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Abstract. In vivo nuclear magnetic resonance spectroscopy 
(NMR), a non-destructive biochemical tool used for investi-
gating live organisms, has recently been performed in studies 
of the fruit fly Drosophila melanogaster, a useful model 
organism for investigating genetics and physiology. We used 
a novel high-resolution magic angle-spinning (HRMAS) 
NMR method to investigate live Drosophila GST2 mutants 
using a conventional 14.1-T NMR spectrometer equipped 
with an HRMAS probe. The results showed that, compared to 
wild-type (wt) controls, the GST2 mutants had a 48% greater 
(CH2)n lipid signal at 1.33 ppm, which is an insulin resis-
tance biomarker in Drosophila skeletal muscle (P=0.0444). 
The mutants also had a 57% greater CH2C= lipid signal at 
2.02 ppm (P=0.0276) and a 100% greater -CH=CH- signal at 

5.33 ppm (P=0.0251). Since the -CH=CH- signal encompasses 
protons from ceramide, this latter difference is consistent 
with the hypothesis that the GST2 mutation is associated with 
insulin resistance and apoptosis. The findings of this study 
corroborate our previous results, support the hypothesis that 
the GST2 mutation is associated with insulin signaling and 
suggest that the IMCL level may be a biomarker of insulin 
resistance. Furthermore, direct links between GST2 mutation 
(the Drosophila ortholog of the GSTA4 gene in mammals) and 
insulin resistance, as suggested in this study, have not been 
made previously. These findings may thus be directly relevant 
to a wide range of metabolically disruptive conditions, such 
as trauma, aging and immune system deficiencies, that lead to 
increased susceptibility to infection.

Introduction

High-resolution magic angle spinning (HRMAS) nuclear 
proton magnetic resonance spectroscopy (1H NMR) is a novel 
non-destructive technique that substantially improves spectral 
line-widths and allows high-resolution spectra to be obtained 
from intact cells, cultured tissues (1,2) and unprocessed 
tissues (3-7). HRMAS 1H NMR enables us to investigate rela-
tionships between metabolites and cell processes. For example, 
choline (Cho)-containing compounds involved in phospholipid 
metabolism and lipids, such as triglycerides, that are involved 
in apoptosis have been studied (8-11). Nevertheless, HRMAS 
1H-NMR has only been performed ex vivo thus far.

Studies combining in vivo 1H NMR with ex vivo HRMAS 
1H NMR have demonstrated an important functional role of 
intramyocellular lipids (IMCLs) in rodent burn biology (11,12), 
while other ex vivo HRMAS 1H NMR studies have focused 
on lipid metabolism (13). Szczepaniak et al demonstrated 
that IMCL stores could be quantified accurately in a clinical 
setting by in vivo 1H NMR (14). In a recently published 1H 
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NMR study, Van der Graaf et al found an inverse correla-
tion between IMCL content in human calf muscle and local 
glycogen synthesis rate (15). Jacob et al emphasized the 
importance of these resonances as biomarkers of insulin 
resistance in type-2 diabetes patients and their offspring (16). 
Additionally, IMCL content was found to be increased in the 
soleus muscle of insulin-resistant elderly patients, providing 
support for the hypothesis that an age-associated decline in 
mitochondrial function contributes to insulin resistance (17).

In vivo HRMAS 1H NMR is a potentially useful tool in 
Drosophila since in vitro NMR studies have shown the meta-
bolic effects of hypoxia (18) and temperature stress (19) in flies. 
Although Drosophila is a distinctively useful model organism 
that can be employed to investigate genetics, physiology, and 
metabolism (20), with the exception of a recent feasibility report 
(21), in vivo NMR studies in Drosophila are lacking. Thus, we 
attempted to implement an in vivo HRMAS 1H NMR method 
that we developed in Drosophila (22), with the aim of inves-
tigating the metabolism of Drosophila mutants. Such a study 
would be particularly useful for assessing the biomarkers of 
pathophysiology with the long-term goal of providing critical 
information that may direct novel therapeutic development.

State-of-the art, in vivo NMR techniques are used to 
elucidate metabolic patterns in Drosophila melanogaster as 
a model organism of interest owing to the notable parallels 
in the metabolism between Drosophila and mammals (23,24). 
Indeed, the study of Drosophila metabolism is an emerging 
field that can potentially elucidate conserved metabolic mech-
anisms. Furthermore, the powerful genetic tools available in 
Drosophila research render the fruit fly a particularly tractable 
model organism in which to probe metabolic pathways and 
lead to a better understanding of human metabolic disorders.

Drosophila melanogaster glutathione S-transferase (GST2, 
also known as DmGSTS1-1) was recognized originally as an 
indirect flight muscle-associated protein with no known catalytic 
properties. In relation to mammalian GSTs, Drosophila GST2 
is most similar to the sigma class of GSTs, and the mammalian 
GSTA4 gene is an ortholog of Drosophila GST2. In the present 
study, we investigated mutant flies that do not express the GST2 
gene in skeletal muscle. We examined the feasibility of a novel, 
in vivo HRMAS 1H NMR approach towards the investigation 
of the metabolic derangements in these GST2 mutant flies and 
compared them to isogenic control flies.

Materials and methods

Drosophila flies. Male Gst2 gene deletion flies (25), desig-
nated as GstS1M38 were used, and compared to male 
wild-type (wt) isogenic strain C5 flies. The two strains were 
kindly provided by Helen Benes (University of Arkansas). At 
the time of the experiments, all flies were 5-8 days of age and 
weighed 0.7-1.0 mg (n=6 per group). Prior to insertion in the 
spectrometer, each fly was anesthetized by being placed on ice 
for <1 min. Flies were kept at 4˚C while in the spectrometer.

In vivo HRMAS 1H NMR spectroscopy. All HRMAS 1H NMR 
experiments were performed on a wide-bore Bruker Bio-Spin 
Avance NMR spectrometer (600.13 MHz) using a 4-mm triple 
resonance (1H, 13C, 2H) HRMAS probe (Bruker, Billerica, 
MA, USA). The flies were placed into a zirconium oxide rotor 

tube (4 mm diameter, 50 µl), and 8 µl of external standard 
trimethylsilyl-propionic-2,2,3,3-d4 acid (TSP) (molecular 
mass = 172 Da, d = 0.00 ppm, 50 mM in D2O) was introduced. 
TSP functioned as a reference for both resonance chemical 
shift and quantification. Each fly was placed in the rotor using 
the insert, which was sealed with a screw and covered with 
parafilm to prevent contact between the fly and the TSP/D2O 
(Fig. 1). The samples were secured and tightened in the rotors 
with a top cap (Bruker). The HRMAS 1H NMR was performed 
at 4˚C with 2 kHz MAS.

One dimensional (1D) water-suppressed spin-echo 
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequencing 
[90˚ - (τ - 180˚ -τ)n - acquisition] (26) was performed on single 
flies. CPMG is a methodological improvement of particular 
interest in developing ex vivo 1D HRMAS of intact tissue 
samples since it suppresses broad signals that destroy the 
linear baseline in typical Free Induction Decay (FID) spectra. 
Thus, the CPMG proton NMR spectra are free from the broad 
component that contributes to the baseline of simple FID 
spectra. The CPMG sequence has also been applied to two-
dimensional sequences for the same reason.

Additional parameters for the CPMG sequence included 
an inter-pulse delay of τ = 2π/ωr = 250 msec, a total spin-echo 
delay of 30 msec, two total 180˚ cycles, 256 transients, a spec-
tral width of 7.2 kHz, 32,768 (32k) data points, and a 3-sec 
relaxation time. A spin-echo delay of 30 msec was chosen 
based on the observation that at this echo time, line broad-
ening without loss of signal from triglycerides was avoided. 
When the spin-echo delay was increased, all the lipid signals 
were affected, but not in favor of other metabolites.

In vivo 1H HRMAS NMR data processing. MR spectra of 
specimens were analyzed using MestReC software (Mestrelab 
Research, www.mestrec.com). A 0.5-Hz line-broadening 
apodization function was applied to CPMG HRMAS 1H FIDs 
prior to Fourier transformation. MR spectra were referenced 
with respect to TSP at δ = 0.0 ppm (external standard), manu-
ally phased, and a Whittaker baseline estimator was applied to 
subtract the broad components of the baseline.

Quantification of metabolites from 1D 1H CPMG HRMAS 
spectra. For metabolite quantification from 1D 1H CPMG 
HRMAS spectra, we used the highly accurate ‘external stan-
dard’ technique. Metabolite concentrations were calculated 
using MestReC software. An automated fitting routine based 
on the Levenberg-Marquardt (27,28) algorithm was applied 
after manual peak selection; peak positions, intensities, line 
widths, and Lorentzian/Gaussian ratios were adjusted until 
the residual spectrum was minimized. Metabolite concen-
tration (mol/kg) was calculated using the equation (29): 
massTSP/PMTSP x Met(area)/TSP(area) x NTSP/NMet x 1/wt(sample), 
where massTSP was constant (0.069 mg), PMTSP was the molar 
mass of TSP (172.23 g/mol), Met signifies metabolites, NTSP 
was the TSP proton number (9 1H), NMet was the metabolite 
proton number, and wt(sample) was the sample weight in mg (29).

Statistical analysis. Group data were compared with the 
Student's t-test. A P-value of 0.05 (corrected) was accepted as 
significant and all P-values are reported to two significant digits. 
Calculations were performed using SPSS (SPSS 12, SPSS Inc).
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Results and Discussion

In the present study, we detected and quantified lipids and 
small metabolites in live Drosophila using 1H HRMAS NMR 
at 14.1 T (Fig. 1) (30). All the flies survived the procedure, 
which was completed in ~45 min per fly. Our results confirmed 
our expectations in that we were able to reduce acquisition 
time, and thereby achieve zero mortality. We employed a novel 
in vivo HRMAS 1H NMR approach in Drosophila to examine 
the hypothesis that the GST2 mutation results in insulin resis-
tance, due to a phylogenetically conserved pathway for the 
regulation of glucose and lipid metabolism between flies and 
mammals (31,32).

Drosophila was utilized in this study because, relative to 
other animal models, flies are inexpensive and easy to maintain 
and manipulate, and they have a well-known genome as well 
as numerous available mutants. These characteristics make 
Drosophila an ideal genetically amenable model organism with 
which to investigate the physiology of biomedical paradigms. 
To this end, invertebrate Drosophila models have already 
provided powerful experimental systems for muscle devel-
opmental biology investigations (33-35), age-related decline 
in function (36), such as neurodegeneration (37) and loss of 
immune (38,39) and cardiac (40) functions, and specifically, 
regarding muscle degeneration, for the investigation of protein 
synthesis (41,42), sarcomere integrity (43-45), apoptosis (46), 
mitochondrial function and morphology (44,45,47-50), stress 
response (48,51), glycogen content (45), muscle function and 
morphology (52,53), flight ability (54) (flight) myofiber stiffness 
and power (44), and protein modifications (55,56) and related 
transcriptional changes (48,57,58). The conservation of insulin 
signaling between flies and mammals (31) renders Drosophila a 

particularly interesting model organism for metabolism studies. 
The focus of the present study on Drosophila as a model 
organism distinguishes this study from traditional metabolism 
experiments. The findings of this study are supported by find-
ings in mammals showing evidence of insulin resistance and 
mitochondrial dysfunction in mGsta4 null mice (59).

The in vivo fly spectra (see representative spectra in 
Fig. 1) of this study compare well to other published in vivo 
skeletal muscle spectra (11,60,61). All of these studies have 
shown high amounts of lipids in skeletal muscle, particu-
larly triglycerides. Other HRMAS reports involving skeletal 
muscle showed spectra with more metabolites than those of 
the present study (8,62). The samples and set conditions in our 
experiments differed from those of prior studies in that we had 
a smaller quantity of sample (0.6-1.1 mg) and we performed 
the experiment with a lower spin rate, which may have limited 
spectral resolution. The NMR-visible non-lipid components 
are expected to contribute only a small percentage in the total 
signal from sample flies, which are of extremely small size 
(0.7-0.8 mg total body weight), with concomitantly low sensi-
tivity of detection. Even spectra from the thorax of dissected 
flies, which is highly enriched in skeletal muscle, are similar 
to whole fly spectra (inset of Fig. 1). Nevertheless, we were 
still able to detect certain metabolites from the 1D experiment 
(Fig. 1).

From a biomedical perspective, the principal finding of our 
experiments was that the GST2 mutation was associated with 
an accumulation of mobile lipids in muscle tissue. The quan-
titative data of selected components (triglycerides) detected in 
live Drosophila with HRMAS 1H NMR are summarized in 
Table Ⅰ. Fig. 2 (30) shows a bar graph of the amounts of the 
same selected components. There was a marked and signifi-

Figure 1. In vivo 1D HRMAS 1H CPMG spectra of: (A) GST2 and (B) young wt flies. Lipid components were: 1, CH3 (0.89 ppm); 2, (CH2)n (1.33 ppm, puta-
tive IMCLs); 3, CH2C-CO (1.58 ppm, putative EMCLs), acetate (Ac, 1.92 ppm); 4, CH2C=C (2.02 ppm); 5, CH2C=O (2.24 ppm); and 6, CH=CH (5.33 ppm). 
Other spectral components included: β-alanine (β-Ala, 2.55 ppm), phosphocholine (PC, 3.22 ppm), phosphoethanolamine (PE, 3.22 ppm), and glycerol (4.10, 
4.30 ppm 1,3-CH; 5.22 ppm 2-CH2). The spectra in the inset are from the thorax of dissected flies and thus represent primarily skeletal muscle. Note the 
similarity of spectra for the dissected and whole flies. The spectra shown were normalized to TSP at each echo time and therefore do not exhibit a T2 decay. 
HRMAS, high-resolution magic angle spinning; wt, wild-type; IMCLs, intramyocellular lipids; EMCLs, extramyocellular lipids.



RIGHI et al:  In vivo HRMAS NMR IN Drosophila GST2 MUTANTS330

cant increase in (CH2)n (1.33 ppm) in the mutants relative to 
the wt controls. Additionally, we observed a trend towards 
more CH2C-CO lipids (1.58 ppm) in the mutants (Table I).

Although determining the source of these accumulated 
lipids is beyond the scope of this study, it should be considered 
that extramyocellular lipids (EMCLs), IMCLs, and triglycerides 
can all contribute to cellular lipid peaks (14,63,64). Specifically, 
EMCLs and IMCLs can be distinguished by in vivo NMR by 
differences in their bulk magnetic susceptibilities and geometric 
arrangements (65), with 1.33 ppm lipids, (CH2)n, being attrib-
uted to IMCLs and 1.58 ppm lipids, CH2C-CO, being attributed 
to EMCLs. However, discrimination is not likely in the present 
study. Spinning a sample at the magic angle (HRMAS) with 
respect to the static field direction averages the second-order 
tensors of the anisotropic chemical shift, the dipolar interac-
tion, and the susceptibility variations in heterogeneous samples 
(66-68). Garroway (67) indicated that MAS eliminates the 
broadening effect produced by magnetic susceptibility, and 
eliminates the shift itself. In their study, Chen et al (69) clarified 
that, irrespective of system geometry, MAS eliminates only the 
anisotropic contribution of bulk susceptibility inside a homoge-
neous susceptibility region. Inspecting the isotropic part of the 
susceptibility tensors available for IMCLs and EMCLs (63,70), 
we can deduce that IMCLs and EMCLs have an identical 
chemical shift under MAS conditions due to bulk susceptibility.

IMCLs probably serve as an energy substrate for oxida-
tive metabolism (71), and can be mobilized and utilized with 
turnover times in the range of several hours (72). In insects, 
triglycerides are located in body fat. Triglycerides in insect 
body fat (73-75) are used for storage of both energy and fatty 
acid precursors, such as transported lipids, phospholipids 
(membrane structure), hydrocarbons, and wax esters (that mini-
mize water loss from the cuticle due to evaporation) (76). In our 
study, mobility of fat body contents may have been affected by 
trauma or immune status, leading to strong IMCL and EMCL 
signals (77). However, this suggestion is only hypothetical as 
the intracellular signaling cascade mediating mobilization of 
triglycerides has not been as fully elucidated in insects as it 
has in mammals (78). Nevertheless, we suggest that there was 
mobilization of triglycerides in the GST2-/- flies because the 
peaks indicative of triglycerides at 1.33 and 1.58 ppm were 
increased (79). The significantly greater triglyceride signals 

(both IMCLs and EMCLs) detected in the GST2-/- mutants vs. 
wt controls (Figs. 1 and 2, Table I) resembles the metabolic 
profile of akhr flies with an obese phenotype and abnormal 
accumulation of both lipids and carbohydrates (79). Specifically, 
elevated IMCL levels are associated with insulin resistance, a 
major metabolic dysfunction of diabetes, aging (80,81), burn 
trauma (82,83) and obesity (84-87).

Moreover, our observations of increased peaks indicative 
of triglycerides at 1.33 ppm in GST2-/- flies agree with prior 
findings in chico flies (79) with disrupted insulin signaling. 
Chico flies have a mutated insulin receptor substrate (IRS) 
gene, a Drosophila homolog of vertebrate IRS1-4. Chico flies 
have a small stature and show abnormally high triglyceride 
levels (88,89) that are attributable to a dysfunctional mutated 
insulin signaling pathway (31), resulting in insulin resistance. 
The high 1.33 ppm peak in chico flies is clearly due to IMCLs 
and not to EMCLs since these flies are not obese. Accordingly, 
chico flies do not exhibit significantly increased 1.58 ppm 
peaks, which are frequently attributed to EMCLs (79). Thus, 
despite the theoretical considerations of HRMAS, it remains 
likely that the lipids that produce the peak at 1.33 ppm are 
primarily IMCLs, whereas the lipids that yield a peak at 

Table I. Quantity of selected lipid components in live Drosophila according to 1H HRMAS NMR (n=6/group).

 Mean quantity ± SE (µmol/g)
 ----------------------------------------------------------
Peak no. (ppm)a Lipid wt GST2 % difference P-value

1 (0.89) CH3 0.12±0.02 0.17±0.03 +41.7  0.1342
2 (1.33) (CH2)n 0.67±0.09 0.99±0.13 +47.7   0.0444b

3 (1.58) CH2CCO 0.03±0.01 0.07±0.02   +133.3  0.0748
4 (2.02) CH2C=C 0.07±0.01 0.11±0.01 +57.1   0.0276b

5 (2.24) CH2CO=O 0.05±0.01 0.05±0.02 0   0.4676
6 (5.33) CH=CH   0.02±0.004   0.04±0.005 +100    0.0251b

1H HRMAS NMR, 1H high resolution magic angle spinning nuclear magnetic resonance spectroscopy; aChemical shifts are in parts per million 
(ppm). bStatistically significant comparison. P-value was determined using the Student's t-test; wt, wild-type.

Figure 2. Lipid quantities calculated from in vivo 1D HRMAS 1H CPMG 
spectra of young wt flies (light gray) and GST2 mutant flies (black). 1, CH3 
(0.89 ppm); 2, (CH2)n (1.33 ppm) or IMCLs; 3, CH2C-CO (1.58 ppm) or 
EMCLs; 4, CH2C=C (2.02 ppm); 5, CH2C=O (2.24 ppm); 6, CH=CH 
(5.33 ppm). HRMAS, high-resolution magic angle spinning; wt, wild-type; 
IMCLs, intramyocellular lipids; EMCLs, extramyocellular lipids.
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1.58 ppm are primarily EMCLs. Thus, chico flies are a suitable 
comparison strain for GST2 flies, which also exhibit increased 
triglycerides, evidently due to increased IMCLs since they are 
not obese, and thus not expected to have increased EMCLs. 
Conversely, akhr flies exhibit a metabolic profile with signifi-
cantly increased peaks in all assigned lipids, agrees with their 
obese phenotype (79).

Another principal finding of our experiments was that 
peaks 4 (CH2C=C at 2.02 ppm) and 6 (CH=CH at 5.33 ppm), 
which includes protons from ceramide, were also significantly 
increased in the mutant flies compared to wt controls (Table I and 
Fig. 2). Ceramide accumulation decreases insulin-stimulated 
GLUT4 translocation to the plasma membrane and, conse-
quently, reduces glucose transport (90), resulting in insulin 
resistance. Paumen and co-workers demonstrated that saturated 
fatty acids such as palmitoleic acid at 2.02 ppm in our study, 
induce de novo synthesis of ceramide and programmed cell 
death (90). They suggested that inhibition of carnitine palmi-
toyltransferase I activity induces both sphingolipid synthesis 
and palmitate-induced cell death. Ruddock et al (91) suggested 
that long-chain saturated fatty acids (palmitoleic acid C16:0) 
attenuate insulin signal transduction in hepatoma cell lines. 
Their study suggests that an increase in palmitoleic acid 
signifies insulin resistance. If this is the case, then the signal 
at 2.02 ppm in our study may also be a biomarker of insulin 
resistance; this peak was elevated in our GST2-/- flies (CH2C=C 
at 2.02 ppm, peak 4 in Figs. 1 and 2) and in chico flies (79).

From a biomedical perspective, the findings of this study 
support the hypothesis that the GST2 mutation is associated 
with insulin signaling and suggest that the IMCL level may 
be a biomarker of insulin resistance in GST2-/- flies. However, 
whether IMCLs are directly involved in the development 
of insulin resistance simply serve as an indirect marker is 
currently a topic of debate (92). Insulin resistance has not 
been demonstrated previously in flies with currently available 
assays. Furthermore, direct links between GST2 mutation (the 
Drosophila ortholog of the GSTA4 gene in mammals) and 
insulin resistance, as suggested in this study, have not been 
made previously. The common characteristics shared among 
innate immunity activation, obesity, and insulin resistance, as 
recently described (79), support the findings of this study.

In conclusion, findings of the present study have demon-
strated that a novel solid-state HRMAS NMR method is a 
sensitive tool for the molecular characterization of metabolic 
perturbations in Drosophila. We observed increased levels 
of triglycerides in GST2-/- Drosophila mutant that may be 
indicative of insulin resistance. These findings may thus be 
directly relevant to the mitochondrial dysfunction that occurs 
in a wide range of metabolically disruptive conditions, such 
as trauma, aging, and immune system deficiencies, that lead 
to elevated susceptibility to infection. Our findings advance 
the development of novel in vivo non-destructive research 
approaches in Drosophila strains, offers biomarkers to 
investigate biomedical paradigms, and thus may direct novel 
therapeutic development.
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