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Abstract. Atrial fibrillation (AF), the most common sustained 
cardiac arrhythmia, is associated with significantly increased 
morbidity and mortality. Cumulative evidence highlights 
the importance of genetic defects in the pathogenesis of AF. 
However, AF is of remarkable heterogeneity and the genetic 
determinants of AF in a vast majority of patients remain illu-
sive. In this study, the coding exons and splice junctions of the 
GATA5 gene, which encodes a zinc-finger transcription factor 
essential for normal cardiogenesis, were sequenced in 118 
unrelated patients with lone AF. The available relatives of the 
index patient carrying an identified mutation and 200 unre-
lated ethnically-matched healthy individuals used as controls 
were genotyped. The functional effect of the mutant GATA5 
was characterized in contrast to its wild-type counterpart 
using a luciferase reporter assay system. As a result, a novel 
heterozygous GATA5 mutation, p.W200G, was identified in 
a family with AF inherited as an autosomal dominant trait. 
The mutation was absent in 200 control individuals and the 
altered amino acid was completely conserved evolutionarily 
across species. Functional analysis showed that the mutation 
of GATA5 was associated with a significantly decreased 
transcriptional activity. These findings provide novel insight 
into the molecular mechanism involved in AF, suggesting 
potential implications for the early prophylaxis and gene-
specific therapy of AF.

Introduction

Atrial fibrillation (AF) is the most common form of cardiac 
arrhythmia encountered in clinical practice and the main 
cause of arrhythmia-related hospitalizations, accounting 
for approximately 1/3 of hospitalizations for heart rhythm 
disorders (1). The prevalence of AF is estimated to be 1% 
in the general population, and it increases strikingly as the 
population ages, with a prevalence of approximately 0.1% 
in individuals younger than 55 years of age, roughly 4% 
among those over 60 years and nearly 10% in those aged 
80 years and older (2). According to the Framingham Heart 
Study, the lifetime risk of developing AF is at least 25% for 
subjects who have reached the age of 40 (3). AF is associ-
ated with substantially increased cardiovascular morbidity 
and mortality; it increases the risk of stroke by 3 to 5-fold, 
imposing a large economic burden on national healthcare 
systems around the world and a deleterious impact on the 
quality of life of patients (4). The risk of cerebrovascular 
thromboembolism ascribed to AF also increases abruptly 
with advancing age, rising from 1.5% at age 50-59 years up to 
23.5% at age 80-89 years (4). AF also independently increases 
the risk of congestive heart failure and the risk of mortality 
by 1.5 to 2-fold compared with cases in sinus rhythm (5). 
Additionally, AF is responsible for complications such as 
adverse hemodynamics, reduced exercise capacity, impaired 
cognitive function or dementia and tachycardia-induced 
cardiomyopathy (6). AF has traditionally been regarded as 
an acquired disease secondary to miscellaneous cardiac or 
systemic conditions, including hypertension, coronary artery 
disease, congenital heart disease, rheumatic heart disease, 
chronic pulmonary heart disease, cardiomyopathy, cardiac 
sur gery, obstructive sleep apnea, diabetes mellitus, hyperthy-
roidism and electrolyte imbalance (1). However, in 30-45% 
of AF patients, no established risk factors are identified by 
routine procedures, and such AF is defined as ‘idiopathic’ or 
‘lone’ (1), of which at least 15% have a positive family history, 
so termed familial AF (7). Growing evidence has documented 
the familial aggregation of AF and an enhanced susceptibility 
to AF in the close relatives of patients with AF, indicating that 
hereditary defects may play an important role in the patho-
genesis of AF in a subset of patients (8-14). Genome-wide 
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linkage analysis with polymorphic genetic markers mapped 
multiple susceptibility loci for AF on human chromosomes 
10q22, 6q14-16, 11p15.5, 5p13, 10p11-q21 and 5p15, of which 
AF-causing mutations in 2 genes, KCNQ1 on chromosome 
11p15.5 and NUP155 on chromosome 5p13, were identified 
and functionally characterized (15-21). Additionally, a genetic 
scan of candidate genes revealed a long list of AF associated 
genes, including KCNE2, KCNE3, KCNE5, KCNH2, KCNJ2, 
KCNA5, SCN5A, SCN1B, SCN2B, SCN3B, NPPA, GJA1 and 
GJA5 (22-37). Nevertheless, AF is a genetically heteroge-
neous disease and the genetic determinants for AF in a large 
proportion of patients remain unclear.

Emerging evidence underscores the crucial role for several 
transcription factors, including NKX2-5, GATA4 and GATA6, 
in the proper cardiogenesis (38-40) and mutations in these 
genes have been causally linked to congenital cardiovascular 
anomalies and AF (41-56). GATA5 is another member of the 
GATA family and its expression and function overlap with 
those of GATA4 and GATA6 during cardiac development, 
particularly in the regulation of target gene expression 
synergistically with NKX2-5 (57,58), suggesting the potential 
association of functionally compromised GATA5 with AF.

To assess the prevalence of GATA5 mutations in patients 
with lone AF and to explore the mechanism by which mutated 
GATA5 causes or confers susceptibility to AF, the coding 
exons and exon/intron boundaries of GATA5 were sequenced 
in patients with lone AF in contrast to control individuals and 
the functional effect of the mutant GATA5 was character-
ized in comparison with its wild-type counterpart using a 
luciferase reporter assay system.

Materials and methods

Study population. A cohort of 118 unrelated patients with 
lone AF was identified among the Han Chinese population 
in China. The available relatives of the index patients were 
enrolled and a total of 200 ethnically-matched unrelated 
healthy individuals were recruited as controls. Peripheral 
venous blood specimens were prepared and clinical data 
including medical records, electrocardiogram and echocar-
diography reports were collected. The study subjects were 
clinically classified using a consistently applied set of defini-
tions (7,53). Briefly, diagnosis of AF was made by a standard 
12-lead electrocardiogram demonstrating no P waves and 
irregular R-R intervals regardless of clinical symptoms. Lone 
AF was defined as AF occurring in individuals <60 years of 
age without other cardiac or systemic diseases by physical 
examination, electrocardiogram, transthoracic echocardio-
gram and extensive laboratory tests. Familial AF was defined 
as the presence of documented lone AF in 2 or more first- or 
second-degree relatives. Relatives with AF occurring at 
any age in the setting of structural heart disease (hyper-
tensive, ischemic, myocardial or valvular) were classified 
as ‘undetermined’ for having an inherited form of AF. The 
‘undetermined’ classification was also used if documentation 
of AF on an electrocardiogram tracing was lacking in rela-
tives with symptoms consistent with AF (palpitations, dyspnea 
and light-headedness), or if a screening electrocardiogram 
and echocardiogram were not performed, irrespective of the 
symptoms. Relatives were classified as ‘unaffected’ if they 

were asymptomatic and had a normal electrocardiogram. 
Paroxysmal AF was defined as AF lasting >30 sec that termi-
nated spontaneously. Persistent AF was defined as AF lasting 
>7 days and requiring either pharmacological therapy or elec-
trical cardioversion for termination. AF that was refractory to 
cardioversion or that was allowed to continue was classified as 
permanent. The study protocol was reviewed and approved by 
the local institutional ethics committee and written informed 
consent was obtained from all research participants prior to 
conducting investigation.

Genotyping. Genomic DNA from all participants was 
extracted from blood lymphocytes with the Wizard® Genomic 
DNA Purification kit (Promega Corporation, Madison, 
WI, USA). Initially, the whole coding sequence and splice 
junctions of the GATA5 gene were screened in 118 unrelated 
patients with lone AF. Subsequently, genotyping GATA5 in 
the available relatives of the index patient carrying an identi-
fied mutation and in the 200 ethnically-matched unrelated 
healthy individuals used as controls was performed. The 
referential genomic DNA sequence of GATA5 was derived 
from GenBank (accession no. HM015595). With the assis-
tance of online Primer3 software (http://frodo.wi.mit.edu), 
the primer pairs used to amplify the coding exons (exons 2-7) 
and intron-exon boundaries of GATA5 by polymerase chain 
reaction (PCR) were designed as shown in Table I. PCR was 
carried out using HotStar Taq DNA Polymerase (Qiagen, 
Hilden, Germany) on a PE 9700 Thermal Cycler (Applied 
Biosystems, Foster City, CA, USA) with standard conditions 
and concentrations of reagents. Amplified products were 
purified with the QIAquick Gel Extraction kit (Qiagen). 
Both strands of each PCR product were sequenced with a 
BigDye® Terminator v3.1 Cycle Sequencing kit (Applied 
Biosystems) under an ABI PRISM 3130XL DNA analyzer 
(Applied Biosystems). The sequencing primers were those 
designed previously for specific region amplifications. 
DNA sequences were viewed and analyzed with the DNA 
Sequencing Analysis Software v5.1 (Applied Biosystems). 
The variant was validated by resequencing of an independent 
PCR-generated amplicon from the subject and met our quality 
control threshold with a call rate exceeding 99%.

Alignment of multiple GATA5 protein sequences across 
species. The multiple GATA5 protein sequences across various 
species were aligned using an online program MUSCLE, 
version 3.6 (http://www.ncbi.nlm.nih.gov/).

Construction of recombinant pcDNA3.1-hGATA5 expression 
plasmid. Human fetal cardiac tissue specimens were previ-
ously collected and preserved in RNAlater RNA Stabilization 
Reagent (Qiagen). Total-RNA was prepared using an 
RNeasy Protect Mini kit (Qiagen). Reverse transcription was 
performed with Oligo(dT)20 primer using SuperScript III 
reverse transcriptase (Invitrogen Life Technologies, Carlsbad, 
CA, USA). The full-length wild-type cDNA of the human 
GATA5 gene, including partial 5'- and 3'-untranslated regions, 
was PCR amplified using pfuUltra high-fidelity DNA poly-
merase (Stratagene, La Jolla, CA, USA). The primer pairs 
used for the specific amplification of the GATA5 transcript 
were: forward, 5'-GTA GCT AGC CAC CGC CGT GCC 
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CTG CCG-3' and reverse, 5'-GAT GCG GCC GCT GTT 
CCC CTG ACA TGG GC-3'. The PCR fragment with a length 
of 1,296 base pairs was doubly digested by endonuclease 
NheI and NotI. The digested product was fractionated by 
1.5% agarose gel electrophoresis, purified with the QIAquick 
Gel Extraction kit (Qiagen) and then subcloned into pcDNA3.1 
(Promega Corporation) to form a eukaryotic expression 
vector, pcDNA3.1-hGATA5.

Site-directed mutagenesis. The identified mutation was intro-
duced into the wild-type GATA5 using a QuikChange II XL 
Site-Directed Mutagenesis kit (Stratagene) with a complemen-
tary pair of primers. The mutant was sequenced to confirm the 
desired mutation and to exclude any other sequence variations. 
The 4 pairs of primers used to confirm the mutant clone 
were: primer 1, forward, 5'-TAA TAC GAC TCA CTA TAG 
GG-3' and reverse, 5'-TGG TAG GCA CTG CCG TCT, CG-3' 
(product size, 443 bp); primer 2, forward, 5'-CCT TCC CTT 
TCG CGC ACA GC-3' and reverse, 5'-CGA GGA CAG GCG 
CTT CTG AG-3' (product size, 431 bp); primer 3, forward, 
5'-GCA ATG CCT GCG GCC TCT AC-3' and reverse, 
5'-GAG CTG TCA GTG CTG GCG AC-3' (product size, 
340 bp); primer 4, forward, 5'-CCA GAC ACG GAA GCG 
GAA GC-3' and reverse, 5'-CCT CGA CTG TGC CTT CTA-3' 
(product size, 426 bp).

Reporter gene assays. The atrial natriuretic factor (ANF)-
luciferase reporter gene, which contains the 2600-bp 
5'-flanking region of the ANF gene, namely ANF(-2600)-Luc, 
was kindly provided by Dr Ichiro Shiojima, from the 
Department of Cardiovascular Science and Medicine, Chiba 
University Graduate School of Medicine, Chiba, Japan. 
HEK-293 cells were cultured in Dulbecco's modified Eagle's 
medium supplemented with 10% fetal calf serum. The ANF(-
2600)-Luc reporter construct and an internal control reporter 
plasmid pGL4.75 (hRluc/CMV; Promega Corporation) 
were used in transient transfection assays to examine the 
transcriptional activation function of the GATA5 mutant. 
HEK-293 cells were transfected with 0.4 µg of wild-type 
or mutant pcDNA3.1-hGATA5 expression vector, 0.4 µg of 
ANF(-2600)-Luc reporter construct and 0.04 µg of pGL4.75 
control reporter vector using PolyFect Transfection Reagent 
(Qiagen). For co-transfection experiments, 0.2 µg of wild-type 
pcDNA3.1-hGATA5, 0.2 µg of mutant pcDNA3.1-hGATA5, 
0.4 µg of ANF(-2600)-Luc and 0.04 µg of pGL4.75 were 
used. Firefly luciferase and Renilla luciferase activities 
were measured with the Dual-Glo® luciferase assay system 

(Promega Corporation) 48 h after transfection. A minimum of 
3 independent experiments were performed for wild-type and 
mutant GATA5.

Statistical analysis. Data are expressed as the means ± SD. 
Continuous variables were tested for normality of distribu-
tion and Student's unpaired t-test was used for comparison 
of numeric variables between 2 groups. Comparison of the 
categorical variables between 2 groups was performed using 
Pearson's χ2 test or Fisher's exact test when appropriate. A two-
tailed P-value <0.05 was considered to indicate statistically 
significant differences.

Results

Characteristics of the study subjects. A total of 118 unrelated 
patients with lone AF and a cohort of 200 ethnically-matched 
unrelated healthy individuals used as controls were enrolled 
and clinically evaluated. None of them had overt traditional 
risk factors for AF. There were no significant differences 
between patient and control groups in baseline characteristics 
including age, gender, body mass index, blood pressure, 
fasting blood glucose, serum lipid, left atrial dimension, 
left ventricular ejection fraction, heart rate at rest, as well 
as life style (data not shown). At the time of the present 
study, 8 patients were also diagnosed with hypertension in 
accordance with the criterion that the average systolic or 
diastolic blood pressure (2 readings made after 5 min of rest 
in the sitting position) was ≥140 or ≥90 mm Hg, respectively, 
but at the time of initial diagnosis of AF, their blood pressures 
were normal. The baseline clinical characteristics of the 
118 patients with lone AF are summarized in Table II.

GATA5 mutation. Direct sequencing of the coding exons and 
exon-intron boundaries of the GATA5 gene was conducted 
after PCR amplification of genomic DNA from each of the 
118 patients with lone AF. A heterozygous GATA5 mutation 
was identified in 1 out of 118 unrelated patients, with a 
prevalence of ~0.85% for GATA5 mutation. In particular, 
a substitution of guanine (G) for thymine (T) in the first 
nucleotide of codon 200 (c.598T>G), predicting the transi-
tion of tryptophane (W) into glycine (G) at amino acid 200 
(p.W200G) was identified in a patient with positive family 
history. The sequence chromatograms showing the detected 
heterozygous GATA5 mutation of c.598T>G compared with 
the corresponding control sequence are shown in Fig. 1. A 
schematic diagram of GATA5 depicting the putative structural 

Table I. The intronic primers used to amplify the coding exons and exon-intron boundaries of GATA5.

Exon Forward primer (5'→3') Reverse primer (5'→3') Amplicon (bp)

2 GGC ATA AGC TCG GGC GCT GG TGG GCC CCG AGA CTG TGG AG 648
3 TGA CGA AAG CCG CCA GGC TC CCC CAG GGG CTC TGG TGT CA 375
4 CCG CAA GGC CGA CCT GAG TC CCG CTC CTC CCC AGC CTC TT 312
5 GGG AAT CCA GCT CCA CGG GC CTG GAG GCA CCG AAG GCC AC 331
6 GCC TGC GGT GTG ACC GTG AG GGT GTG TCC AGC CCA CCT GC 370
7 CCC CCA TGC CAT TCC AGG GC GGG GCC TGC TGG TCT CTG CT 402
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domains and location of the mutation identified in AF patients 
is presented in Fig. 2. The missense mutation was not found 
in the control population nor was it reported in the NCBI's 
SNP database (http://www.ncbi.nlm.nih.gov/SNP). Genetic 
screening of the available family members demonstrated that 
the mutation was present in all affected living family members, 

but absent in unaffected family members examined. Analysis 
of the pedigree showed that the mutation cosegregated with AF 
transmitted as an autosomal dominant trait in the family with 
complete penetrance. The pedigree structure of the family is 
illustrated in Fig. 3. The phenotypic characteristics and results 
of genetic screening of the affected family members are listed 

Figure 1. Sequence electropherograms of GATA5 in the proband and in a control individual. The arrow indicates the heterozygous nucleotides of T/G in the 
proband (mutant) or the homozygous nucleotides of T/T in a control individual (wild-type). The square denotes the nucleotides comprising a codon of GATA5.

Table II. Baseline clinical characteristics of the 118 patients with lone atrial fibrillation.

Parameter No. or quantity Percentage or range

Male 65 55
Age at first diagnosis of atrial fibrillation (years) 52.84 32-59
Type of atrial fibrillation at presentation
  Paroxysmal 82 69
  Persistent 22 19
  Permanent 14 12
Positive family history of atrial fibrillation 35 30
History of cardioversion 38 32
History of cardiac pacemaker   6   5
Resting heart rate (bpm) 78.31 52-176
Systolic blood pressure (mmHg) 125.73 95-138
Diastolic blood pressure (mmHg) 85.02 70-88
Body mass index (kg/m2) 22.38 20-24
Left atrial diameter (mm) 38.17 28-42
Left ventricular ejection fraction (%) 64 50-78
Fasting blood glucose (mmol/l) 4.40 4-6
Total cholesterol (mmol/l) 3.52 3-5
Triglycerides (mmol/l) 1.33 1-2
Medications
  Amiodarone 89 75
  Aspirin 24 20
  Warfarin 72 61
  Beta-blocker 15 13
  Calcium channel blocker 12 10
  Digoxin 48 41
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in Table III. Congenital atrial septal defect was confirmed by 
medical records of previous catheter-based repairs in 2 AF 
patients (I-2 and II-8).

Alignment of multiple GATA5 protein sequences. A cross-
species alignment of GATA5 protein sequences showed that 
the altered amino acid was completely conserved evolution-
arily, as presented in Fig. 4, suggesting that the amino acid is 
functionally important.

Transcriptional activity of the GATA5 mutant. The transcrip-
tional activation characterization of the mutated GATA5 in 
HEK-293 cells was examined using one of its direct cardiac 
downstream target genes, ANP, as a luciferase reporter and the 
activity of the ANP promoter was presented as fold activation 
of Firefly luciferase relative to Renilla luciferase. The same 
amounts of wild-type (0.4 µg) and W200G-mutant GATA5 
(0.4 µg) activated the ANP promoter by ~13- and 4-fold, 
respectively. When the same amount of wild-type GATA5 
(0.2 µg) was cotransfected with W200G-mutant GATA5 
(0.2 µg), the induced activation of the ANP promoter was 
~6-fold. These results suggest that the GATA5 mutation has a 
significantly reduced transcriptional activation compared with 
its wild-type counterpart (Fig. 5).

Discussion

In the present study, a novel heterozygous GATA5 mutation of 
p.W200G identified in a family with lone AF is reported. This 
missense mutation of GATA5 was present in all the affected 
family members examined but was absent in the unaffected 
family members available and in the 400 normal chromo-
somes from a matched control population. A cross-species 

Figure 2. Schematic representation of GATA45 protein structure with the 
mutation related to AF. The mutation found in patients with AF is shown 
above the structural domains. NH2, aminoterminus; TAD, transcriptional 
activation domain; ZF, zinc finger; NLS, nuclear localization signal; COOH, 
carboxyl-terminus. 

Figure 3. Pedigree structure of the family with AF. Family members are iden-
tified by generations and numbers. Squares indicate male family members; 
circles, female members; closed symbols, affected members; open symbols, 
unaffected members; symbol with a slash, deceased member; arrow, proband; 
‘+’, carriers of the heterozygous mutation; ‘-’, non-carriers. 
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alignment of multiple GATA5 protein sequences showed that 
the altered amino acid was completely conserved evolution-
arily. Functional analysis demonstrated that the p.W200G 
mutation of GATA5 was associated with a significantly 
decreased transcriptional activity. Therefore, it is highly likely 
that functionally impaired GATA5 is involved in the patho-
genesis of AF in this family. To the best of our knowledge, 
this is the first report on the relationship between GATA5 
loss-of-function mutation and susceptibility to AF. These 
results expand the spectrum of mutations in GATA5 linked 
to AF and provide significant insight into the molecular basis 
underlying AF.

GATA transcription factors are a group of DNA binding 
proteins characteristic of preferential binding to the consensus 
DNA sequence GATA of target gene promoters. The GATA 
family comprises 6 members (GATA1 to GATA6), of which 
GATA4, GATA5 and GATA6 are expressed in various 
mesoderm and endoderm-derived tissues, particularly in 
the embryonic and adult heart (39). GATA5 maps to human 
chromosome 20q13.33 by fluorescence in situ hybridization, 
which encodes a predicted 397-amino-acid protein (58). 
Compared with the functional domains of GATA4, GATA5 
is predicted to consist of 2 transcriptional activation domains 
(TADs), 2 adjacent zinc fingers (ZFs) and 1 nuclear localiza-
tion signal (NLS). The 2 TADs are both essential for the 
transcriptional activity of GATA5. The C-terminal ZF is 
required for DNA sequence recognition and binding to the 
consensus motif, while the N-terminal ZF is responsible for 
stability and sequence specificity of protein-DNA binding as 

well as transcriptional activation by GATA factors. Most of 
the protein-protein interactions of GATA factors are medi-
ated by its C-terminal ZF. The NLS sequence is associated 
with the sub-cellular trafficking and distribution of GATA5. 
The GATA5 mutation of p.W200G identified in this study is 
located in the N-terminal ZF, thus it may be expected to exert 
influence on the transcriptional activity of GATA5.

It has been corroborated that GATA5 is an upstream 
regulator of multiple genes transcribed during embryogenesis 
and cardiac morphogenesis including the genes that encode 
atrial natriuretic peptide (ANP), brain natriuretic peptide, 
α-myosin heavy chain, β-myosin heavy chain and cardiac 
troponin C and I (39). Hence, the functional effects of the 
GATA5 mutation may be ascertained by analysis of the tran-
scriptional activity of the ANP promoter in cells transfected 
with the GATA5 mutant in contrast to its wild-type counter-
part. In this study, the functional role of the novel p.G200W 
mutation of GATA5 identified in our familial AF patients was 
characterized by transcriptional activity assays and the results 
demonstrated a significantly decreased transcriptional activity 
on a downstream gene. These findings indicate that haploin-
sufficiency resulting from GATA5 mutations is potentially 
an alternative pathophysiological mechanism involved in 
AF, although the functional roles of the recently reported AF 
related GATA5 mutations remain to be explored (59).

The findings that functionally impaired GATA5 predis-
poses to AF can be partially attributed to the abnormally 
developed pulmonary vein myocardium. The pulmonary 
venous vessel is ensheathed by a layer of myocardium termed 
pulmonary myocardial sleeve, which has been substantiated 
to be responsible for the initiation and perpetuation of AF 
by several potential arrhythmogenic mechanisms including 
intrinsic pacemaker activity and properties that facilitate 
re-entrance (60-62). Genetic-labeling lineage tracing studies 
have revealed that NKX2-5 is expressed in the atria and 
pulmonary myocardium and is crucial for the localized 
formation of the sinoatrial node during embryogenesis. 
NKX2-5 may function as a suppressor of the sinoatrial node 
lineage gene program, which limits pacemaker activity to 
the sinoatrial and atrioventricular nodes. When the NKX2-5 
protein decreased in a hypomorphic model, the pulmonary 
cardiomyocytes switched to connexin40-negative, HCN4-
positive cells, a nodal-like phenotype with pacemaker activity 
(61). In NKX2-5-null mouse embryos, HCN4 was activated in 
the entire embryonic heart tube, whereas connexin40 expres-
sion was inhibited, and ectopic pacemaker cells were observed 
throughout the heart tube (63). In humans, AF was observed 
as an isolated phenotype or as a part of compound phenotypes 

Figure 4. Alignment of multiple GATA5 protein sequences across species. The altered amino acid of p.W200 is completely conserved evolutionarily across species. 

Figure 5. Functional defect resulted from GATA5 mutation. Activation of 
ANP-luciferase reporter in HEK-293 cells by GATA5 wild-type (WT) or 
mutant (W200G), alone or in combination, showed significantly reduced 
transcriptional activation by mutant protein. Experiments were performed 
in triplicate and mean and standard deviations are shown. **P<0.001 and 
*P<0.005, when compared with wild-type GATA5.
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in patients carrying NKX2-5 mutations (45,64,65). Therefore, 
as a transcriptionally cooperative partner of NKX2-5, GATA5, 
when a dominant negative mutation occurs, may contribute to 
the formation of the pulmonary myocardium sleeve and the 
shift of the pulmonary myocardium to a sinoatrial node-like 
phenotype by reducing NKX2-5, hence creating an atrial 
electrophysiological substrate liable to AF.

There are some downstream genes transactivated by 
GATA5, and mutations in several target genes have been 
implicated in AF, including the genes that encode β-myosin 
heavy chain, atrial natriuretic peptide and gap junction 
protein connexin40 (32,33,35-37,66). Therefore, it is highly 
likely that mutated GATA5 confers susceptibility to AF by 
decreasing expression of target genes.

Markedly, congenital atrial septal defect has been docu-
mented in 2 AF patients harboring the p.G200W mutation 
of GATA5. Similar to our findings, congenital cardiovas-
cular malformations were previously confirmed in AF 
patients carrying NKX2-5, GATA4 or GATA6 mutations 
(45,51-53,56,59). Considering some congenital cardiac struc-
tural defects may close spontaneously, we cannot rule out 
the possibility that some mutation carriers had minor cardiac 
septal defects that closed shortly after birth on their own. 
These observations indicate that AF may share a common 
genetic origin with congenital heart disease.

In conclusion, our findings provide novel insight into 
the molecular mechanism associated with AF, suggesting 
potential implications for early prophylaxis and gene-specific 
therapy of this common tachycardia.
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