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Abstract. Familial hypercholesterolemia (FH) is a genetic 
disorder characterized by a high serum concentration of 
low-density lipoprotein (LDL) cholesterol. The high LDL 
cholesterol level leads to an excess deposition of cholesterol 
in the arterial walls and accelerated atherosclerosis, thereby 
increasing the risk of premature coronary heart disease. In the 
present study, we used a DNA microarray approach to identify 
gene expression profiles that distinguish patients with FH from 
healthy control subjects. Furthermore, transcription factors 
(TFs), microRNAs (miRNAs), target genes and pathways were 
analyzed to explore the potential transcriptional interactions 
occurring in FH. Publicly available microarray and regulation 
data were used to construct a regulatory network to identify 
additional genes related to FH and their interactions. The results 
revealed that specificity protein 1 (SP1), signal transducer and 
activator of transcription 1 (STAT1) and spleen focus forming 
virus (SFFV) proviral integration oncogene spi1 (SPI1) play a 
central role in the FH regulatory network. In addition, the TF, 
upstream transcription factor 2, c-fos interacting (USF2) and the 
gene, Wiskott-Aldrich syndrome (WAS), were identified to be 
associated with FH, although no reports for these proteins exist 
in the literature. Overall, transcriptional network analysis proved 
to be effective approach to identify novel targets for FH therapy.

Introduction

Familial hypercholesterolemia (FH) is a genetic disorder 
characterized by a high serum concentration of low-density 
lipoprotein (LDL) cholesterol. The high LDL cholesterol level 
accelerates the deposition of cholesterol in the arterial walls 

and leads to atherosclerosis, thereby increasing the risk of 
premature coronary heart disease (1).

The most common genetic defects underlying FH are 
mutations in the LDL receptor (LDLR), the apolipoprotein B 
(ApoB)-100 and the pro-protein convertase subtilisin/kexin 
type 9 (PCSK9) genes (2). LDL cholesterol normally circulates 
in the body for 2.5 days, and subsequently binds to LDLR on 
liver cells, undergoes endocytosis and is then digested. LDL 
is removed, and the synthesis of cholesterol by the liver is 
suppressed by the HMG-CoA reductase pathway. In FH, the 
function of LDLR is reduced or absent, and LDL circulates 
for an average duration of 4.5 days, resulting in a significantly 
increased level of LDL cholesterol in the blood, while other 
lipoproteins show normal levels (3). In patients with ApoB 
mutations, the reduced binding of LDL particles to the receptor 
causes an increased level of LDL cholesterol (4). The expres-
sion of PCSK9 normally downregulates the LDLR pathway by 
indirectly inducing the degradation of the LDLR protein, and 
loss-of-function mutations in PCSK9 result in low plasma LDL 
levels. Thus, PCSK9 is an attractive target for the development 
of novel drugs aiming to reduce the serum LDL cholesterol 
level (5).

DNA microarray analysis is a high-throughput approach 
that allows the comparison of transcriptional profiles between 
healthy and diseased individuals or samples, among other 
applications (6). DNA microarray analysis has been previously 
used to analyze gene expression patterns and to identify differ-
entially expressed genes in FH (7).

In this study, we used a similar strategy to identify gene 
expression profiles that distinguish patients with FH from 
healthy control subjects. Furthermore, data on the relevant 
transcription factors (TFs), microRNAs (miRNAs), target 
genes and pathways were analyzed so as to construct an FH 
regulatory network and to explore the potential molecular 
interactions involved in the development of FH.

Materials and methods

Data resources
Affymetrix microarray data. The transcription profiles of 
patients with ischemic cardiomyopathy (8) were obtained from 
the study with Accession no. GSE6054 deposited at the GEO 

Transcriptome and miRNA network analysis 
of familial hypercholesterolemia

HAIBIN CHEN1*,  LIANG WANG2  and  JINFA JIANG1*

1Department of Medical Cardiology, Tongji Hospital, Tongji University, 
Shanghai 200065; 2Department of Cardiovascular Surgery, The General Hospital of 

Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China

Received August 4, 2013;  Accepted November 14, 2013

DOI: 10.3892/ijmm.2013.1610

Correspondence to: Dr Jinfa Jiang, Department of Medical 
Cardiology, Tongji Hospital, Tongji University, 389 Xincun Road, 
Putuo, Shanghai 200065, P.R. China
E-mail: jiangjinfajinfa@hotmail.com

*Contributed equally

Key words: familial hypercholesterolemia, target genes, microarray 
analysis



CHEN et al:  TRANSCRIPTOME AND miRNA NETWORKS IN FAMILIAL HYPERCHOLESTEROLEMIA 671

database (http://www.ncbi.nlm.nih.gov/geo). RNA samples 
from 6 patients with heterozygous FH and 13 healthy controls 
were hybridized onto the Affymetrix Human Genome U133 
Plus 2.0 Array.

Pathway data. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is an online database collection gathering 
information on genomes, enzymatic pathways and biological 
compounds or drugs, among others (9). The KEGG pathway 
database lists molecular interaction networks and their 
organism-specific variants (http://www.genome.jp/kegg). A 
total of 130 pathways, involving 2,287 genes, was collected 
from the KEGG pathway.

Regulation data. There are approximately 2,600 proteins 
in the human genome that contain DNA-binding domains, 
and most of these are presumed to function as TFs (10). The 
combined use of a subset of approximately 2,000 human 
TFs easily accounts for the unique regulation of each gene 
in the human genome during development (11). These TFs 
are grouped into 5 superfamilies, based on the presence 
of conserved DNA-binding domains. The TRANScription 
FACtor database (TRANSFAC) contains data on TFs, their 
experimentally proven binding sites, and regulated genes (12). 
The Transcriptional Regulatory Element Database (TRED) 
has been built in response to increasing needs for an integrated 
repository for both cis- and trans-regulatory elements in 
mammals (13). TRED contains curated information on tran-
scriptional regulation, including experimentally verified TF 
binding motifs. We collected 774 pairs of regulatory interac-
tions between 219 TFs and 265 target genes from TRANSFAC 
and 5,722 pairs of regulatory interactions between 102 TFs 
and 2,920 target genes from TRED. By combining the two 
datasets, a total of 6,328 regulatory interactions between 
276 TFs and 3,002 target genes were collected (Table I).

miRNA datasets. We integrated disease-associated miRNA 
datasets with datasets of miRNAs and target genes to explore 
the association between miRNA-regulated genes and diseases. 
The human miRNA disease database (HMDD) (14), a resource 
of curated information on the associations of miRNAs and 
disease as supported by experimental evidence, contains 
444 miRNA genes, 259 diseases, 1,149 publications and 
2,886 miRNA-disease associations. miR2Disease (15) provides 
a comprehensive resource of miRNA deregulation in various 
human diseases. A total of 349 miRNAs and 163 diseases 
were collected from this database. The above 2 databases 
were merged, resulting in 5,036 associations of miRNAs with 
diseases. We also integrated experimentally supported data on 
miRNA target genes from starBase (16), miRecords (17) and 

TarBase (18). Overall, 211,464 associations between miRNA 
and target genes were selected.

Methods
Differentially expressed gene (DEG) analysis. For the GSE6054 
dataset, the limma method (19) was used to identify DEGs. The 
raw expression data from all conditions were normalized using 
the RMA method implemented in Bioconductor (20) with 
default settings, and then a linear model was applied. DEGs 
were defined as genes showing a fold change value >1.5 and a 
corrected p-value <0.05.

Co-expression analysis. To demonstrate the potential 
regulatory association between TFs and DEGs, Pearson's 
correlation coefficient (PCC) was calculated for all pair-wise 
comparisons of gene expression values between the TFs and 
DEG. The regulatory association was considered significant at 
PCC>0.6 or PCC <-0.6.

Gene Ontology (GO) analysis. DAVID (21), a high-
throughput and integrated data-mining environment, analyzes 
gene lists derived from transcriptomic comparisons. We used 
DAVID to identify categories of biological processes (as 
defined in the GO annotation system) that were overrepre-
sented in our dataset, by applying a threshold p-value <0.01.

Construction of regulatlory network between genes and 
TFs. Using the regulation data from TRANSFAC and TRED, 
we matched differentially expressed TFs to their predicted 
target genes. Based on this, and information on the interactions 
between genes in the pathways they belong to, we constructed 
regulatory networks using Cytoscape (22). Regulatory 
associations between TFs and genes were verified based on 
co-expression analysis.

Pathway significance analysis. We adopted an impact 
approach that calculates the statistical significance of a set 
of genes belonging to a certain pathway, but also considers 
other factors, such as the magnitude of change in expression of 
each gene, the topology of the related pathway and interactions 
between the genes (23). In this model, the impact factor (IF) of 
a pathway Pi is calculated as the sum of 2 terms (equation 1) 
as follows:

The first term is a probabilistic term that captures the 
significance of the given pathway Pi from the perspective of 
the set of genes in the pathway. It is obtained by using a hyper-

Table I. Regulation data form TRANSFAC and TRED.

Source No. of interactions TFs No. of target genes Link

TRANSFAC  774 219 265 http://www.gene-regulation.com/pub/databases.html
TRED 5,722 102 2,920 http://rulai.cshl.edu/TRED
Total 6,328 276 3,002

TRANSFAC, Transcription Factor Database; TRED, Transcriptional Regulatory Element Database; TFs, transcription factors.
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geometric model in which pi is the probability of obtaining 
at least the observed number of DEGs, Nde by chance (24,25). 
The second term is a functional term, that depends on the 
identity of the specific genes that are differentially expressed, 
as well as on the interactions described by the pathway (i.e., its 
topology). The second term sums up the absolute values of the 
perturbation factor (PF) for all genes ‘g’ on the given pathway 
Pi. The PF of a gene ‘g’ is calculated (equation 2) as follows:

In this equation, the term ΔE (g) captures the quantitative 
information measured in the gene expression experiment. The 
factor ΔE (g) represents the normalized measured expression 
change of the gene ‘g’. The second term is the sum of all PFs 
of the genes ‘u’ directly upstream of the target gene ‘g’ PF(u), 
normalized by the number of downstream genes for each 

such gene Nds(u), and weighted by a factor βug, which reflects 
the type of interaction: βug = 1 for induction and βug = -1 for 
repression (KEGG supplies this information in the descrip-
tion of the pathway topology). USg is the set of all genes 
upstream of ‘g’. In equation 1, we normalized for the size of 
the pathway by dividing the total perturbation by the number 
of DEGs in the given pathway, Nde(Pi). In order to make the 
IF calculation as independent as possible from the technology 
and also comparable between studies (23), we also divided the 
second term in equation 1 by the mean absolute fold change 
ΔE, calculated across all DEGs. The results from the pathway 
significance analysis are presented in Table II.

Construction of a regulatory network between TFs and 
pathways. To further investigate the regulatory association 
between TFs and different pathways, we mapped DEGs to 
pathways and constructed a regulatory network describing the 
associations between the TFs predicted to regulate these genes 
and pathways.

miRNA network construction. From the miRNA-disease 
data collected from the HMDD and miR2Disease databases, 
we focused on those concerning esophageal diseases. The 
esophageal disease-related miRNAs were then mapped to their 
predicted target genes. In total, 14 miRNAs and 431 DEGs 
were used to construct the network.

Results

Regulatory network in FH. To obtain a list of genes differ-
entially expressed in FH, we downloaded raw data from the 
publicly available microarray dataset, GSE6054, from the 
GEO repository. Following data normalization, 443 DEGs 
were identified based on a fold change value threshold >1.5 
and a p-value threshold <0.05. To obtain the regulatory 
associations between these DEGs and TFs, we applied a 
PCC threshold >0.6 in the co-expression analysis. In total, 
12 regulatory associations were identified, involving 8 TFs 
and 8 differentially expressed target genes. The resulting 
regulatory network describing FH is presented in Fig. 1. In 
this network, specificity protein 1 (SP1), signal transducer and 

Figure 1. Regulatory network in familial hypercholesterolemia (FH).

Table II. Significance pathway analysis, .

Pathway Impact % DEGs Corrected γ
name factor (IF) in pathway p-value
  
Long-term depression 19.586 2.667 6.42E-08
Gap junction 13.185 6.250 2.66E-05
Long-term potentiation 12.560 4.110 4.76E-05
Apoptosis 11.736 10.112 1.02E-04
B cell receptor signaling pathway 11.166 6.154 1.72E-04
Focal adhesion 10.414 3.448 3.43E-04
Melanoma 8.827 5.634 0.001442
Adherence junction 7.888 5.128 0.003335
Regulation of actin, cytoskeleton 7.814 2.304 0.003561
MAPK signaling pathway 7.488 4.412 0.004751

Pathway terms are derived from KEGG. DEGs, differentially expressed genes.
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activator of transcription 1 (STAT1) and spleen focus forming 
virus (SFFV) proviral integration oncogene spi1 (SPI1) formed 
local networks with a higher node degree, which suggests 
that these genes play important roles in FH. STAT1 activates 
3 target genes, interferon induced transmembrane protein 1 
(IFITM1), interferon-induced protein with tetratricopeptide 
repeats 2 (IFIT2) and interferon, α-inducible protein 6 (IFI6). 
SP1, regulated by upstream transcription factor 2, c-fos 
interacting (USF2), activates integrin, beta 1 (ITGB1), while 
the Wiskott-Aldrich syndrome (WAS) gene is regulated by 
both transcription factors, SPI1 and v-ets erythroblastosis 
virus E26 oncogene homolog 1 (avian) (ETS1).

GO analysis of the regulatory network in FH. Several GO 
categories were enriched among the 16 genes in the regula-
tory network. These included biological processes (BP) such 
as positive regulation of gene expression, positive regulation 
of transcription, DNA-dependent positive regulation of RNA 
metabolic process etc. (Table III lists the top 10 enriched BP 
categories).

Pathways involved in FH. To identify the pathways that are 
the most affected by FH, we used a statistical approach at 
the pathway level. Significance analysis at the single gene 
level may suffer from the limited number of samples and 
from experimental noise, which can severely limit the power 
of the selected statistical test. Pathway analysis allows the 
application of a more relaxed significance threshold than 
the one applied to single genes, while still leading to better 
biological interpretations. Therefore, we adopted a pathway-
based impact analysis method that considered a number of 
factors, including the statistical significance of changes in the 
expression of DEGs that are assigned to a certain pathway, the 
magnitude of change in expression of each gene, the topology 
of the pathway, and the predicted regulatory interactions 
among genes. The impact analysis revealed a number of path-

ways deemed relevant to FH, such as long-term depression, 
gap junction and long-term potentiation (Table II).

Regulatory network of TFs and pathways. To further investi-
gate the regulatory associations between TFs and pathways, 
we assigned DEGs to the relevant pathways and obtained a 
regulatory network between TFs regulating these DEGs (based 
on the co-expression analysis results) and pathways (Fig. 2). 
In this network, SP1, USF2 and STAT4 were identified as hub 
nodes linked to a high number of FH-related pathways. For 
example, STAT4 activates type I diabetes mellitus, STAT1 
activates the B cell receptor signaling pathway, while among 
pathways regulated by SP1 were those related to focal adhe-
sion and axon guidance.

miRNA network in FH. Using the miRNA-disease data 
collected from the HMDD and miR2Disease databases, we 
matched the genes previously identified as part of the FH 
regulation nework to data describing the miRNA-target gene 
associations. The FH-related miRNAs were selected and 
mapped to disease-miRNA data. A total of 132 miRNAs 
and 16 genes were used to construct the network. The 
final miRNA network includes five genes associated with 
37 miRNAs with node degrees >2 (Fig. 3).

Discussion

The present analysis allowed the identification of a number 
of TFs and pathways associated with FH. Among these, SP1, 
STAT1 and SPI1 formed a local network, which suggests 
that these genes play important roles in FH. In addition, SP1, 
USF2 and STAT4 appeared as hub nodes in the TFs-pathways 
network. We discuss below the association between FH and 
the genes identified herein based on the current literature.

SP1, a human transcription factor, contains a zinc finger 
protein motif, by which it binds directly to DNA and enhances 

Table III. Top 10 biological processes (BP) enriched according to DAVID analysis of Gene Ontology (GO) terms.

GO term category Count p-value FDR

0010628-positive regulation of gene expression 7 1.37E-05 0.018446
0045893-positive regulation of transcription, DNA-dependent 6 8.21E-05 0.110665
0051254-positive regulation of RNA metabolic process 6 8.54E-05 0.11514
0010604-positive regulation of macromolecule metabolic process 7 1.23E-04 0.165523
0045941-positive regulation of transcription 6 1.81E-04 0.244052
0045935-positive regulation of nucleobase, nucleoside, nucleotide 6 2.91E-04 0.391377
and nucleic acid metabolic process
0051173-positive regulation of nitrogen compound metabolic process 6 3.37E-04 0.453138
0010557-positive regulation of macromolecule biosynthetic process 6 3.61E-04 0.486679
0045944-positive regulation of transcription from  5 4.48E-04 0.602755
RNA polymerase II promoter
0031328-positive regulation of cellular biosynthetic process 6 4.48E-04 0.602793

FDR, false discovery rate.
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Figure 2. Regulatory network of transcription factors (TFs) and pathways in familial hypercholesterolemia (FH).

Figure 3. miRNA network in familial hypercholesterolemia (FH).
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gene transcription. A rare mutation (T-45C) was identified in 
the LDLR gene in a patient with FH. The mutation lies on 
the proximal SP1 binding site, in repeat 3 of the 42-bp region 
of the promoter required for sterol-dependent regulation of 
transcription. The substituted nucleotide is not a strongly 
conserved base of the SP1 binding site, and this mutation 
reduced SP1 binding affinity and led to FH (26). In addition, 
two more mutations in the LDLR gene, -49C>T and -139C>G, 
have been identified, with one of these shown to induce the 
loss of SP1 binding in a patient with FH (27,28).

The SPI1 gene encodes an ETS-domain transcription factor 
that activates gene expression during myeloid and B-lymphoid 
cell development. It is also known as PU.1. A previous study 
showed that 12/15-lipoxygenase (12/15-LO) plays a role in 
promoting atherogenesis in a mouse model of FH. 12/15-LO-/- 
macrophages exhibited defective nuclear expression of 
interferon consensus sequence-binding protein (ICSBP). In 
conjunction with c-Rel and PU.1, ICSBP has been shown to 
form a multiprotein complex, which binds to the ETS-2 site 
of the interleukin (IL)-12 p40 promoter. The inhibition of this 
complex led to the selective decrease of IL-12 p40 in macro-
phages and to the reduction of atherosclerotic lesions (29).

STAT1 is a member of the STAT protein family. This 
protein can be activated by various ligands, including 
interferon (IFN)-α, IFN-γ, epidermal growth factor (EGF), 
platelet-derived growth factor (PDGF) and IL-6, to function as 
a transcriptional activator. Analysis of monocytes from patients 
with FH revealed that a significant number of these have 
elevated STAT1 levels, as a result of activation by IFN-γ (30).

The ITGB1 gene encodes a β subunit of integrins. Integrin 
family members are membrane receptors involved in cell 
adhesion and recognition in a variety of processes. Monocyte 
activation and migration into the arterial wall, with subsequent 
differentiation into macrophages, are key events in atherogen-
esis associated with FH. ITGB1 has been found to be highly 
expressed during monocyte to macrophage differentiation and 
differentially expressed in CD16- and CD16+ monocytes, indi-
cating a later stage of maturation of CD16+ monocytes from 
FH homozygotes compared with monocytes from healthy 
individuals (31). This protein may play an important role in 
monocyte adhesion and the development of atherosclerosis, 
thereby representing a potentially novel therapeutic target for 
atherosclerosis (32).

Autopsy studies in children have shown that atherosclerotic 
lesions begin to develop first in the intima of the aorta. Therefore, 
a previous study examined the feasibility of measuring intima-
medial thickness of the abdominal aorta (aIMT) in children 
and studied its value in distinguishing high-risk children from 
healthy controls as compared to a more established marker of 
subclinical atherosclerosis, the common carotid artery intima-
medial thickness (cIMT). The results indicated that children 
with FH and type 1 diabetes show increased IMT compared 
with healthy controls, with a relatively greater increase in aIMT 
than in cIMT. These data suggested that aIMT may provide 
the best currently available noninvasive marker of preclinical 
atherosclerosis and type 1 diabetes in children (33).

A number of studies have indicated that T and B cells 
exert a pro-atherogenic effect in FH. Cell-mediated immune 
responses by macrophages and T lymphocytes occur in athero-
sclerotic lesions. These are to a large extent caused by specific 

CD4+ T cells responding to oxidized LDK (ox-LDL) (34). 
Ox-LDL is an important local antigen in atherosclerosis and 
recognized by antigen receptors, such as T cell receptors 
(TCRs). Such local T cell responses may activate B cells 
through B cell receptors (BCRs), with concomitant systemic 
antibody production (35).

In conclusion, we used network analysis as an exploratory 
framework to study the pathobiology of FH, based on the 
assumption that FH is a contextual attribute of distinct interac-
tion patterns among multiple genes. The most notable results 
of our study include the identification of FH-related TFs, 
target genes and pathways such as SP1, SPI1, STAT1, ITGB1, 
focal adhesion pathway, type I diabetes mellitus pathway and 
B cell receptor signaling pathway. In addition, our results 
indicated that USF2 and WAS might play an important role 
in FH, although no relevant report for this finding exists in 
the literature. Therefore, future studies are required to confirm 
our results.
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