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Abstract. G-protein-coupled receptor 40 (GPR40), known as 
free fatty acid receptor 1, is mainly expressed in pancreatic 
β-cells and activated by medium- and long-chain fatty acids. 
Increasing evidence indicates that the activation of GPR40 
in cells causes insulin secretion, and GPR40 has become an 
attractive therapeutic target for type 2 diabetes. Recently, 
certain novel GPR40 agonists have been identified that regulate 
glucose-stimulated insulin secretion, leading to the develop-
ment of new drugs for the treatment of type 2 diabetes. In this 
review, we focus on progress in the physiological role of GPR40 
and potential drugs targeting GPR40 over the past decade.
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1. Introduction

Type 2 diabetes is one of the crucial health problems world-
wide, and its prevalence is rising dramatically (1,2). In 

addition to insulin resistance, pancreatic β-cell dysfunction 
typically characterized by progressive decreases in glucose-
stimulated insulin secretion (GSIS), is another hallmark of 
type 2 diabetes. As is well known, plasma glucose is a leading 
adaptor in mediating insulin secretion. Elevated blood glucose 
levels cause glucose to diffuse into β-cells through the 
non-insulin-dependent glucose transporter-2 (Glut2) and then 
glucose metabolism results in the production of adenosine 
triphosphate (ATP). Increased ATP levels, particularly a rise 
in the ratio of ATP/adenosine diphosphate (ADP), lead to the 
closure of K+-ATP channels and subsequent plasma membrane 
depolarization. This opens voltage-dependent Ca2+ channels 
and causes subsequent Ca2+ influx, and increased cytoplasmic 
free Ca2+ levels prompt insulin granule exocytosis, thus trig-
gering insulin secretion (3) (Fig. 1).

Additionally, free fatty acids (FFAs) are not only essential 
dietary nutrients, but play a crucial role in the modulation of 
insulin secretion (4-6). It is believed that prolonged exposure to 
elevated FFAs results in impaired insulin secretion involving 
lipotoxicity which exerts the deleterious effects of lipid 
accumulation on β-cell secretory function by inhibiting insulin 
biosynthesis (7,8), promoting programmed cell death (9) 
and inducing reactive oxidant species (ROS) generation and 
inflammatory reaction (10,11). However, recent evidence 
indicates that not all FFAs inhibit insulin secretion. The 
long-term in vitro treatment of INS-1 rat pancreatic β-cells 
by polyunsaturated α-linolenic acid does not reduce insulin 
secretion and saturated palmitic acid-induced suppression of 
basal insulin secretion and GSIS is attenuated by α-linolenic 
acid (12). On the contrary, FFAs acutely enhance basal insulin 
secretion and GSIS, and the molecular mechanisms involve the 
surface receptors of pancreatic β-cells. Over the past decades, 
a series of receptors have been identified for FFAs, such 
as the nuclear receptors, peroxisome proliferator-activated 
receptors (PPARs), fatty acid-binding proteins (FABPs) and 
G-protein-coupled receptors (GPRs), a large family of cell 
surface receptors (13,14). Moreover, cell surface receptors have 
been proven to play a key role in FFA biological processes, 
which suggests that FFAs do not need to enter into the cells 
to elicit their effects. Recently, GPRs have been successfully 
identified as multiple cell surface receptors for FFAs, also 
known as FFA receptors (FFARs). Among these, GPR41 
and GPR43, known as FFAR3 and FFAR2, respectively, are 
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activated by short-chain fatty acids, such as formate, acetate, 
propionate and butyrate (15), while GPR40 and GPR120 by 
medium- and long-chain ones, such as palmitate, palmitoleate 
and oleate (16,17). GPR41 is expressed in adipose tissue and 
the gastrointestinal tract, and short-chain FFAs induce leptin 
secretion from adipocytes by stimulating GPR41, suggesting 
that GPR41 regulates energy homeostasis (18). GPR43 has 
been detected in immune cells, adipocytes and the gastroin-
testinal tract, and contributes to inflammatory responses and 
metabolic homeostasis (19-21). GPR120, primarily expressed 
in the intestine and macrophages, promotes glucagon-like 
peptide-1 (GLP-1) secretion from the intestine and represses 
macrophage-induced inflammation (22,23). GPR40, namely 
FFAR1, is executively expressed in pancreatic β-cells and 
mediates insulin secretion upon medium- and long-chain FFA 
stimulation (16,24). Type 2 diabetes islets have a lower GPR40 
expression with impaired insulin secretion (25) and GPR40 
knockout leads to decreases in both glucose- and arginine-
stimulated insulin secretion in vivo without changes in insulin 
sensitivity (26). The overexpression of GPR40 in pancreatic 
β-cells augments GSIS and improves glucose tolerance in 
normal and diabetic mice (27), and the GPR40 agonist also 
displays the same effects in rodents (28). Therefore, GPR40 
has received considerable attention as a potential therapeutic 
target for type 2 diabetes, and a series of novel agonists for 
GPR40 have been found, leading to the development of new 
drugs for type 2 diabetes (29,30).

2. Gene and protein information for GPR40

In addition to being expressed in pancreatic β-cells in a range 
of species including mice, rats and humans (6,31,32), GPR40 
is expressed at very low levels in all other tissues (16,33). 
The GPR40 gene is located on human chromosome 19q13.1, 
and shares approximately 30-40% identity with GPR41 and 
GPR43 (14). The mouse gene is composed of a 24-bp non-
coding exon, a 698-bp intron and a 4402-bp second exon, of 
which the intron is located between the 2 exons and is spliced 
out during RNA processing, and the second exon contains 
the full coding sequence. Three evolutionarily conserved 
sequences (HR1-HR3) are located upstream of the first exon. 
Among these, HR2 is a potent β-cell-specific enhancer and 
binds transcription factors, PDX1 and BETA2, and is thus 
responsible for regulating the transcriptional levels of the gene 
in β-cells (34,35). GPR40 belongs to class A GPRs, showing 
a typical 7-transmembrane (TM) domain structure spanning 
α-helices with 3 hydrophilic intracellular and 3 hydrophilic 
extracellular loops. The N-terminus is located extracellularly 
while the C-terminus resides in the cytosol (36). Although the 
full protein information for GPR40 has not yet been revealed, 
its structure has been analyzed by computational modeling, 
site-directed mutagenesis and so on. GPR40 contains 2 sites 
(Thr215 and Ser298) bearing potential protein kinase C (PKC) 
phosphorylation and 2 putative N-glycosylation ones (Asn155 
and Asn165) (37). Additionally, the anchored sites of fatty 
acids are determined in amino residues Arg183, Asn244 and 
Arg258 located close to the extracellular domains of TM5, 
6 and 7 when GPR40 is stimulated. In the resting state, the 
Arg183 and Arg258 residues consist of an ionic lock with 
2 glutamate residues (Glu145 and Glu172) located in TM2. In 

the presence of ligands, however, the ionic lock is broken, and 
then Arg183 and Arg258 are anchored by fatty ligands (37-40). 
A recent study revealed that His137 directly refers to ligand 
recognition through the NH-π interaction with GW9508, while 
His86 does not interact with GW9508 in the NH-π interaction 
(41). It has been proven that the Arg211His and Gly180Ser 
polymorphisms in the GPR40 gene are strongly linked to 
receptor functionality and insulin secretion (42,43).

3. Ligands

Three independent groups have reported that GPR40 is 
activated by medium- and long-chain FFAs in the micromolar 
concentration range (44-46), including saturated fatty acids 
and unsaturated fatty acids. The agonistic activity of the 
former is dependent on chain length from at least 10 carbon 
atoms (capric acid) to as many as 23 (tricosanoic acid), of 
which pentadecanoic acid (C15) and palmitic acid (C16) 
display the most potent agonistic activity, while capric acid 
(C10) demonstrates either weak or no activity. However, the 
latter, including a variety of monounsaturated fatty acids 
such as 9Z-palmitoleic acid (C16:1) and 9Z-oleic acid (C18:1) 
and polyunsaturated fatty acids such as 9Z,12Z-linoleic acid 
(C18:2) and 5,8,11-eicosatrienoic acid (C20:3), do not appear 
to be dependent on carbon chain length or the degree of satu-
ration (44). Additionally, a series of synthetic agonists such 
as GW9508, AMG 837 and 3-substituted 3-(4-aryloxyaryl)-
propanoic acids have been recently reported (47-50). Several 
synthetic GPR40 antagonists have also been well described, 
including DC260126 and GW1100 (51-54).

4. Physiological role of GPR40 in mediating insulin secretion

Elevated plasma FFAs often co-exist with type 2 diabetes and 
obesity, and fatty acids play an important role in insulin secre-
tory function of β-cells. In the absence of fatty acids, GSIS is 
impaired. On the contrary, an increase in blood FFA concen-
tration augments GSIS (55). Contrary to the acute effects of 
FFAs, chronically elevated fatty acids have been strongly 
linked to reduced insulin secretion (56). However, it is not 
always true that all FFAs impair β-cell function; prolonged 
exposure to unsaturated FFAs, such as polyunsaturated 
α-linolenic acid but not saturated palmitic acid protects β-cell 
function and augments GSIS (12). As a receptor of medium- 
and long-chain FFAs, GPR40 has been well documented to 
contribute to insulin secretion. GPR40 is highly expressed 
in human pancreatic β-cells, islet cell tumors and various 
pancreatic-derived cell lines, including INS-1E, MIN6, 
β-TC-3 and HIT-T15. Islets from type 2 diabetic patients 
chronically exposed to FFA have a lower GPR40 mRNA 
expression than those from non-diabetic multiorgan donors, 
following impaired insulin secretion (25,57). Likewise, the 
deletion of GPR40 decreases GSIS in vivo in mice without 
affecting intracellular fuel metabolism in islets and insulin 
sensitivity (26,58), and the islets from GPR40 knockout mice 
have a reduced capacity to release insulin in response to 
fatty acids (26,59), which suggests that GPR40 is required 
for normal insulin secretion. The overexpression of GPR40, 
however, improves glucose tolerance with an increase in 
insulin secretion in normal and diabetic mice. Moreover, 
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mice have been found to be resistant to high-fat diet-induced 
glucose intolerance, and isolated islets from mice potentiate 
enhanced insulin secretion in response to high glucose and 
resist the impairment of β-cells in insulin secretion against 
prolonged palmitate exposure (27).

Upon stimulation by agonists, GPR40 couples to the 
Ca2+-mobilizing G protein, Gaq (44). This results in phospho-
lipase C (PLC) activation which promotes plasma membrane 
phosphatidylinositol-4,5-bisphosphate (PIP2) to generate 
inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). 
Then, IP3 transfers into the endoplasmic reticulum (ER), thus 
leading to the release of stored Ca2+ from ER and subsequently 
increased cytoplasmic Ca2+ levels, while DAG potentiates 
insulin secretion by stimulating PKC (9,16). GPR40 knockout 
contributes to the decrease in lyso-phosphatidylethanolamine 
species and absence in intracellular inositol phosphate levels in 
response to fatty acids and subsequent reduction in GSIS (26). 
The inhibition of PLC or L-type Ca2+ channels attenuates 
rises in GPR40-dependent Ca2+ levels and insulin secretion 
stimulated by fatty acids; the same effects are observed in 
GPR40 knockout β-cells (60-62). This process suggests that 
GPR40 mediates insulin secretion involving Ca2+ release from 
ER and influx via L-type Ca2+ channels. Moreover, linoleic 
acid reversibly reduces the voltage-gated K+ current in rat 
β-cells through GPR40, while GPR40-specific small inter-
fering RNA significantly reduce the decrease in K+ current 
induced by linoleic acid. Taken together, these data indicate 
that activated GPR40 inhibits the opening of voltage-gated K+ 
channels, resulting in increased Ca2+ influx via L-type Ca2+ 
channels, and therefore enhancing the depolarization of the 
plasma membrane, thereby augmenting GSIS (63) (Fig. 1).

5. Emerging potential drugs targeting GPR40 for the 
regulation of insulin secretion

Due to tissue distribution, the pharmacological activation of 
GPR40 provides a novel target for the treatment of type 2 
diabetes. Certain synthetic GPR40 agonists are very prom-
ising to become the drug for mediating insulin secretion. 
For example, GW9508, a small molecule agonist, activates 
GPR40 and stimulates GSIS in MIN6 cells, implicating 
a potential glucose-sensitive insulin secretagogue (64). A 
phenylpropanoic acid derivative named 3-{2-fluoro-4-[({4'-
[(4-hydroxy-1,1-dioxidotetrahydro-2H-thiopyran-4-yl)
methoxy]-2',6'-dimethylbiphenyl-3-yl}methyl)amino]phenyl}
propanoic acid has been shown to exhibit a robust plasma 
glucose-lowering effect and insulinotropic action during an 
oral glucose tolerance test in rats with impaired glucose toler-
ance (65). AMG 837 is a potent GPR40 agonist with a superior 
pharmacokinetic profile, improving glucose intolerance and 
promoting GSIS in rodents (28,66). Although thiazolidin-
ediones including pioglitazone, the insulin sensitizers, are 
proven to activate GPR40 and reverse palmitate-induced β-cell 
dysfunction (67,68), the adverse effects such as heart prob-
lems and bone fractures have already been reported (69,70). 
Recently, Zhou et al (71) discovered a series of thiazolidin-
ediones (TZDs) as potent GPR40 agonists by systematic 
structure-activity relationship studies of a screening. Among 
these, compound C demonstrated an acute mechanism-based 
glucose lowering in an intraperitoneal glucose tolerance test 
(IPGTT) in lean mice, while no effects were observed in 
GPR40 knockout mice. However, it is necessary to determine 
whether compound C has the same adverse effects.

Figure 1. GPR40 signaling in pancreatic β-cells. 
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TAK-875, a GPR40-selective agonist (Fig. 2), enhances 
insulin secretion in a glucose-dependent manner in both 
isolated rat and human islets, which correlates with the 
elevation of intracellular inositol monophosphate and Ca2+ 

concentration, similar to that produced by GLP-1 (72,73), 
thus minimizing the risk of hypoglycemia and representing 
a therapeutically useful feature. The oral administration of 
TAK-875 significantly improves both fasting hyperglycemia 
and glucose tolerance and augments GSIS in type 2 diabetic 
rats with no evidence of β-cell toxicity, showing prom-
ising pharmacokinetic profiles (73,74). Further research has 
revealed that TAK-875 is well tolerated in healthy volunteers 
and has pharmacokinetic characteristics suitable for a once 
daily regimen, and pharmacodynamic data have shown that 
TAK-875 has a low risk of hypoglycemia (75). At present, the 
agonist has been studied in clinical trials (76,77), including 
a phase II, multicentre, randomized, double-blind, parallel 
group study. After treatment, TAK-875 led to reductions in 
blood glucose levels and HbA1c and an increase in insulin 
levels. Moreover, no episode of hypoglycemia was observed 
despite the significant reduction in plasma glucose levels. 
These findings indicate that the GPR40 agonist, TAK-875, is 
a glucose-dependent insulinotropic reagent and a promising 
clinical drug for the treatment of type 2 diabetes.

In China, a number of Chinese herbs have been shown to 
possess antidiabetic activities with few adverse effects (78), 
including Coptis chinensis, Astragalus membranaceus 
and Lonicera japonica (79,80); however, the mechanisms 
involved remain unclear. Berberine, a botanical alkaloid 
(Fig. 3) extracted from Coptis chinensis Franch., has been 
used to treat type 2 diabetes in clinical practice. Although 
certain gastrointestinal complaints from berberine treatment, 
including slight constipation appear to be associated with the 
use of high doses, the tolerability is high for low doses (81). 
Berberine performs a series of pharmacological functions, 
including anti-inflammation, ameliorating insulin resistance 
and has a protective effect on β-cell lipoapoptosis (82,83). It is 
not only an insulin sensitizer via enhancing glucose metabo-
lism in insulin-sensitive tissues, but also an insulinotropic 
reagent. Previous studies have revealed that berberine stimu-
lates glucose-dependent insulin secretion from rat pancreatic 
β-cells and exhibits a dose-dependent increase in calcium 
mobilization in a GPR40-overexpressed cell line, similar to 
oleic acid, a GPR40 agonist (84,85). Therefore, it is possible 
that berberine is a novel agonist of GPR40. Additionally, 
Rehmanniae radix, Ginseng radix and Scutellariae radix 
have also been shown to have the potential to improve 
GSIS (86,87).

6. Conclusion and perspectives

GPR40 is no doubt a novel therapeutic target for type 2 
diabetes involving mediating insulin secretion, and a series of 
agonists for GPR40 have developed. However, further studies 
are warranted to determined the safety, tolerability, pharma-
cokinetic and pharmacodynamic properties. At present, a 
promising clinical drug targeting GPR40 is TAK-875, which 
is currently undergoing phase II, multicentre, randomized, 
double-blind, placebo-controlled trials. However, adverse 
effects including long-term reaction are not yet clear. GPR40 
is also expressed in enteroendocrine and glial cells, and 
the ligands display toxic activity (88-90). Therefore, it is 
necessary to confirm whether TAK-875 affects these tissues. 
Additionally, Chinese medicine has been used to treat diabetes 
for thousands of years in clinical practice with few side-effects, 
and has become popular complementary and alternative medi-
cine. A number of Chinese herbs have been proven to protect 
pancreatic β-cell function and to regulate insulin secretion. It 
is worthwhile to screen insulinotropic reagents from Chinese 
herbs and to develop GPR40 agonists. This may lead to a 
reduction in research funds and time.
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