogated 
I/R-induced elevation in pulmonary dysfunction by suppressing 
increases in pulmonary MDA levels; myeloperoxidase (MPO) 
activity as a marker for neutrophil infiltration; phospholipase 
A2 activation, which mediates edema formation; and neutrophil 
extravasation via the platelet-activating factor (PAF) receptor 
(35). In rabbits, edaravone reduced the production of hydroxyl 
radicals and MDA, and increased the activities of glutathione 
peroxidase and superoxide dismutase, which reduced damage 
to the mitochondria and lung tissue and thus improved the 
survival rate following I/R (34).

LPS-induced injury is often a factor in the etiology of 
various lung diseases, including acute lung injury (ALI) and 
adult respiratory distress syndrome (36). In the LPS-induced 
ALI mouse model, edaravone prevented lung injury and 
attenuated inflammatory cell activation and the release of 
pro-inflammatory cytokines, such as IL-6, TNF-α, keratinocyte-
derived chemokine, and macrophage inflammatory protein 
(MIP)-2 by lung macrophages into bronchoalveolar lavage 
fluid (BALF) (36).

The bleomycin-induced pulmonary fibrosis animal model 
is useful to examine the mechanisms involved in pulmonary 
fibrosis, particularly the effects of oxygen free radicals (37,38). 
In rabbits with bleomycin-induced pulmonary injury, 
edaravone attenuated the activation of inflammatory cells, the 
extent of interstitial fibrosis and peribronchial fibrosis, and the 
numbers of apoptotic cells and of transforming growth factor 
β-positive cells (37). In a similar mouse model, edaravone 
improved the survival rate, reduced fibrotic changes and the 
production of lipid hydroperoxide in BALF and serum, and 
increased the production of prostaglandin E2 in BALF (38).

Collectively, these results suggest that edaravone is a 
potential treatment option for a wide range of lung disorders, 
including I/R injury, sepsis and fibrosis.

4. Intestinal injury

The mortality rate associated with acute mesenteric artery 
thromboembolism remains high, despite improvements in 
diagnostic and therapeutic techniques (39). I/R-related injuries, 
which occur when a thrombus is removed, result in marked 
intestinal tissue damage (40). Oxygen free radicals trigger 
neutrophil infiltration into ischemic intestinal tissues (41). In 
rats, edaravone reduced I/R-induced small intestine injury; 
the levels of intraluminal protein and hemoglobin, which are 

markers of mucosal injury; TBA-reactive substances and 
tissue-associated MPO activity; protein and mRNA levels of 
cytokine-induced neutrophil chemoattractant 1 (CINC-1; a 
member of the IL-8 family; and intestinal erosion and bleeding 
(42). In that study, CINC-1 protein and CINC-1 mRNA levels 
increased with I/R injury and were reduced by treatment with 
edaravone. Meanwhile, in rabbits with induced acute superior 
mesenteric artery thromboembolism using autologous fibrin 
clots, edaravone was reported to prevent bowel infarction, 
extend survival time, and reduce mucosal damage (41).

The prevalence and incidence rates of Crohn's disease 
have been increasing in both the United States and in Europe, 
and there is a strong association between Crohn's disease and 
cancer of the small bowel (43). In a rat model of acute Crohn's 
disease, edaravone reduced the ulcer index; histological 
damage score; and markers of oxidative damage, such as 
MPO activity and the TBA-reactive substance level, and 
ameliorated mesenteric indomethacin-induced longitudinal 
ulcers of the small intestine (44).

5. Liver injury

Acute severe liver injury results from the death of many liver 
cells and leads to the development of hepatic encephalopathy 
and severe liver dysfunction (45). Despite major developments 
in liver support systems and liver transplantation, acute severe 
liver injury has a high mortality rate (46). It is well known that 
liver injury can be caused by oxidative stress and subsequent 
free radical formation (47,48). Recent studies have tested 
edaravone as a treatment for liver injury in animal models, 
including liver injury induced by endotoxins (46,49,50), I/R 
(51-58), carbon tetrachloride (CCl4) (59,60) and Fas (61).

Edaravone prevented liver injury and improved the 
survival rate of LPS-treated rats by inhibiting the recruitment 
of inf lammatory cells, the expression of inf lammatory 
cytokines, and by increasing 4-hydroxynonenal-modified 
proteins in the liver (49). Furthermore, in the same study, 
edaravone was also reported to inhibit the LPS-induced 
increases in serum alanine aminotransferase (ALT) levels, in 
addition to attenuating the mRNA expression of MIP-2, 
MCP-1 and MCP-5. As a result, edaravone blunted the increase 
in the number of infiltrating inflammatory cells and the 
mRNA expression of inflammatory cytokines, such as TNF-α 
and IL-6, in the liver. These changes were accompanied by a 
significant reduction in serum cytokine levels (49).

In another study (50), edaravone prevented LPS-induced 
liver injury after partial hepatectomy by attenuating oxidative 
damage and by reducing the production of MDA, CINC, NO, 
inf lammatory cytokines (e.g., TNF-α, IL-2, IL-1β and 
interferon γ), and inducible nitric oxide synthase (iNOS); 
these changes were at least partly mediated by inhibition of 
nuclear factor-κB activation (NF-κB). In this study, edaravone 
markedly improved the survival rate of LPS-treated rats after 
hepatectomy and inhibited increases in serum aspartate 
transaminase (AST) and lactate dehydrogenase (LDH). Histo-
pathological analysis revealed that edaravone also prevented 
inflammatory changes in the liver, kidney and spleen (50).

Hepatic I/R injury is often encountered following liver 
transplantation, in hepatic failure after shock, and after liver 
surgery (62). In rats, edaravone blunted I/R-induced hepatic 
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dysfunction, hepatic necrosis, hepatic apoptosis, and oxidative 
stress markers, such as MDA (54). In another study, edaravone 
blunted I/R-induced worsening of hepatic dysfunction, MDA 
levels and necrosis, as well as perfusate IL-10 levels in rats 
(55). Edaravone markedly improved the survival rate of rats 
following I/R and decreased serum AST, ALT and MPO 
activity levels, and hepatic IL-6 mRNA expression (51). 
Edaravone also ameliorated I/R-induced hepatic dysfunction, 
lipid peroxidation, and perfusate TNF-α and IL-1β levels in 
rats (53). Edaravone blunted I/R-induced elevations in serum 
ALT, serum hyaluronic acid, hepatic TNF-α mRNA, serum 
TNF-α, serum IL-6, Kupffer cell TNF-α mRNA, leukocyte 
infiltration, lipid peroxidation and hepatic free radical levels 
in rats (52). In another study in rats, edaravone blunted 
I/R-induced elevations in serum ALT levels, and reduced 
hepatic congestion, vacuolization, necrosis, lipid peroxidation, 
tissue monocyte infiltration, neutrophil infiltration, and the 
mRNA expression of IL-1β, CINC-2, MIP-2, MCP-1, MIP-1α, 
MIP-1β, and intercellular adhesion molecule 1 (ICAM-1) (57). 
Edaravone was also reported to protect against mitochondrial 
injury by preventing mitochondrial lipid peroxidation, 
inhibiting decreases in glutathione activity, and improving 
I/R-induced dysregulation of hepatic energy metabolism in 
rats (56). Furthermore, edaravone reduced hepatic I/R injury 
by minimizing hepatic lipid peroxidation, AST leakage, and 
hepatic TNF-α and E-selectin mRNA levels in rats (58). 
Histologically, edaravone reduced E-selectin immunoreactivity 
and neutrophil accumulation in rat hepatic sections (58).

CCl4 is a widely accepted experimental toxin that induces 
acute hepatic injury and regeneration in vivo (59). In rats, 
edaravone blunted CCl4-induced increases in serum levels of 
ALT, LDH, total bilirubin, IL-6, IL-10, and TNF-α; hepatic 
mRNA expression of TNF-α, IL4, IL-6, and IL-10; oxidative 
stress markers such as MDA, 4-hydroxynonenal, and 
8-hydroxydeoxyguanosine (8-OHdG); and suppressed fatty 
degeneration, necrosis, and apoptosis in the liver (59). 
Edaravone was also reported to blunt CCl4-induced elevations 
in serum ALT, LDH, and total bilirubin levels, as well as 
hepatic steatosis and apoptosis in rats (60). In mice with 
fulminant hepatic failure, edaravone protected hepatocytes 
from Fas-induced, mitochondria-dependent apoptosis by 
regulating mitochondrial Bcl-xL and Bax expression (61).

An in vitro study using primary cultures of rat hepatocytes 
further revealed that edaravone directly inhibits the induction 
of iNOS (NOS2) gene expression at the level of promoter 
transactivation and mRNA stabilization in IL-1β-stimulated 
hepatocytes (63).

6. Pancreatic injury

The annual incidence of pancreatic injury in the United States 
is reported to be 18 per 100,000 people (64). In a European 
cross-sectional study, the incidence of acute pancreatitis 
increased from 12.4 to 15.9 per 100,000 people per year 
between 1985 and 1995, although the mortality rate remained 
stable because of advances in treatment (64). Because 
oxidative stress is observed in various experimental 
pancreatitis models, the abnormal generation of ROS appears 
to be independent of the etiology of pancreatitis (65). In an 
in vitro study, edaravone was found to protect isolated islets 

against cell death induced by 5-250 µmol H2O2 in a dose-
dependent manner (66). In vivo, in a rat model of closed 
duodenal loop-induced pancreatitis, edaravone tended to 
reduce ascites volume and inhibit increases in wet pancreatic 
weight (67). Edaravone also tended to reduce microscopic 
mucosal damage scores and pancreatic tissue lipid peroxide 
levels (67). In a rat model of sodium taurocholate-induced 
pancreatitis, edaravone reduced plasma amylase levels, 
pancreatic MPO activity, necrosis, edema and inflammatory 
infiltration (68). Furthermore, edaravone decreased pancreatitis-
induced mRNA levels of pro-inflammatory cytokines IL-6 
and TNF-α. Meanwhile, in another study (69), edaravone was 
found to protect against multiple-dose streptozotocin-induced 
diabetes in a dose-dependent manner. In that study, multiple 
low-dose streptozotocin treatment caused mononuclear cell 
infiltration in pancreatic islets, which was followed by 
hyperglycemia and overt diabetes. Notably, edaravone inhibited 
streptozotocin-induced insulitis by suppressing increases in 
TBA-reactive substances.

Pancreatic islet transplantation is becoming increasingly 
widespread for the treatment of type 1 diabetes. However, 
engraftment survival rates remain suboptimal. One of the causes 
of poor engraftment following pancreatic islet transplantation 
is oxidative stress. As a result, only one third of the islet mass 
is stably engrafted per islet transplantation, and multiple 
transplants are required to achieve full independence. In 
streptozotocin-induced diabetic rats, edaravone promoted 
engraftment of intraportally transplanted islet cells, ameliorated 
hyperglycemia, increased insulin secretion and the number 
and size of islet β cells, and decreased the number of TUNEL-
positive cells in each islet (70).

Collectively, these results suggest that edaravone may be 
useful in pancreatic injury to help prevent progressive islet 
loss, to treat pancreatitis and improve graft survival. Although 
these effects may be mediated by the antioxidant activities of 
edaravone, further studies are needed to determine the precise 
mechanisms of action.

7. Renal injury

Acute renal failure is a dose-limiting factor during cisplatin 
chemotherapy (71). Accumulating evidence suggests that 
enhanced peroxidative damage caused by ROS may contribute 
to the pathogenesis of cisplatin-induced acute renal failure 
(72). Several studies have demonstrated that edaravone 
protects against cisplatin nephrotoxicity in rats (72-74). In one 
study, edaravone reversed elevations in blood urea nitrogen 
and creatinine and reversed histological changes, such as 
vacuolation, necrosis, and protein casts, caused by cisplatin 
(74). In other studies, edaravone reduced cisplatin-induced 
renal tubular damage, mitochondrial damage, ROS production 
in mitochondria or proximal tubular cells, and tubular 
apoptosis in rats (72). Edaravone inhibited cisplatin-induced 
cytotoxicity in a concentration-dependent manner between 
10-5-10-3 M). Edaravone also inhibited cisplatin-induced 
mitochondrial damage, including DNA damage, and prevented 
renal epithelial cell apoptosis, the occurrence of chronic renal 
dysfunction, and multiple cyst formation (73). In vitro, 
edaravone attenuated cisplatin-induced cell death, mito-
chondrial transmembrane potential loss, and ROS production 
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in murine proximal tubular cells (72), and reversed cisplatin-
induced cell injury in porcine tubular cells (71).

Renal I/R injury is a significant complication of renal 
transplantation and acute renal failure (75-77). In a canine 
model of I/R injury, edaravone protected renal tubular epithelial 
cells and vascular endothelial cells, ameliorated renal 
dysfunction, and reduced MDA, lipid peroxidation, and 
urinary excretion of 8-OHdG (77). Biopsy specimens showed 
less tubular cell damage and decreased P-selectin expression 
in the endothelial cells of treated animals (77). In rats, edaravone 
improved survival following renal I/R injury (76) and attenuated 
renal dysfunction, ROS production, lipid peroxidation, and 
acute tubular necrosis following I/R in acute renal failure (75). 
The inhibitory effect of edaravone on ROS generation was 
further verified in a human renal tubule cell line exposed to 
0.5 mmol/l hydrogen peroxide for 1 h (75). In rats with 
puromycin-induced nephrosis, edaravone was also reported to 
delay or ameliorate 8-OHdG excretion as a measure of in vivo 
oxidative DNA damage (78), and the levels of glomerular 
TBA-reactive substances (79). Finally, in a rat model of 
myonephropathic metabolic syndrome and severe hindlimb 
ischemia, edaravone attenuated neutrophil infiltration, the 
serum level of soluble ICAM-1, and muscular edema (80).

Collectively, these results suggest that edaravone protects 
the kidney against I/R injury through its antioxidant activities, 
particularly during chemotherapy with cisplatin and related 
drugs. It would also be of interest to determine whether 
edaravone can be used to improve outcomes following kidney 
transplantation, which is associated with severe oxidant stress 
both before and after transplantation (81,82).

8. Bladder injury

There is increasing evidence showing that I/R is a major 
etiological factor in the progression of bladder dysfunction 
induced by partial outlet obstruction, and that at least some of 
the damage is due to the generation of free radicals and the 
resultant cellular and subcellular membrane peroxidation. In 
rats, edaravone was reported to protect the contractile responses 
to field stimulation and carbachol, as well as reduce MDA 
content following I/R-induced damage to the bladder (83).

Clinically, bladder dysfunction is sustained after acute 
urinary retention (AUR) (84). In turn, AUR and subsequent 
catheterization may enhance lipid peroxidation and oxidative 
DNA damage in the rat bladder. In rats, the administration of 
edaravone was reported to decrease blood flow in the bladder 
during urinary retention and catheterization. Edaravone also 
protected the contractile responses to carbachol and KCl, and 
reduced MDA, 8-OHdG, and the stress marker heat-shock 
protein 70 (HSP70; protein and mRNA) following AUR and 
subsequent catheterization (84).

9. Testicular injury

Testicular torsion is a common urological emergency among 
infants and adolescents (85). Acute testicular torsion caused 
by twisting of the spermatic cord and its subsequent release 
resembles acute I/R injury. The production of free radicals, 
such as ROS or NO, has been implicated in the pathogenesis 
of I/R injury. Edaravone reduced the levels of NO2-NO3 as a 

marker of NO production, MDA, 8-OHdG, MPO and HSP70 
(protein and mRNA) in a rat testicular torsion model of I/R. 
Furthermore, edaravone reduced cell swelling, tubular 
vacuolation, and necrosis in the rat testis following I/R (85). 
These results suggest that edaravone could be beneficial in the 
treatment of testicular torsion, although more studies are 
needed to investigate its efficacy in this setting.

10. Sepsis

Sepsis represents a substantial health care burden. In the 
United States, sepsis is the second-leading cause of death 
among non-coronary intensive care unit patients, and the 10th 
most common cause of death overall according to data from 
the Centers for Disease Control and Prevention, with the first 
being heart disease (86). Excessive production of proinflam-
matory mediators, including cytokines, PAF, oxygen free 
radicals, and NO, can result in a potentially lethal systemic 
inflammation associated with the most dramatic pathological 
sequelae of sepsis, including systemic capillary leakage 
syndrome, tissue injury, and fatal organ failure (87-90). In a 
neonatal pig sepsis model, the beneficial effects of edaravone 
included a reduction in serum free radicals, including NO and 
total hydroperoxide, and a delay in the elevation of inflammatory 
mediators, including TNF-α and high-mobility group box 1 
(HMGB-1), which in turn delayed progression of sepsis and 
prolonged survival (91). As described above, edaravone is also 
beneficial in the treatment of sepsis in individual tissues, 
particularly the lung, where edaravone prevented lung injury, 
and attenuated cell activation and the release of pro-inflammatory 
cytokines induced by LPS (36).

Clearly, more data are needed to better understand the 
mechanisms of action of edaravone in sepsis given the multiple 
organ events involved.

11. Toxin exposure

Toxin exposure is also a leading cause of morbidity and mortality. 
For instance, the herbicide paraquat causes significant damage 
to multiple organs including the liver, kidney and lung, while 
antioxidants protect against these deleterious effects (92). 
Edaravone markedly improved the survival rate of paraquat-
treated mice (92). In another animal model of toxin exposure, 
the administration of high doses of methamphetamine causes 
the degeneration of striatal dopaminergic fibers in the brains 
of rodents, and oxidative stress appears to be one of the main 
factors involved in the neurotoxic effects (93). Edaravone has 
been reported to protect mice against methamphetamine-
induced neurotoxicity in the striatum by blocking peroxynitrite 
production (93). Edaravone also blocked the increase in 
3-nitrotyrosine immunoreactivity, a biomarker for ROS 
generation, and the activation of astrocytes (93).

12. Burns

Recent estimates for the annual incidence of burns and 
associated medical care use in the United States include 5500 
deaths from fire and burns (1991), 51,000 acute hospital 
admissions for burn injuries (1991-1993, average), and a total 
of 1.25 million burn injuries (1992) (94). The production of 
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free radicals, such as superoxide and peroxynitrite, in the 
early phase of an extensive burn exacerbates many aspects of 
the injury process, including an increase in microvascular 
permeability and the production of inflammatory mediators 
(95). In rats with burn injury, treatment with edaravone 
significantly reduced the levels of the free radical precursors 
MDA and xanthine oxidase and their metabolites in serum 
and tissues compared with untreated rats (95). This suggests 
that edaravone could be helpful in the clinical treatment of 
large burns (95).

13. Radiation injury

X-ray-induced cell death occurs via direct and indirect 
mechanisms.  X-rays can di rect ly ion ize or excite 
macromolecules in the cells, leading to cell damage, or X-rays 
can excite water molecules in cells to produce ROS, which then 
cause cellular injury (96). Approximately 70% of the biological 
damage caused by X-rays is caused via the indirect pathway 
(96). Meanwhile, in MOLT-4 cells, a human T-cell leukemia 
cell line, edaravone suppressed X-ray-induced apoptosis by 
inhibiting ROS and p53 expression (96,97). Interestingly, 
however, a low dose of edaravone was found to sensitize cells 
to X-ray radiation by activating the p53-dependent apoptotic 
signaling pathway (97).

14. Hemorrhagic shock

Several experimental studies have revealed that intestinal 
barrier failure following hemorrhagic shock (HS) or traumatic 
injury causes bacterial translocation, including the passage of 
the microorganisms themselves or their components, such as 
endotoxin or peptidoglycan (98). Oxidative stress induced by 
ROS is a key mediator in HS-induced vascular hyperpermeability 
(99). Edaravone was reported to reduce intestinal neutrophil 
lipid peroxidation and bacterial translocation in a rat HS model 
(98). Furthermore, edaravone improved the survival rate in a 
rat model of HS without resuscitation (100).

15. Summary and conclusions

In neurological disease, edaravone principally acts as a free 
radical scavenger to protect against I/R-induced injury. In this 
review, we have discussed the possible beneficial effects of 
edaravone, beyond those associated with I/R injury in the 
brain following cerebral infarction, in several non-neurological 
diseases and conditions. The results of the studies discussed 
in this review point towards multiple mechanisms of action of 
edaravone, which are attributable at least in part to its anti-
oxidant activity, similar to that in neural injury, in addition to 
several pleiotropic effects. For example, edaravone suppresses 
the increases in circulating free radical levels and markers of 
ROS generation associated with I/R injury. Furthermore, 
edaravone targets numerous intracellular signaling pathways 
suppressing the release of pro-inflammatory cytokines and 
the activation/infiltration of inflammatory cells, such as 
macrophages. Prospective studies are now needed to evaluate 
the effects of edaravone in clinical settings, and determine 
whether edaravone is beneficial for diseases and clinical 
conditions associated with excess oxidative stress and whether 

edaravone could improve the prognosis of these diseases. We 
expect that edaravone will be useful for the treatment of 
diseases and clinical conditions in which oxidative stress 
plays a key role in their pathogenesis.
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