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Abstract. The pathogenesis of abdominal aortic aneurysms
(A AAs) and that of thoracic aortic aneurysms (TA As) is distinct.
In this study, to reveal the differences in their biochemical
properties, we performed quantitative proteomic analysis of
AAAs and TAAs compared with adjacent normal aorta (NA)
tissues. The proteomic analysis revealed 176 non-redundant
differentially expressed proteins in the AAAs and 189 proteins
in the TAAs which were common in at least 5 samples within
7 samples of each. Among the identified proteins, 55 and
68 proteins were unique to the AAAs and TAAs, respectively,
whereas 121 proteins were identified in both the AAAs and
TAAs. PANTHER overrepresentation analysis of the unique
proteins in the AAAs and TAAs revealed a significant down-
regulation of the blood coagulation pathway in the AAAs
and that of the integrin signaling pathway in the TAAs. On
the other hand, Genesis analysis revealed distinct expression
patterns of 58 proteins among the 121 proteins. PANTHER
overrepresentation analysis of these 58 proteins revealed that
the expression of these proteins in the blood coagulation and
the plasminogen activating cascade was decreased in the AAAs,
whereas it was increased in the TAAs compared with the NA
tissues. On the other hand, the protein expression in the integrin
signaling pathway was increased in the AAAs, whereas it was
decreased in the TAAs compared with the NA tissues. Thus,
the data presented in this study indicate that the proteins that
show differential expression patterns in AAAs and TAAs may
be involved in the distinct pathogenesis of AAAs and TAAs.
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Introduction

An aortic aneurysm (AA) is an enlargement which occurs
in the aorta, leading to progressive dilatation and ultimate
rupture. According to their anatomical locations, AAs are
generally classified as abdominal AAs (AAAs) and thoracic
AAs (TAAs), which appear to have distinct pathologies and
mechanisms (1). AAAs are much more common (an incidence
of at least 3-fold higher) than TAAs (2). The differences in
the physical structure and mechanical stress of abdominal
and thoracic aortas may also contribute to the disparities in
the pathogenesis of AAAs and TAAs (3). Atheroscrelosis is
well known to be associated with AAAs, whereas it rarely
occurs in patients with TAAs. The increased expression of
growth factors, inflammatory cytokines and matrix metallo-
proteinses (MMPs) induces the migration of macrophages and
T cells and the formation of atherosclerotic plaques. MMPs
contribute to progressive structural remodeling, particularly
elastin and collagen turnover in AAAs. The apoptosis of
vascular smooth muscle cells (VSMCs) has also been demon-
strated in the media layer of AAA walls (4). These changes are
associated with the progressive weakening of the aortic walls
in AAAs. Furthermore, several studies have suggested that
Th2-type immune responses play a major role in the formation
of AAAs (1). The levels of Th-2 cytokines, such as interleukin
(IL)-4, IL-5 and IL-10 are also significantly increased in
AAAs.

On the other hand, genetic contribution to TA As (approxi-
mately 20% of TA As) is greater than that to AA As. Connective
tissue disorders, such as Marfan syndrome, Loeys-Dietz
syndrome and Ehlers-Danlos syndrome type IV, influence the
pathogenesis of TAAs. Medial degeneration associated with
the loss of VSMCs and the destruction of medial elastic fibers
is observed much more frequently in patients with TAAs than
in patients with AAAs. As regards inflammation and cellular
immune responses in TAAs, Thl-type immune responses
generally predominate in TAAs (5). The increased expres-
sion of the Thl cytokine, interferon-y, in TA As has also been
demonstrated.

A number of studies have revealed the proteomic or tran-
scriptional profile associated with the pathological remodeling
process in AAAs or TAAs (6,7). However, to the best of our
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knowledge, a comparison of the proteome spectrum occurring
in AAAs and that occurring in TAAs has not been carried out
to date.

In a recent study of ours (8), we successfully applied quan-
titative proteomic analyses using tandem mass spectrometry
(MS) with an isobaric tag for relative and absolute quantitation
(iTRAQ) labeling strategy to reveal differentially expressed
proteins in diseased tissues and adjacent normal tissues. The
proteomic analyses revealed differentially expressed proteins
in calcified AAAs (CAAs) and calcified TAAs (CTAs) in
contrast to adjacent normal tissues (8). Consequently, the
proteins involved in aneurysm formation and vascular calcifi-
cation were identified (e.g., type I and type I1I collagen, matrix
Gla protein and a-2-HS-glycoprotein in CAAs; fibrinogen
chains and a-2-HS-glycoprotein in CTAs with an increased
expression; mimecan in CAAs; and fibulin-5 in CTAs with a
decreased expression compared with adjacent normal tissues).
Furthermore, proteomic analysis of differentially expressed
proteins in calcific aortic valves (CAVs) compared with those
in adjacent normal valvular tissues revealed that a-2-HS-
glycoprotein had the greatest increase in expression and that
tenascin-X had the greatest decrease in expression in the
CAVs (9).

In this study, in order to elucidate the distinct spectrum
of molecular alteration leading to the differences in the
pathology between AAAs and TAAs, we attempted to
reveal differentially expressed proteins in AAAs and TAAs
compared with adjacent normal aorta (NA) tissues using the
iTRAQ technology (10), followed by nano-liquid chromatog-
raphy (nano-LC)-matrix-assisted laser desorption ionization
(MALDI)/time-of-flight (TOF/TOF)-tandem MS/MS (8,11).
We then compared the differentially expressed proteins in
AAAs with those in TAAs.

Patients and methods

Patients and samples. Aortic aneurysm tissues were collected
after obtaining approval from the Ethics Committee of
Shimane University School of Medicine, Izumo, Japan. All
study participants provided informed consent. Aortic aneu-
rysm tissues for quantitative differential expression analysis
were obtained at surgery from 7 patients with AAAs [5 males
and 2 females; age, 60-87 years; average age (means + SD),
76.6+10.5 years; size of aneurysms, 45-60 (52.9+5.9) mm]
and from 7 patients with TAAs [4 males and 3 females; age,
63-87 years; average age, 78.6+8.3 years; size of aneurysms,
53-72 (61.3+6.3) mm] who underwent aortic aneurysm resec-
tion in Shimane University Hospital. Control samples were
obtained from relatively NA tissues adjacent to the AAA
or TAA tissues. In addition, another 10 AAA and 10 TAA
and corresponding adjacent NA tissues for confirmation by
western blot analysis were obtained from 10 patients with
AAAs [8 males and 2 females; age, 62-89 years; average age,
78.5+7.4 years; size of aneurysms, 40-74 (55.2+10.1) mm]
and 10 patients with TAAs [6 males and 4 females; age,
55-80 years; average age, 70.6+7.9 years; size of aneurysms,
45-70 (55.9+£7.6) mm]. The sample number, gender, age and
size of aneurysms are shown in Table I. Tissue samples were
snap-frozen in liquid nitrogen and stored at -80°C until protein
extraction.
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TableI. Samples used for MS analysis and western blot analysis.

Size of aneurysm

Gender Age (mm)

Samples used for iTRAQ labeling followed by MS analysis

AAA patient no.
AAA1 M 60 50
AAA2 F 80 58
AAA3 M 87 46
AAA4 M 81 60
AAAS M 64 45
AAA6 M 78 55
AAA7 F 86 56

TAA patient no.
TAA1 M 78 62
TAA2 M 87 72
TAA3 F 78 60
TAA4 F 75 63
TAAS M 63 53
TAAG6 F 87 55
TAA7 M 82 64

Samples from other patients used for the determination of TNC
expression by western blot analysis

AAA patient no.
AAAS M 77 58
AAA9 M 62 63
AAA10 M 77 62
AAAIlL M 81 47
AAAI12 M 81 40
AAAI3 M &3 51
AAA14 F 79 57
AAAILS F 84 74
AAA16 M 89 56
AAA17 M 72 44
TAA patient no.
TAAS F 80 62
TAA9 M 78 70
TAA10 M 78 58
TAA11 M 75 54
TAAI12 F 66 54
TAA13 F 64 47
TAA14 M 65 52
TAA1S5 M 74 54
TAA16 F 71 45
TAA17 M 55 63

iTRAQ, isobaric tag for relative and absolute quantitation; MS, mass
spectrometry; AAA, abdominal aortic aneurysms; TAA, thoracic aortic
aneurysms; TNC, tenascin-C.

Sample preparation. Sample preparation was carried out
according to the manual supplied by AB Sciex (Foster City,
CA, USA) and according to our previous studies (8.,9). Briefly,
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~30 mg of each of the AAA or TAA tissues and their adjacent
NA tissues as controls were subjected to protein extraction.
Following the addition of urea lysis buffer containing 7 M urea,
0.1% Nonidet P-40 (NP-40) and 500 mM triethylammonium
bicarbonate (TEAB) (Sigma, Tokyo, Japan), the sample was
sonicated, incubated at 4°C for 1 h, and centrifuged, and then
the supernatant was collected. The supernatant was desalted
and its buffer was exchanged with 50 mM TEAB using spin
concentrators (Corning, Tokyo, Japan). The protein concentra-
tion was determined using a bicinchoninic acid (BCA) assay
kit (Thermo Fisher Scientific, Waltham, MA, USA).

iTRAQ labeling. Labeling with iTRAQ was carried out using
iTRAQ™ Reagent from AB Sciex as described in the manual
supplied. First, 125 ug of proteins in each of the lysates from
the AAA or TAA samples and adjacent NA samples were
denatured by sodium dodecyl sulfate (SDS) and reduced by
[tris-(2-carboxyethyl)phosphine (TCEP)]. Cysteine alkyla-
tion was then carried out by methyl methanethiosulfonate
(MMTYS). Each sample from the AAA or TAA and adjacent
NA tissues was digested by trypsin. Each digest was labeled
with a different iTRAQ tag using an iTR AQ Reagent Multiplex
kit (AB Sciex). The labeled AAA or TAA and control samples
were then combined. The combined samples were fraction-
ated into 6 fractions with a strong cation exchange (SCX)
chromatograph (AB Sciex) according to the manufacturer's
instructions. Each of the fractions was then desalted by a
Sep-Pac C,; cartridge (Waters Corp., Milford, MA, USA).

Nano-LC. Fractionation with the DiNa nano-LC system was
performed according to the instructions provided by the manu-
facturer (KYA Technologies, Tokyo, Japan) and our previous
study (11). A total of 171 spots that were mixed directly with
a matrix [4 mg/ml a-cyano-4-hydroxycinnamic acid (CHCA);
Wako, Osaka, Japan] were placed on an Opti-TOF LC/MALDI
384 target plate (AB Sciex) using a Dina MaP fraction collector
(KYA Technologies) per fraction of SCX chromatography.

MS, MS/MS and iTRAQ ratio analysis. MS data were
obtained using a Mass Spectrometer 5800 MALDI-TOF/TOF
Analyzer (AB Sciex) according to the instructions provided by
the manufacturer (AB Sciex) and our previous study (11). A
monoisotopic precursor for MS/MS was selected by automatic
precursor selection with an interpretation method using the
DynamicExit Algorithm (AB Sciex). The MS/MS data were
analyzed by ProteinPilot™ 3.0 software using the Paragon
protein database search algorithm (AB Sciex), as previously
described (12). Each MS/MS spectrum was searched against
the database (version 20081216, 20,489 entries) constructed
by AB Sciex. The statistical method of iTRAQ analysis was
according to ProteinPilot software.

Bioinformatic analysis. The PANTHER system (http:/www.
pantherdb.org/) was used for classification and pathway
analyses of proteins (13). Pathway classification analysis
was carried out using a statistical overrepresentation test on
PANTHER with Bonferroni correction for multiple testing.
The UniProt database (http://www.uniprot.org/) was used
for annotations of identified proteins. Clustering analysis of
differentially expressed proteins was performed using Genesis
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software provided by the Genesis team at the Institute for
Genomics and Bioinformatics, Graz University of Technology
(Graz, Austria) (http://genome.tugraz.at/) (14).

Western blot analysis. Cell lysates were extracted with urea
lysis buffer as described above. Western blot analysis was
performed as described in our previous study (8). A total
of 20 ug of proteins in these lysates was electrophoresed
through sodium dodecyl sulfate (SDS)-polyacrylamide
gel electrophoresis (PAGE), and then the proteins were
transferred onto Hybond ECL nitrocellulose membranes
(GE Healthcare Japan, Hino, Japan). The membranes were
reacted with rabbit polyclonal anti-a-2-HS-glycoprotein anti-
body (Calbiochem, Darmstadt, Germany), rabbit polyclonal
anti-ceruloplasmin antibody (Epitomics, Burlingame, CA,
USA) or mouse monoclonal anti-tenascin-C (TNC) antibody
[Immuno Biological Laboratories (IBL) Takasaki, Japan]. The
proteins on the membranes were then reacted with anti-rabbit
IRDye 680-conjugated immunoglobulin (Ig)G or anti-mouse
IRDye 800-conjugated IgG, followed by visualization using
the infrared imaging system, Odyssey (all from LI-COR
Biosciences, Lincoln, NE, USA). For densitometric analyses
of each protein level, the intensity of each band that reacted
with the corresponding antibody was measured. Data from
triplicate experiments were analyzed for statistical significance
by the paired t-test, with p<0.05 considered to indicate a
statistically significant difference. Results are expressed as the
means =+ standard error (SE).

Results

Proteomic analyses of differentially expressed proteins in
AAAs or TAAs compared with those in adjacent NA tissues.
A total of 7 AAAs and 7 TAAs, as well as adjacent NA
tissues were collected from 7 AAA and 7 TAA patients. The
identification and quantification of differentially expressed
proteins in AAAs or TAAs compared with those in adjacent
NA tissues were carried out with iTRAQ labeling coupled with
nano-LC-MALDI-TOF/TOF-MS/MS followed by ProteinPilot
analysis. Apart from albumin and Ig family members, a total
of 656 differentially expressed proteins (AAAs vs. NA tissues)
in at least 1 sample within 7 AAAs and 654 differentially
expressed proteins (TAAs vs. NA tissues) in at least 1 sample
within 7 TAAs were identified. Among these, 483 proteins
were detected in both aneurysmal tissues (Fig. 1A). A total of
176 differentially expressed proteins (AAAs vs. NA tissues)
which were common in at least 5 samples within 7 AAAs and
189 differentially expressed proteins (TAAs vs. NA tissues)
which were common in at least 5 samples within 7 TAAs
were identified with an unused ProtScore of =2 (99% confi-
dence) based on ProteinPilot statistical analysis. Among
these, 121 proteins were detected which were common in both
aneurysmal tissues (Fig. 1B). Of note, after having classified
the patients based on the diameter of the aneurysms (small
group, <55 mm; large group, >55 mm) (small diameter group,
#AAAL, #AAA3, #AAAS and #AAA6; large diameter group,
#AAA2, #AAA4 and #AAA7 in the case of AAA; small
diameter group, #TAAS5 and #TAAG; large diameter group,
#TAAL1, #TAA2, #TAA3, #TAA4 and #TAA7 in the case
of TAA), we examined which proteins in the 176 AAA and
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Figure 2. Confirmation of isobaric tag for relative and absolute quantitation iTRAQ) ratios by western blot analysis. (A-a) Western blot analysis with anti-o-
2-HS-glycoprotein antibody in abdominal aortic aneurysms (AAAs) compared with adjacent normal aorta (NA) tissues in patient #AAA3. To confirm equal
levels of proteins per lane, non-specific proteins stained with Coomassie brilliant blue (CBB) are shown in the lower panel. Representative blots are shown.
(B-b) Densitometric analyses in triplicate experiments for a-2-HS-glycoprotein. The intensity of each band that reacted with a-2-HS-glycoprotein antibody
was measured. Ratio of expression of a-2-HS-glycoprotein in AAAs compared with that in adjacent NA tissues (1.0) was calculated. "p<0.05. (B-a) Western
blot analysis with anti-ceruloplasmin antibody in thoracic aortic aneurysms (TAAs) compared with adjacent NA tissues in patient #TAA4. To confirm equal
levels of proteins per lane, non-specific proteins stained with CBB are shown in the lower panel. Representative blots are shown. (B-b) Densitometric analyses
in triplicate experiments for ceruloplasmin. The intensity of each band that reacted with ceruloplasmin antibody was measured. Ratio of expression of
ceruloplasmin in TAAs compared with that in adjacent NA tissues (1.0) was calculated. "p<0.05.

expression (<0.77-fold, AA tissues vs. NA tissues) in the AAAs
and TTAs compared with the adjacent NA tissues are listed in
order of iTRAQ ratios.

In order to confirm the accuracy of the quantitative results
for the differentially expressed proteins identified, some proteins
with an iTRAQ quantitative ratio were quantified again by
western blot analysis (Fig. 2). The iTRAQ ratio of a-2-HS-
glycoprotein in AAAs compared with that in adjacent NA
tissues in patient #AAA3 was 0.79-fold. On the other hand, the
ratio of a-2-HS-glycoprotein in the AAAs compared with that
in NA tissue (1.0) was determined by band intensity of western
blot analysis and it was 0.55-fold (Fig. 2A). Similarly, the iTRAQ
ratio of ceruloplasmin in TAAs compared with that in adjacent
NA tissues in patient #TAA4 was 2.25-fold, whereas the ratio
of ceruloplasmin based on western blot analysis was 1.98-fold
(Fig. 2B). These results indicate that iTRAQ ratios are almost
consistent with the quantitative results by western blot analysis.

Analysis of proteins unique to AAAs and TAAs. To disclose
distinct molecular alterations that occurred in AAAs and
TAAs, the 55 and 68 proteins unique to AAAs and TAAs
among the 176 AAA proteins and 189 TAA proteins found in
common in at least 5 samples within each of the 7 samples,
respectively, were selected (Fig. 1B). On the other hand,
121 differentially expressed proteins were identified which
were common in the AAA and TAA samples (Fig. 1B).

We investigated the possible biochemical pathway for
the 55 and 68 proteins unique to AAAs and TAAs by using
the PANTHER pathway system (Fig. 3). As a result, we
found the possible involvement of the blood coagulation
pathway (statistical overrepresentation test in PANTHER,
p=1.53E-06) in AAAs. This pathway included coagulation
factor XIII A chain (iTRAQ ratio, 1.26, AAAs vs. NA tissues),
kininogen-1 (0.88), vitamin K-dependent protein S (0.85),
antithrombin-III (0.83), heparin cofactor 2 (0.80) and
prothrombin (0.71); the majority of these proteins were down-
regulated in the AAA tissues compared with the adjacent
NA tissues. On the other hand, in the TAAs, we observed the
downregulation of the integrin signaling pathway (statistical

overrepresentation test in PANTHER, p=6.17E-06), including
laminin subunit y-1 (iTRAQ ratio, 0.65, TAAs vs. NA tissues),
integrin-linked protein kinase (ILK) (0.62), caveolin-1 (0.58),
type IV collagen al chain (0.56), laminin subunit $2 (0.56),
laminin subunit a5 (0.54), Ras-related protein R-Ras (0.52),
a-actinin-4 (0.51), transforming growth factor -1-induced
transcript 1 protein (0.43) in the TAA tissues compared with
the adjacent NA tissues. Furthermore, in order to determine
the functional distribution of these unique proteins in the
AAAs and TAAs, we sorted the proteins with the PANTHER
protein class system (Fig. 4). In the AAAs, the 55 unique
proteins were significantly classified into defense/immunity
protein (statistical overrepresentation test in PANTHER,
p=5.55E-05), including complement component (p=4.67E-10),
transfer/carrier protein (p=4.83E-06), including apolipoprotein
(p=2.26E-11), enzyme modulator including protease inhibitor
(p=7.56E-07) and serine protease inhibitor (p=6.10E-06) and
protease, including metalloprotease (p=0.0052) and serine
protease (p=0.0053); the majority of these proteins were down-
regulated in the AAA tissues compared with the adjacent NA
tissues. On the other hand, in the TAAs, the 68 proteins were
significantly classified into cytoskeletal protein (p=1.21E-08),
including actin family cytoskeletal protein (p=1.29E-14) and
non-motor actin binding protein (p=4.95E-03), cell adhesion
molecule (p=6.37E-04), structural protein (p=1.63E-07),
extracellular matrix (ECM) protein (p=7.56E-05) and calcium-
binding protein (p=7.31E-04); the majority of these proteins
were downregulated in the TAAs compared with the adjacent
NA tissues.

Analysis of 121 differentially expressed proteins identified
which were common in AAAs and TAAs. We performed
hierarchical clustering analysis with Genesis software using
the expression patterns of the 121 differentially expressed
proteins identified which were common in at least each of
5 samples within the 7 AAAs and 7 TAAs compared with the
corresponding adjacent NA tissues. Among the 121 proteins,
we examined proteins that showed statistically distinct expres-
sion patterns between the AAAs and TAAs by one-way
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Figure 3. Pathway analysis of 55 and 68 proteins unique to abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) using the PANTHER
pathway system. Proteins with increased expression have an isobaric tag for relative and absolute quantitation iTRAQ) ratio of =1.0, whereas those with

decreased expression have an iTRAQ ratio of <1.0 (AAAs vs. NA tissues).

ANOVA using Genesis software. Consequently, 58 proteins,
including plasminogen (AAAs vs. TAAs, p=5.21E-04),
moesin (p=5.24E-04), glyceraldehyde-3-phosphate dehy-
drogenase (p=0.0014), a-2-macroglobulin (p=0.0029),
apolipoprotein B-100 (p=0.0032), basement membrane-
specific heparan sulfate proteoglycan core protein (p=0.0041)
and TNC (p=0.0044) showed significantly distinct expression
patterns between the AAAs and TAAs. Furthermore, the
PANTHER overrepresentation test revealed that some of the
58 proteins were significantly involved in pathways, such as
plasminogen activation cascade [p=4.11E-5; fibrinogen o chain
(ATRAQ ratio, 0.45, AAAs vs. NA tissues; iTRAQ ratio, 3.24,
TAAs vs. NA tissues), fibrinogen p chain (0.43:4.86), fibrin-
ogen vy chain (0.44:3.89), plasminogen (0.76:2.29)], blood
coagulation [p=1.13E-04; a-2-macroglobulin (0.80:1.64),
fibrinogen o chain (0.45:3.24), fibrinogen { chain (0.43:4.86),
fibrinogen y chain (0.44:3.89), plasminogen (0.76:2.29)],
and integrin signaling pathway [p=3.80E-04; type XIV
collagen al chain (1.25:0.48), type XVIII collagen al chain
(1.26:0.43), filamin-A (1.19:0.48), type IV collagen a2 chain
(1.33:0.52), type XII collagen al chain (1.15:0.63), vinculin
(1.03:0.50), type VI collagen al chain (1.00:0.69)]. In general,

protein expression in the blood coagulation and the plasmin-
ogen activation cascade was decreased in the AAAs, whereas
it was increased in the TAAs compared with the adjacent NA
tissues. On the other hand, protein expression in the integrin
signaling pathway was increased in the AAAs, whereas it
was decreased in the TAAs compared with the adjacent NA
tissues. The dendrogam based on the expression patterns of the
58 proteins demonstrated similar expression patterns of each
protein within the AAA or TAA patient groups, while there
were distinct expression patterns of each protein between the
AAA and TAA patient groups (Fig. 5).

Verification of distinct expression patterns of TNC between
AAAs and TAAs with other aneurysmal samples by western
blot analysis. The matricellular protein, TNC, is upregulated
under pathological conditions, such as myocardial infarction,
cardiac fibrosis, atherosclerosis and aneurysms, often being
associated with tissue injury and inflammation (17). It has
been reported that TNC is upregulated in both AAAs (18,19)
and TAAs (20,21). However, in the present study, as mentioned
above, TNC belonged to the 58 proteins which showed distinct
expression patterns in the AAAs and TAAs among the
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Figure 4. Classification analysis of 55 and 68 proteins unique to abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TA As) using the PANTHER
pathway system. Proteins with increased expression have an iTRAQ ratio of =1.0, whereas those with decreased expression have an iTRAQ ratio of <1.0

(AAs vs. NA tissues). NA, normal aorta.

121 proteins; namely, its iTRAQ ratio was 0.93 in the AAAs
(AAAs vs. NA tissues), whereas the iTRAQ ratio was 1.86 in
the TAAs (TAAs vs. NA tissues). Thus, the expression patterns
of TNC in the AAA and TAA tissues were verified with another
10 AAA and 10 TAA tissues by western blot analysis compared
with those in corresponding adjacent NA tissues (Fig. 6).
Consequently, we confirmed an increased level of TNC in the
TAA tissues compared with the adjacent NA tissues (Fig. 6B);
however, the expression level of TNC in the AA As did not differ
significantly from that in the adjacent NA tissues (Fig. 6A).

Discussion

Different features in embryonic origin, vessel structure and
stiffness, immune response, the intercellular signaling pathway
and proteolytic activity between the abdominal aorta and
thoracic aorta contribute to the distinct symptom onsets and
pathological states in AAAs and TAAs (3,22). The identifica-
tion of the broad range of proteomic differences between AAAs
and TA As would be valuable for their diagnosis and therapy. In
this study, using an approach with iTRAQ labeling followed by
nano-LC-MALDI-TOF/ TOF-MS/MS analysis, proteins with
differential expression in AAAs and TAAs and their adjacent
NA tissues were examined. Proteomic profiles of AAAs and
TA As were then compared. Consequently, as distinct pathways
activated between the AAAs and TA As, we revealed the down-
regulation of the blood coagulation and plasminogen activation

cascade in the AAAs and their upregulation in the TAAs, as
well as the downregulation of the integrin signaling pathway in
the TAAs and its upregulation in AAAsS.

It is of interest that the proteins with the greatest decrease
and increase in expression in the AAAs (Table I1T) and TAAs
(Table V), respectively, were fibrinogen f, y and o chains. A
number of studies have been carried out on the association
of plasma D-dimer (fibrinogen degradation product) with the
presence of AAAs (23-25) and TA As (26). However, to the best
of our knowledge, there are only a few studies available on the
finding of increased levels of fibrinogens in aortic aneurymal
tissues (26,27). The increased amounts of fibrinogens in TAAs
are consistent with our previous results for the expression
levels of fibrinogens in CTAs compared with those in adjacent
NA tissues (8). However, the iTRAQ ratios of fibrinogen f3, v
and a chains in CAAs compared with those in adjacent NA
tissues were 1.39, 1.27 and 1.17, respectively, indicating rela-
tively increased levels of fibrinogens in CAA tissues (8). The
reason for different levels of fibrinogens in AAA and CAA
tissues compared with the levels in corresponding adjacent NA
tissues remains to be determined. The different levels may be
due to the distinct characteristics of AAAs and CATs. Further
analyses are required.

In the present study, we observed some proteins in the
integrin signaling pathway with a decreased expression in
TAAs, but with an increased expression in AAAs compared
with corresponding adjacent NA tissues. These results coincide
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Figure 5. Hierarchical clustering analysis of the distinct expressed 58 proteins among the 121 proteins identified which were in common in abdominal aortic
aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) by Genesis software. The dendrogram displays two-way hierarchical clustering analyses of the
distinctly expressed 58 proteins among the 121 proteins identified which were in common in at least 5 samples within 7 AAAs #AAA1-#AAAT) and 7 TAAs
#TAAI1-#TAAT) compared with corresponding adjacent normal aorta (NA) tissues. Differences in isobaric tag for relative and absolute quantitation iTRAQ)
ratios are indicated by color code. Darker black spectra indicate more increased expression, whereas lighter grey spectra indicate more decreased expression
compared with corresponding adjacent NA tissues. White squares indicate no detection of indicated proteins in corresponding samples.
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Figure 6. Verification of distinct expression patterns of tenascin-C (TNC) in abdominal aortic aneurysm (AAA) and thoracic aortic aneurysm (TAA) tissues
using another 10 AAA and 10 TAA tissues by western blot analysis. (A-a) Western blot analysis with anti-TNC in another 10 AAAs compared with adjacent
normal aorta (NA) tissues. Representative blots from patient #A AA10 are shown. To confirm equal levels of proteins per lane, non-specific proteins stained
with Coomassie brilliant blue (CBB) are shown. (b) Densitometric analyses in triplicate experiments for TNC with another 10 AAAs. The intensity of the
TNC band that reacted with the antibody was measured. Ratio of expression of TNC in AAAs compared with that in adjacent NA tissues (1.0) was calculated.
(B-a) Western blot analysis with anti-TNC in another 10 TAAs compared with that in adjacent NA tissues. Representative blots from patient #TAA10 are
shown. To confirm equal levels of proteins per lane, non-specific proteins stained with CBB are shown. (B-b) Densitometric analyses in triplicate experiments
for TNC with another 10 TAAs. The intensity of the TNC band that reacted with the antibody was measured. Ratio of expression of TNC in TAAs compared
with that in adjacent NA tissues (1.0) was calculated. “p<0.05.

with the results of our previous study, showing the decreased  of ILK, one of the crucial molecules in the integrin signaling
expression of the integrin signaling pathway in CTAs and the = pathway, in the VSMCs generate TAAs and the marked
increased expression of the pathway in CAAs (8). Intriguingly,  disruption of the structural organization in the arterial tunica
Shen et al (28) demonstrated that mice with targeted deletion  media by aberrant integrin signaling, including abnormal local-
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izacion of myocardin-related transcription factors (MRTFs), a
reduced amount of F-actin and impaired RhoA activation in
ILK-deficient VSMCs. On the other hand, the increased expres-
sion of integrin a, was actually observed at the site of AAA
rupture (29). Zheng et al (30) showed that osteopontin induces
autophagy through the activation of the integrin/CD44 and p38
mitogen-activated protein kinase (MAPK) signaling pathways
in VSMCs, which is associated with the incidence of AAAs.

Didangelos et al (7) reported results of proteomic analysis
of the ECM of human AAAs compared with that of control
samples from patients without connective tissue disorders. They
identified 80 ECM proteins with extraction using 0.5 M NaCl
extraction buffer and 117 ECM proteins with the extraction using
4 M guanidine buffer, with the difference in relative protein
abundance between AAAs and controls being determined using
spectral counts. Thirty-four proteins among the 80 proteins and
21 proteins among the 117 proteins were found to be common in
the 176 differentially expressed proteins in AAAs identified in
the present study. Biglycan and type I collagen a1 and a2 chains
in AAA tissues were upregulated by >1.3-fold, whereas versican
was downregulated by <0.77-fold in both their experiments and
the present study (AAA samples vs. control samples).

Recently, we reported that the kallistatin level in pre-
surgical sera of both AAA and TAA patients and the
o-2-macroglobulin level in pre-surgical sera of TAA patients
were increased compared with those in the post-surgical sera of
the corresponding patients (31). In the present study, kallistatin
was not identified as a differentially expressed protein in both
aneurysmal tissues, whereas a-2-macroglobulin expression
was increased in the TAAs (1.64-fold) compared with that in
adjacent normal tissues. Therefore, these results demonstrated
that a-2-macroglobulin was increased not only in the serum of
patients with TA As but also in TAA tissues. a-2-macroglobulin
plays a role in the inhibition and clearance of active proteases,
including all of the 4 major classes of endopeptidases in tissue
fluids (32). Since MMP activity is high in AAs and positively
correlates with aneurysmal size (33), the upregulation of
endogenous MMP inhibitors, such as a-2-macroglobulin in
TA As may be for the prevention of further TAA progression.

In the present study, we demonstrate the increased level of
TNCinTAAs,butnotin AAAs compared with adjacent normal
tissues. The finding of the increased expression of TNC in
TAAs is consistent with the results of previous studies (20,21).
However, our results regarding the expression of TNC in AAAs
are not consistent with those of previous studies, showing the
upregulation of TNC in AAA tissues (18,19,34). The reason for
this inconsistency is not known. However, Kimura et al (19)
reported that the expression level of TNC did not correlate
with the AAA diameter in human AAAs. This suggests that
AAA tissues have heterogeneity in pathology.

In conclusion, our data reveal opposite expression patterns
of proteins in the blood coagulation and plasminogen activation
cascade and integrin signaling pathway between AAAs and
TAAs. These distinct alterations of their proteomes may lead
to the difference in the pathology between AAAs and TAAs.
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