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Abstract. Recent studies suggest that small non‑coding 
microRNAs (miRNAs or miRs) play an important role in the 
regulation of genes involved in various cellular and develop-
mental processes. However, the expression of miRNAs during 
the aging process remains largely unknown. The aim of the 
present study was to analyze miRNA expression profiles in 
rat livers during the aging process. The livers of male Wistar 
rats at different stages of development (fetal, aged 3 days, and 
1, 2, 4, 8 and 36 weeks of age) were used. Total RNA was 
extracted from the livers. We analyzed the expression levels 
of 679 rat miRNA probes. In addition, immunohistochemical 
staining for proliferating cell nuclear antigen (PCNA) was 
performed. Several up- and downregulated miRNAs were 
identified in the rat livers at 7 different fetal developmental 
stages and at 36 weeks of age. We observed the upregula-
tion of miR‑29a, miR‑29c, miR‑195 and miR‑497, whereas 
miR‑301a, miR‑148b-3p, miR‑7a, miR‑93, miR‑106b, miR‑185, 
miR‑450a, miR‑539 and miR‑301b were downregulated in the 
aging rat livers. The number of PCNA-positive hepatocytes 
was decreased with age. In conclusion, our findings suggest 
that these up- and downregulated miRNAs play an important 
role in aging by regulating cell cycles that are involved in liver 
senescence. Further investigation is required to reveal addi-
tional target genes of the miRNAs expressed in the liver and 
the roles of miRNAs in the developmental process of aging in 
the liver.

Introduction

MicroRNAs (miRNAs or miRs) are small non-coding RNAs 
that regulate both the mRNA and the protein expression of 
target genes (1). miRNAs play a crucial role in the regulation 
of genes involved in the control of development, cell prolifera-
tion, apoptosis and stress response (2). The expression profile 
analysis of miRNAs is essential for understanding the complex 
regulation of gene expression that involves miRNAs in addi-
tion to characterizing miRNAs themselves (3). Some miRNAs 
exhibit tissue-specific expression (4). The liver is a crucial 
organ in which miRNAs may be involved in the regulation of 
hepatocyte growth and development. The expression profiles 
of miRNAs in fetal liver are different from those in the adult 
liver; fetal miRNA expression has shown specificity in the 
developmental stage (5). Global gene and miRNA expression in 
embryonic and adult human livers has been analyzed, revealing 
multiple regulated genes and demonstrating a change in the 
expression patterns during the developmental process  (6). 
A number of studies have focused on accelerated aging and 
miRNAs, such as miRNAs in the aging mouse brain (3,7). 
Previous studies have analyzed the expression of miRNAs in 
the livers of young and elderly humans (6) and rats (8), as well 
as in mice with delayed aging (9,10). However, the association 
between miRNA expression and the aging of the liver remains 
poorly understood (11).

In the present study, we identified a gradual up- and down-
regulation of miRNAs in rats at 7 different developmental 
stages (fetal to 36 weeks old). We found that miR‑29a, miR‑29c, 
miR‑195 and miR‑497 were gradually upregulated and that 
miR‑301a, miR‑148b-3p, miR‑7a, miR‑93, miR‑106b, miR‑185, 
miR‑450a, miR‑539 and miR‑301b were gradually downregu-
lated in livers as the rats aged.

Materials and methods

Animals. Inbred Wistar rats were bred under specific 
pathogen‑free conditions at the Institute for Animal 
Experimentation of the Kagawa University School of Medicine 
Kagawa, Japan. Eight male Wistar rats from the ages of post-
natal day 3, and post-natal week 1, 2, 4, 8 and 36 were used in 
this study. Eight fetal livers were also obtained from pregnant 
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rats at day 20. We performed hepatectomy under ether anes-
thesia. For immunohistochemistry, small sections of the liver 
tissue were preserved in 10% formalin. The remaining sections 
of the liver tissue were rapidly placed in liquid nitrogen, trans-
ferred individually to pre-weighed tubes containing RNAlater 
(Ambion, Tokyo, Japan) and stored at -80˚C until analysis.

RNA isolation. The frozen tissue samples were thawed on ice 
and dissolved in TRIzol reagent (Invitrogen Life Technologies, 
Carlsbad, CA, USA). Total RNA was extracted from the 
tissues using an miRNeasy Mini kit (Qiagen, Tokyo, Japan) 
according to the manufacturer's instructions. Briefly, 700 µl 
of TRIzol reagent containing samples was mixed vigorously 
with 140 µl of chloroform, incubated at room temperature for 
3 min, followed by centrifugation at 12,000 x g for 15 min at 
4˚C. The upper aqueous phase was transferred to another tube 
containing 525 µl of 100% ethanol. The mixture was loaded 
into RNeasy Mini columns, followed by serial washing with 
solutions provided with the kit. Finally, RNA was collected 
into RNase‑free water for further experiments. All RNA 
samples used in this study showed A260/280 ratios between 
2.0 and 2.1. The integrity of RNA was determined using a 
NanoDrop  2000 spectrophotometer (Thermo Scientific, 
Rockford, IL, USA). The quality of total RNA was deter-
mined using the RNA Nano 6000 chips on an Agilent 2100 
Bioanalyzer (Agilent Technologies Inc., Osaka, Japan), and all 
RNA samples used for microarray analyses had RIN values 
>8.2. These RNA samples were stored at -80˚C.

miRNA arrays. Total RNA was labeled with Hy3 dye using 
the array labeling kit (Exiqon, Vedbæk, Denmark). Total RNA 
(2 µg) was incubated with a spike for 30 min at 37˚C and then 
at 95˚C for 5 min. Hy3 dye and labeling enzyme were added to 
the samples. The enzyme was then heat-inactivated at 16˚C for 
1 h and 65˚C for 15 min, protected from light and then received 
an addition of hybridization buffer. The sample was loaded 
onto the arrays by capillary force using 3D-Gene miRNA 
oligo chips (version 16; Toray Industries, Inc., Kanagawa, 
Japan). The chips enabled the examination of the expression 
of 679 miRNAs printed in duplicate spots. The arrays were 
incubated at 32˚C for 16 h, then briefly washed in a 30˚C wash 
buffer solution (0.5X SSC, 0.1% SDS), rinsed in wash buffer 
solution (0.2X SSC, 0.1% SDS) followed by a wash in another 
buffer solution (0.05X SSC), according to the manufacturer's 
instructions (Toray Industries, Inc.). The arrays were spun for 
1 min at 1,000 rpm for drying, followed by immediate scan-
ning using a Toray 3D-Gene 3000 miRNA microarray scanner 
(Toray Industries, Inc.). The relative expression level of each 
miRNA was calculated by comparing the average signal 
intensities of the valid spots with their mean value throughout 
the microarray experiments following normalization to their 
adjusted median values.

Heatmap. To illustrate the alterations in the expression levels 
of the 13 upregulated or downregulated miRNAs, we created 
a heatmap in which each cell represents the expression level 
of each of the 13 miRNAs for each of 8  individual rats at 
different stages of development, namely the fetal period, at 
post-natal day 3 and post-natal week 1, 2, 4, 8 and 36. The 
heatmap was color-coded according to the log2-transformed 

expression level. The center level of the color code is set as 
the median value over all of the values used in the heatmap. 
Briefly, in the heatmap, white color represents mean values, 
red indicates gains and blue represents losses.

Immunohistochemistry. The avidin-biotin complex  (ABC) 
immunohistochemical method was used. Following formalin 
fixation, the tissues were dehydrated in a graded series of 
ethanol and embedded in paraffin. The serial sections were 
mounted onto glass slides. Immunohistochemical staining 
for proliferating cell nuclear antigen (PCNA) was performed 
using the following procedure: the sections were deparaf-
finized, hydrated and quenched for endogenous peroxidase 
with 0.3% hydrogen peroxide in PBS at room temperature 
for 30 min. The sections were permeabilized in PBS with 
0.3% polyoxyethylene (10) octyl phenyl ether (Triton X-100) 
(Wako, Osaka, Japan) for 1 h before quenching the endogenous 
peroxidase activity. The sections were then incubated overnight 
at room temperature with a mouse anti-PCNA antibody (1:100 
dilution; Dako, Glostrup, Denmark). Antibody binding was 
detected using a Vectastain Elite ABC kit (Vector Laboratories, 
Burlingame, CA, USA) and 3,3'-diaminobenzidine as a chro-
mogen. After staining, all sections were counterstained with 
Mayer's hematoxylin. The specificity of immunostaining 
was examined using non‑immune mouse IgG as a negative 
control for the primary antibody. Images were captured using 
an Olympus BX51 microscope and Olympus DP72 camera 
(Olympus, Tokyo, Japan). The nuclear labeling index for the 
PCNA-positive cells (positive nuclei/total counted) was deter-
mined by evaluating at least 500 hepatocytes at random in the 
microscopic field by 2 observers (T. Masaki and S. Mimura).

Western blot analysis. Frozen liver tissue samples were 
homogenized in a protein extraction solution (PRO-PERP™; 
Intron Biotechnology, Inc., Gyeonggi, Korea), and cell lysis 
was then induced by incubating the samples for 20 min on ice. 
The samples were prepared by centrifugation at 13,000 rpm 
for 5 min at 4˚C. The supernatant was then collected. The 
protein concentration was measured by a dye-binding protein 
assay performed according to the Bradford method  (12). 
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) was performed according to the method of 
Laemmli (13), and western blot analysis was performed as 
previously described by Towbin et al (14) using anti-β-actin 
monoclonal antibody (Sigma-Aldrich; A5442, used at 1:3,000) 
and cyclin  D1 (Thermo Fisher Scientific, Waltham, MA, 
USA; RB-9041, used at 1:1,000) as primary antibodies and 
horseradish peroxidase-inked anti-mouse and anti-rabbit IgG 
secondary antibodies (GE Healthcare UK, Buckinghamshire, 
UK; used at 1:2,000).

Results

Quality assessment of the total RNA of the sample using a 
miRNA array chip. Total RNA (20 µl) from all liver tissues 
used in this study was loaded into each lane, and the bands of 
18S and 28S ribosomal RNA in the gel were detected using 
the 2100 Bioanalyzer (Fig. 1). Based on these results, RNA 
samples extracted from various liver tissues were shown to be 
of adequate quality.
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Developmental study of miRNA expression in liver tissue. 
Using a custom microarray platform, we analyzed the expres-
sion levels of 679 rat miRNA probes. Four miRNAs were found 
to be gradually upregulated with age in the rat livers. The 
4 upregulated miRNAs were miR‑29a (spot no. 1), miR‑29c 

(spot no. 2), miR‑195 (spot no. 3) and miR‑497 (spot no. 4) 
(Figs. 2 and 3). By contrast, 9 miRNAs were gradually down-
regulated. These downregulated miRNAs were miR‑301a (spot 
no. 5), miR‑148b-3p (spot no. 6), miR‑7a (spot no. 7), miR‑93 
(spot no. 8), miR‑106b (spot no. 9), miR‑185  (spot no. 10), 

Figure 1. Quality of total RNA of developmental liver tissues using microRNA (miRNA) array chip. The bands of 18S and 28S ribosomal RNA in the gel were 
detected using a 2100 Bioanalyzer. Total RNA in all liver tissue samples used in the miRNA chip analysis was of high quality. Equal amounts of total RNA 
obtained from developmental liver tissues were used for miRNA analysis.

Figure 2. MicroRNA (miRNA) expression in rat livers at 7 different stages of development (fetal, post-natal day 3 and post-natal weeks 1, 2, 4, 8 and 36) in 
miRNA chips. Spot numbers 1-4 (1, miR‑29a; 2, miR‑29c; 3, miR‑195; 4, miR‑497) were miRNAs upregulated with liver development. Spot numbers 5-13 
(5, miR‑301a; 6, miR‑148b-3p; 7, miR‑7a; 8, miR‑93; 9, miR‑106b; 10, miR‑185; 11, miR‑450a; 12, miR‑539; 13, miR‑301b) were miRNAs downregulated with 
liver development.
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miR‑450a (spot no. 11), miR‑539 (spot no. 12) and miR‑301b 
(spot no.  13). The heatmap  (Fig.  4) clearly demonstrates 
increasing trends for 4 miRNAs and decreasing trends for 
9 miRNAs in the expression levels among the age groups. It 
also showed that the trends in miRNA expression were fairly 
consistent among individual rats and were constant in both 
increasing and decreasing directions.

Immunohistochemical study of PCNA in developing livers. 
The typical immunohistochemical staining pattern of PCNA 
at various stages of development in the rat livers, including 
fetal liver (Fig. 5A), post-natal day 3 liver (Fig. 5B), post-natal 
week 1 liver (Fig. 5C), post-natal week 2 liver (Fig. 5D), post-
natal week 4 liver (Fig. 5E), post-natal week 8 liver (Fig. 5F) 
and post-natal week 36 liver (Fig. 5G). The labeling index of 
PCNA in the hepatocytes in the developing livers decreased 
with age (Fig. 5H).

Western blot analysis of aging rat liver. Western blot analysis 
was used to examine the cell cycle of the aging rat liver by 
using an antibody against cyclin D1. The cyclin D1 level was 
hardly detectable in the fetal liver (Fig. 6). However, cyclin D1 
was detected in the liver at post-natal day 3. The highest level 
was detected in the post-natal week 1 liver and the level slightly 
decreased with age. The amount of β-actin (an internal control 
for protein loading) was almost the same in all age groups.

Discussion

The dysregulation of miRNA expression may contribute to 
numerous alterations present in very complex and multifactorial 
processes, namely, proliferation, differentiation, inflammation, 
carcinogenesis and aging (11). The profiles of miRNAs have 
been reported by developmental studies in various organs, 
such as the brain  (15-18), kidneys  (19), pancreas  (20) and 
liver (21,22). However, the alterations in miRNA expression 
in the rat liver during the process of aging remain poorly 
understood. In the present study, in order to detect miRNAs 
associated with aging in the rat liver, we investigated miRNAs 
with a gradually increasing or decreasing expression in the 
livers of rats at different stages of development. Such miRNAs 
appear to play an important role in aging. To the best of our 

Figure 4. A heatmap showing increasing and decreasing trends of the 
microRNA (miRNA) expression levels in rats during different stages of devel-
opment. The expression level of each miRNA for each individual rat is shown 
for each age group as a color‑coded cell. A vertical bar beside the heatmap 
indicates the scale of the color code of the log2-transformed expression levels. 
The center level of the color code is set as the median value over all of the 
values used in the heatmap. White color represents mean values, red indicates 
gains and blue represents losses.

Figure 3. MicroRNA (miRNA) expression analysis. (A) Upregulated miRNAs. 
Fold change levels are reported relative to the levels of the fetal liver. miR‑29a, 
miR‑29c, miR‑195 and miR‑497 upregulation was confirmed. A significant 
(p<0.01) upregulation was found in the livers of post-natal week 4 and 8 rats 
for each upregulated miRNA. (B) Downregulated miRNAs. The expression 
levels of miR‑301a and 301b were downregulated by more than half at post-
natal day 3. 
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knowledge, to date, no studies have established an association 
between miRNAs and aging of the liver in a similar manner 
as we have done.

In the present study, we demonstrated that miR‑29a, 
miR‑29c, miR‑195 and miR‑497 were upregulated with age, 
whereas miR‑301a, miR‑148b-3p, miR‑7a, miR‑93, miR‑106b, 
miR‑185, miR‑450a, miR‑539 and miR‑301b were downregu-
lated with age in the rat livers. These data suggest that specific 
miRNAs are associated with aging in the liver.

miR‑29a and miR‑29c were upregulated during early 
development in the liver (rats at post-natal week 4 and 8) and 
during late development in the liver (post-natal week 36). 
Notably, the expression levels of miR‑29a and miR‑29c were 
>10-fold higher in the livers from the 36‑week-old rats than 
the fetal rat livers. miR‑29a and miR‑29c have been shown to 
be age-related in various organs, such as the aorta (23,24), the 
lungs (25,26), the kidneys (19) and the liver in mice (21,22). 
The upregulation of miR‑29a and miR‑29c with age is consis-
tent with a recent report showing an increased expression of 
miR‑29 family members in a model of accelerated aging in 
mice (11).

Figure 5. Immunohistochemical analysis of proliferating cell nuclear antigen (PCNA). The immunohistochemical staining pattern of PCNA in various stages 
of development in the rat livers, including (A) fetal liver, (B) post‑natal day 3 liver, (C) post-natal week 1 liver, (D) post-natal week 2 liver, (E) post-natal week 4 
liver, (F) post-natal week 8 liver and (G) post-natal week 36 liver. (H) The labeling index of PCNA of the hepatocytes in developing livers decreased with age.

Figure 6. Western blot analysis. The cyclin D1 level was almost undetectable 
in the fetal liver. However, the cyclin D1 level was detectable in the liver at 
post-natal day 3. It was detected at the highest level in post-natal week 1 liver, 
and slightly decreased with age. β-actin was used as a loading control.
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Several studies have indicated that the cellular replication 
capacity (proliferative activity) declines in various tissues and 
may compromise the immune system during aging (27-29). In 
addition, the number of senescent cells increases in various 
tissues with aging (30). Indeed, in this study, we also demon-
strated that the expression of PCNA in hepatocytes decreased 
with age. These data suggest that the number of senescent cells 
in the liver increased with age.

In the present study, the 4  miRNAs with a gradually upreg-
ulated expression (miRNA-29a, miRNA29c, miRNA-195 and 
miR‑497) possess target genes to promote proliferative activity, 
whereas the 4  miRNAs (miR‑148-3p, miR‑93, miR‑106b 
and miR‑185) whose expression was gradually reduced, 
possess genes to inhibit proliferative activity, such as tumor 
suppressor gene and the cyclin-dependent kinase inhibitor, 
p21WAF1 (Table I). Hepatocyte growth factor (HGF), cyclin E, 
Cdk4, Cdk6 and cyclin D1 play important roles in the progres-
sion of the cell cycle, and their molecules are the targets of 
upregulated miRNAs (Table I). By contrast, p21 (also known 

as p21CIP1/WAF1), sirtuin and fused in sarcoma (FUS)1 
play important roles in the arrest of the cell cycle, and their 
molecules are targets of downregulated miRNAs (Table I). 
Therefore, these data suggest that numerous up- and down-
regulated miRNAs play an important role in the decline of the 
proliferative activity of hepatocytes with age.

In conclusion, in the present study, we identified the upreg-
ulation of miR‑29a, miR‑29c, miR‑195 and miR‑497, and the 
downregulation of miR‑301a, miR‑148b-3p, miR‑7a, miR‑93, 
miR‑106b, miR‑185, miR‑450a, miR‑539 and miR‑301b in 
the rat liver with age. Our data also suggest that important 
changes in miRNA expression occur during development, and 
one result of aging is likely to be changes in miRNA expres-
sion. Our findings suggest that these up- and downregulated 
miRNAs play important roles by regulating cell cycles that 
are related to liver senescence. Further studies are required 
to clarify additional miRNA targets, as well as the roles of 
miRNAs in the development of the complex process of aging 
in the liver.

Table I. Chromosomal locations and target genes of the up- and downregulated miRNAs.

Name	 Genome context		  Target gene (Ref.)

Upregulated
  rno-miR‑29a	   4: 58107760-58107847 [-]	 4q22	 p53 (11), hepatocyte growth factor (31), Bcl-2 (32),
			   nuclear autoantigenic sperm protein (33), TGF-β1 (34)
			   p42.3 (35), Arpc3 (36), monocarboxylate transporter 1 (37),
			   maternally expressed gene 3 (38),
			   Tcl1 (39), DNA methyltransferase 3 (40), 
			   phosphatase and tensin homolog (41)
  rno-miR‑29c	 13: 110968048-110968135 [+]	 13q27	 p53 (11), MCT-1 (37), Bcl-2 (32), TGF-β1 (34),
			   tumor necrosis factor α-induced protein 3 (42),
			   β-site APP cleaving enzyme 1 (43), cyclin E (44)
  rno-miR‑195	 10: 57074170-57074256 [+]	 10q24	 Cyclin-dependent kinase 4 (45), Bcl-2 (46-48),
			   ethanol-mediated inhibition of hepatic sirtuin 1 (47),
			   cyclin E1 (49), cyclin D1 (50,51), CDK6 (50), E2F3 (50,52)
			   Raf-1 (52)
  rno-miR‑497	 10: 57073846-57073914 [+]	 10q24	 Bcl-2 (53,54), cyclin D2 (54)

Downregulated
  rno-miR‑301a	 10: 75386838-75386937 [+]	 10q26	 Plasminogen activator inhibitor-1 (55)
  rno-miR‑148b-3p			   AMPKα1 (56), ITGA5, ROCK1, PIK3CA/p110α, NRAS,
			   CSF1 (57)
  rno-miR‑7a			   Barx1 (58)
  rno-miR‑93	 12: 17608173-17608259 [-]	 12q11	 Sirtuin 1 (8), S-transferase 1 (8), integrin-β8 (59), 
			   FUS1 (60), p21 (61)
  rno-miR‑106b	 12: 17608382-17608463 [-]	 12q11	 p21 (61-64), RB (65)
  rno-miR‑185	 11: 84658785-84658864 [+]	 11q23	 DNA methyltransferase 1 (66), Rho, Cdc42 (67), 
			   Six1 (68)
  rno-miR‑450a	 X: 139994947-139995037 [-]	 Xq36	 DNA methyltransferase 3a (69)
  rno-miR‑539	   6: 134408917-134408992 [+]	 6q32	 Holocarboxylase synthetase (HCS) (70,71)
  rno-miR‑301b	 11: 85885248-85885325 [+]	 11q23	 TP63 (72)

miRNA, microRNA.
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