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Abstract. Dilated cardiomyopathy (DCM) is the most preva-
lent type of primary myocardial disease, which is the third most 
common cause of heart failure and the most frequent reason 
for heart transplantation. Aggregating evidence demonstrates 
that genetic risk factors are involved in the pathogenesis of 
idiopathic DCM. Nevertheless, DCM is of remarkable genetic 
heterogeneity and the genetic defects underpinning DCM in 
an overwhelming majority of patients remain unknown. In 
the present study, the whole coding exons and splice junction 
sites of the NKX2-5 gene, which encodes a homeodomain 
transcription factor crucial for cardiac development and struc-
tural remodeling, were sequenced in 130 unrelated patients 
with idiopathic DCM. The available relatives of the index 
patient harboring an identified mutation and 200 unrelated 
ethnically matched healthy individuals used as controls were 
genotyped for the NKX2-5 gene. The functional effect of the 
mutant NKX2-5 was characterized in contrast to its wild-type 
counterpart using a dual-luciferase reporter assay system. As a 
result, a novel heterozygous NKX2-5 mutation, p.S146W, was 
identified in a family with DCM inherited as an autosomal 
dominant trait, which co-segregated with DCM in the family 

with complete penetrance. Notably, the mutation carriers also 
had arrhythmias, such as paroxysmal atrial fibrillation and 
atrioventricular block. The missense mutation was absent in 
400 reference chromosomes and the altered amino acid was 
completely conserved evolutionarily among species. Functional 
analysis revealed that the NKX2-5 mutant was associated with 
a significantly reduced transcriptional activity. The findings 
expand the mutational spectrum of NKX2-5 linked to DCM 
and provide novel insight into the molecular mechanisms 
underlying DCM, contributing to the antenatal prophylaxis and 
allele-specific management of DCM.

Introduction

Dilated cardiomyopathy (DCM) is a primary cardiac disorder 
characterized by ventricular chamber enlargement and systolic 
dysfunction with normal ventricular wall thickness in the 
absence of associated conditions, such as coronary artery 
disease, hypertension and valve disease sufficient to cause 
global decreased contractility (1). It is the most frequent form 
of non-ischemic cardiomyopathy, affecting approximately 
1 in 250 individuals (2). DCM is the most common cause of 
chronic congestive heart failure and sudden cardiac death in 
individuals between the ages of 20 and 60 years, and is the 
leading indication for heart transplantation in both children 
and adult patients worldwide (1-4). A variety of etiologies has 
been implicated in the pathogenesis of DCM, including viral 
myocarditis, myocardial infarction, toxic insults, alcohol abuse, 
nutritional deficiencies, chronic uncontrolled tachycardia or 
premature ventricular contractions, autoimmune abnormalities 
and metabolic disorders (5). However, the majority of DCM 
cases remain unexplained after a thorough review for secondary 
causes, and such DCM is defined as idiopathic DCM, among 
which 25-50% of DCM cases occur in at least two closely 
related family members, hence termed familial DCM (3). A 
growing body of evidence demonstrates that genetic risk factors 
play a pivotal role in the pathology of DCM, and mutations in 
over 50 DCM genes have been described as leading to DCM 
in patients with familial, as well as sporadic DCM (1-3,6-8). 
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The majority of the genes linked to DCM encode sarcomeric 
and cytoskeletal proteins, which are involved in the generation 
and transmission of contractile force, and are predominantly 
inherited in an autosomal dominant pattern, although a few 
follow an autosomal recessive, X-linked or mitochondrial 
mode of inheritance (2). Nevertheless, these established 
DCM-associated genes merely account for less than a third of 
the studied cases and each gene has a low mutational frequency, 
with most occurring in <1% of patients with DCM (8). Thus, the 
genetic determinants responsible for DCM in an overwhelming 
majority of patients remain to be identified.

A number of studies have highlighted the essential roles 
of the cardiac transcription factors in cardiovascular develop-
ment and cardiac structural remodeling, including the GATA 
zinc finger-containing transcription factor and the NK home-
odomain transcription factor families (9-14), and a long list 
of mutations in GATA binding protein (GATA)4, GATA5, 
GATA6 and NK2 homeobox 5 (NKX2-5) have been associ-
ated with various congenital heart diseases and arrhythmias, 
including atrial septal defect, ventricular septal defect, tetralogy 
of Fallot, endocardial cushion defect, patent ductus arteriosus, 
double outlets of the right ventricle, pulmonary stenosis, hypo-
plastic right ventricle, atrial fibrillation and cardiac conduction 
block (15-39). Moreover, GATA4 has also been causally impli-
cated in the development of DCM (40,41).

Similar with GATA4, the homeobox transcription factor, 
NKX2-5, is abundantly expressed in the heart at various 
developmental stages and its high expression is also found 
in adult cardiomyocytes, where it mediates the expression of 
several crucial structural and regulatory genes, including those 
encoding atrial natriuretic factor (ANF), brain natriuretic 
peptide, connexin40, troponin I, troponin C, α- and β-myosin 
heavy chains (12,42). The targeted disruption of NKX2-5 in 
mice has been shown to lead to impaired cardiac growth and 
chamber formation, deranged gene regulatory networks and 
early embryonic lethality (43-45), while mice with the hetero-
zygous or conditional deletion of NKX2-5 at the postnatal 
stages have shown defects of late cardiomyocyte maturation 
and adult heart contraction, predisposing to progressive 
cardiomyopathy and congestive heart failure (46-48). In human 
families with NKX2-5 mutations underlying congenital cardio-
vascular malformations, left ventricular contractile dysfunction 
and DCM as a late clinical manifestation have been observed 
in some mutation carriers (35,49). Furthermore, NKX2-5 has 
been shown to physically interact with GATA4 or T-box 20 
(TBX20) and synergistically regulate the expression of multiple 
important cardiac target genes, including those encoding ANF, 
T- and L-type Ca2+ channels, connexin40, α-actin and leucine-
rich repeat containing 10 (LRRC10) (42), and loss-of-function 
mutations in GATA4, LRRC10, α-actin and TBX5 have been 
associated with DCM (2,40,41,50,51). These observational 
results indicate that NKX2-5 is an alternative candidate gene 
for DCM.

Subjects and methods

Study subjects. A cohort of 130 genetically unrelated patients 
with idiopathic DCM was enrolled from the Han Chinese popu-
lation. The available relatives of the index patients were also 
recruited. A total of 200 ethnically-matched unrelated healthy 

individuals were enlisted as the controls. All participants were 
evaluated by a detailed history and physical examination, chest 
radiography, electrocardiogram, echocardiography and an exer-
cise performance test. Cardiac catheterization, angiography, 
endomyocardial biopsy and cardiac magnetic resonance imaging 
were performed only if there was a strong clinical indication. 
Medical records were also reviewed in the case of deceased 
or unavailable relatives. The diagnosis of idiopathic DCM 
was made according to the criteria established by the World 
Health Organization/International Society and Federation of 
Cardiology Task Force on the Classification of Cardiomyopathy: 
a left ventricular end-diastolic diameter >27 mm/m2 and an ejec-
tion fraction <40% or fractional shortening <25% in the absence 
of abnormal loading conditions, coronary artery disease, 
congenital heart lesions and other systemic diseases, as previ-
ously described (40,41,52). Individuals were excluded if they 
had insufficient echocardiographic image quality or coexistent 
conditions that may give rise to contractile dysfunction, such as 
uncontrolled systemic hypertension, coronary artery disease or 
valvular heart disease. Familial DCM was defined when DCM 
occurred in two or more first-degree family relatives. Peripheral 
venous blood samples were obtained from all participants. The 
clinical analyses were conducted with investigators blinded to 
the genotypes. The present study was carried out in accordance 
with the principles of the Declaration of Helsinki and the study 
protocol was approved by the Institutional Ethics committee of 
Shanghai Chest Hospital, Shanghai, China. Written informed 
consent was obtained from all participants or their guardians 
prior to study.

Mutational analysis. Genomic DNA was extracted from the 
peripheral blood lymphocytes of each participant using the 
Wizard Genomic DNA Purification kit (Promega, Madison, 
WI, USA). The whole coding region and splice junction sites 
of the NKX2-5 gene was sequenced in the 130 unrelated 
patients with idiopathic DCM. When a mutation was identi-
fied in an index patient, the available relatives of the mutation 
carrier and the 200 unrelated healthy controls were subse-
quently genotyped for NKX2-5. The referential genomic DNA 
sequence of NKX2-5 was derived from GenBank (accession 
no. NT_023133). The primer pairs used to amplify the coding 
exons and flanking introns of NKX2-5 by polymerase chain 
reaction (PCR) were designed as previously described (38). 
The PCR was carried out using HotStar Taq DNA Polymerase 
(Qiagen GmbH, Hilden, Germany) on a Veriti Thermal 
Cycler (Applied Biosystems, Foster, CA, USA) with standard 
conditions and concentrations of reagents. The amplified 
products were purified using the QIAquick Gel Extraction kit 
(Qiagen). Both strands of each PCR product were sequenced 
with a BigDye® Terminator version 3.1 Cycle Sequencing 
kit (Applied Biosystems) under an ABI PRISM 3130xl DNA 
Analyzer (Applied Biosystems). The DNA sequences were 
viewed and analyzed with the DNA Sequencing Analysis 
Software versoin 5.1 (Applied Biosystems). The variant was 
validated by re-sequencing of an independent PCR-generated 
amplicon from the same subject. In addition, for an identified 
sequence variant, the single nucleotide polymorphism (SNP; 
http://www.ncbi.nlm.nih.gov/SNP) and human gene mutation 
(HGM; http://www.hgmd.org) databases were queried to 
confirm its novelty.
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Comparison of amino acid sequence of NKX2-5 from various 
species. The amino acid sequence of human NKX2-5 predicted 
from GenBank (Accession no. NM_004387) was aligned with 
that of the chimpanzee, rhesus monkey, dog, cattle, rat, mouse, 
zebrafish and fowl, using the online MUSCLE program, 
version 3.6 (http://www.ncbi.nlm.nih.gov/).

Molecular modeling. The disease-causing potential of a 
NKX2-5 sequence variation was predicted by MutationTaster 
(an online program at http://www.mutationtaster.org), which 
automatically provides a probability for the variation to be 
either a pathogenic mutation or a benign polymorphism. Of 
note, the P-value used in this study is the probability of the 
correct prediction rather than the probability of error as used 
in t-test statistics (i.e., a value close to 1 indicates a high accu-
racy of the prediction). Additionally, another online program 
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2) was used 
to evaluate the possible effects of an amino acid substitution 
on the structure and function of human NKX2-5.

Expression plasmids and site-directed mutagenesis. The 
recombinant expression plasmid, NKX2-5-pEFSA, and the 
ANF-luciferase (ANF-luc) reporter plasmid, which contains 
the 2600-bp 5'-flanking region of the ANF gene, were kindly 
provided by Dr Ichiro Shiojima from Chiba University School 
of Medicine, Chiba, Japan. The identified mutation was intro-
duced into the wild-type NKX2-5 gene using a QuickChange II 
XL Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA, 
USA) with a complementary pair of primers. The mutant was 
sequenced to confirm the desired mutation and to exclude any 
other sequence variations.

Reporter gene assays. COS-7 cells (a fibroblast-like cell 
line derived from monkey kidney tissue; 1x104), which were 
obtained from the Cell Bank of the Shanghai Institute of Life 
Science, Chinese Academy of Sciences, Shanghai, China, 
were plated onto a 24-well plate and cultured in Dulbecco's 
modified Eagle's medium supplemented with 10% fetal calf 
serum. The internal control reporter plasmid, pGL4.75 (hRluc/
CMV; Promega), was used in transient transfection analyses to 
evaluate the transcriptional activity of the NKX2-5 mutant. The 
COS-7 cells were transfected with 0.4 µg of wild-type or mutant 
NKX2-5-pEFSA, 1.0 µg of ANF-luc, and 0.04 µg of pGL4.75 
using PolyFect Transfection Reagent (Qiagen). For co-transfec-
tion experiments, 0.2 µg of wild-type NKX2-5-pEFSA, 0.2 µg 
of mutant NKX2-5-pEFSA, 1.0 µg of ANF-luc and 0.04 µg of 
pGL4.75 were used. Firefly luciferase and Renilla luciferase 
activities were measured with the Dual-Glo Luciferase assay 
system (Promega) 48 h after transfection. The activity of the 
ANF promoter was presented as the fold activation of firefly 
luciferase relative to Renilla luciferase. Three independent 
experiments were performed at minimum for wild-type and 
mutant NKX2-5.

Statistical analysis. Data are expressed as the means ± stan-
dard deviation (SD). Continuous variables were tested for 
normality of distribution, and the Student's unpaired t-test was 
used to compare the numeric variables between two groups. A 
comparison of the categorical variables between two groups 
was performed using the Pearson's χ2 test or Fisher's exact test 

where appropriate. A two-tailed P-value of <0.05 was consid-
ered to indicate a statistically significantly difference.

Results

Clinical characteristics of the study participants. A total of 
130 unrelated patients with idiopathic DCM were clinically 
evaluated in contrast to 200 control individuals. None of the 
patients had overt traditional risk factors for DCM. All the 
patients presented with the typical DCM phenotype as previ-
ously described (40,41,52). The control individuals had no 
evidence of structural cardiac diseases, and their echocardio-
gram results were normal. The baseline clinical characteristics 
of the study participants are summarized in Table I.

Identification of NKX2-5 mutation. The exons and exon-intron 
boundaries of the NKX2-5 gene were sequenced in 130 index 
patients with idiopathic DCM, and a missense mutation was 
identified in the heterozygous state in a male DCM patient, with 
a mutational prevalence of approximately 0.77%. Specifically, 
a substitution of guanine for cytosine in the second nucleotide 
of codon 146 (c.437C>G), predicting the transition of serine (S) 
into tryptophan (W) at amino acid position 146 (p.S146W) was 
identified in the proband from family 1. The sequence chromato-
grams showing the detected heterozygous NKX2-5 mutation of 
c.437C>G compared with its control sequence are shown in 
Fig. 1. A schematic diagram of NKX2-5 protein delineating the 
structural domains and location of the mutation detected in the 
present study is presented in Fig. 2. The missense mutation was 
neither found in the 200 Chinese control subjects nor reported 

Table I. Clinical characteristics of the patients with dilated car-
diomyopathy and the controls.

 Patients Controls
Variables (n=130) (n=200) P-value

Age (years) 46.4±12.2 47.8±11.5 0.2923
Male (%) 60 (46.2) 93 (46.5) 0.9509
Family history of DCM (%) 53 (40.8) 0 (0) <0.0001
SBP (mmHg) 116.3±14.5 124.0±11.8 <0.0001
DBP (mmHg) 75.2±8.6 84.0±7.3 <0.0001
HR (bpm) 96.5±15.0 76.8±11.9 <0.0001
LVEDD (mm) 71.4±7.8 46.5±6.2 <0.0001
LVESD (mm) 58.5±8.3 35.2±6.1 <0.0001
LVEF (%) 38.4±9.4 64.2±7.8 <0.0001
NYHA function class (%)
  I 12 (9.2) NA NA
  II 40 (30.8) NA NA
  III 53 (40.8) NA NA
  IV 25 (19.2) NA NA

DCM, dilated cardiomyopathy; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; HR, heart rate; LVEDD, left ventricular end-
diastolic diameter; LVESD, left ventricular end-systolic diameter; LVEF, 
left ventricular ejection fraction; NYHA, New York Heart Association; 
NA, not applicable or not available.
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in the public databases for human sequence variations including 
the SNP and HGM databases, indicating that it was a novel 
mutation. The genetic screening of the family revealed that the 
mutation was present in all affected living family members, but 
absent in the unaffected family members examined. Analysis 
of the pedigree demonstrated that the mutation co-segregated 
with DCM transmitted as an autosomal dominant trait in the 

family with complete penetrance. The pedigree structure of the 
family is displayed in Fig. 3. The phenotypic characteristics and 
status of the NKX2-5 mutation of the affected living family 
members are listed in Table II.

Of note, the proband's father (I-1) also had atrial fibril-
lation, third-degree atrioventricular block and frequent 
premature ventricular contractions, and died suddenly at the 
age of 49; the proband's brother (II-1) also had paroxysmal 
atrial fibrillation, second-degree atrioventricular block and 
premature ventricular contractions; and the proband (II-3) 
and his niece (III-2) also had premature ventricular contrac-
tions. In addition, two NKX2-5 polymorphisms, c.63A>G and 
c.606C>G, were observed in both DCM patients and control 
individuals. However, there was no significant difference in 
either of the two allele frequencies between the DCM patient 
and healthy control groups. All the sequence variants and their 
allele frequencies are listed in Table III.

Figure 2. Schematic diagram of NKX2-5 protein structure with the dilated 
cardiomyopathy-associated mutation indicated. The mutation identified in 
patients with familial dilated cardiomyopathy is marked above the structural 
domains. NH2, amino-terminus; TN, transcriptional activation domain; HD, 
homeodomain; NK, NK2-specific domain; COOH, carboxyl-terminus.

Figure 3. Pedigree structure of the family with dilated cardiomyopathy. Family 
members are identified by generations and numbers. Square, male family 
member; circle, female member; symbol with a slash, the deceased member; 
closed symbol, affected member; open symbol, unaffected member; arrow, 
proband; +, carrier of the heterozygous missense mutation; -, non-carrier.

Table II. The phenotypic characteristics and status of NKX2-5 mutation in the living affected pedigree members.

  Age Cardiac LVEDD LVESD   NKX2-5
Individual Gender (years) phenotype (mm) (mm) LVEF (%) LVFS (%) mutation

II-1 Male 56 DCM 79 63 32 20 +/-
II-3 Male 50 DCM 60 42 35 27 +/-
III-2 Female 32 DCM 55 40 42 23 +/-

DCM, dilated cardiomyopathy; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; LVEF, left 
ventricular ejection fraction; LVFS, left ventricular fractional shortening; +/-, heterozygous mutation.

Table III. NKX2-5 sequence variations identified in the present study.

 Allele frequency
 --------------------------------------------------------------------------------------
Location Nucleotide Amino acid Patients Controls

Exon 1 c.63A>G p.E21E (0.238) 62/260 (0.233) 93/400
Exon 2 c.437C>G p.S146W (0.004) 1/260 (0.000) 0/400
Exon 2 c. 606C>G p.L202L (0.012) 3/260 (0.015) 6/400

Figure 1. Sequence electropherograms showing the heterozygous NKX2-5 
variation compared with its control. The arrow points to the heterozygous 
nucleotides of G/C in the proband (mutant) or the homozygous nucleotides 
of C/C in the corresponding control individual (wild-type). The rectangle 
denotes the nucleotides comprising a codon of NKX2-5.
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Alignment of multiple NKX2-5 protein sequences from 
various species. A cross-species alignment of NKX2-5 protein 
sequences demonstrated that the altered amino acid p.S146 was 
completely conserved evolutionarily in various species (Fig. 4).

Functional modeling in silico. The NKX2-5 sequence variation 
of c.437C>G was predicted by MutationTaster to be a patho-
genic mutation with a P-value of nearly 1.0. No SNPs in the 
altered region were found in the MutationTaster database. This 
amino acid substitution was also predicted by PolyPhen-2 to 
be probably damaging, with a score of 1.000 (sensitivity, 0.00; 
specificity, 1.00).

Reduced transcriptional activity of the NKX2-5 mutant. As 
shown in Fig. 5, the same amount (0.4 µg) of wild-type and 
mutant NKX2-5 activated the ANF promoter by ~12-fold and 
~3-fold, respectively. When the same amount of wild-type 

NKX2-5 (0.2 µg) was co-transfected with mutant NKX2-5 
(0.2 µg), the induced activation of the ANF promoter was 
~5-fold. These results demonstrate that the NKX2-5 mutant 
has a significantly reduced activation activity compared with 
its wild-type counterpart.

Discussion

In the present study, a heterozygous DCM-associated sequence 
variation, p.S146W, was identified in the NKX2-5 gene, which 
was not found in either 400 reference chromosomes or public 
databases for sequence variations including the SNP and 
HGM databases. This variant affected the amino acid that was 
completely conserved evolutionarily, and was predicted to be 
a causative mutation by the MutationTaster and PolyPhen-2 
databases. The missense mutation co-segregated with DCM, 
as well as arrhythmias in the family with complete penetrance. 
Functional analysis unveiled that the mutant NKX2-5 was 
associated with significantly decreased transcriptional activity. 
Therefore, it is possible that NKX2-5 loss-of-function mutation 
predisposes these mutation carriers to DCM and arrhythmias.

It has been substantiated that NKX2-5 is an upstream 
regulator of multiple genes expressed during cardiac morpho-
genesis, including the ANF gene (42). Therefore, the functional 
characteristics of the NKX2-5 mutation may be deciphered by 
analyzing the transcriptional activity of the ANF promoter in 
cells expressing NKX2-5. In the present study, the functional 
effect of the novel NKX2-5 mutation (p.S146W) identified 
in the patients with familial DCM was characterized by 
transcriptional activity analysis and the results demonstrated 
that the mutant NKX2-5 was associated with a significantly 
diminished transcriptional activity. These findings suggest 
that haploinsufficiency or the dominant-negative effect caused 
by the NKX2-5 mutation is potentially an alternative patho-
logical mechanism of DCM.

The association of NKX2-5 loss-of-function mutation with 
enhanced susceptibility to DCM has been previously inves-
tigated. Costa et al (53) performed mutational screening of 

Figure 5. Functional defect caused by NKX2-5 mutation. Activation of atrial 
natriuretic factor (ANF) promoter driven luciferase reporter in COS-7 cells by 
wild-type (WT) or S146W-mutant NKX2-5, alone or together, showed signifi-
cantly reduced transcriptional activation by the mutant protein. Experiments 
were performed in triplicate, and the mean and standard deviations are 
shown. **P<0.0005 and *P<0.001, respectively, when compared with wild-type 
NKX2-5.

Figure 4. Multiple alignments of NKX2-5 protein sequences from various species. The altered amino acid of p.S145W is completely conserved evolutionarily 
across species.
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NKX2-5 in 220 probands with adult-onset DCM, and identified 
three missense mutations in three probands in addition to three 
synonymous polymorphisms, with a mutational prevalence of 
approximately 1.36%. The three mutations included two previ-
ously reported mutations (p.R25C and p.A119S) and one novel 
mutation (p.I184M). The p.R25C and p.A119S mutations have 
been reported to result in reduced DNA binding and transac-
tivation properties, and the former has been associated with 
congenital cardiovascular deformities and thyroid dysgenesis 
while the latter has been related to thyroid ectopy (49,54-58). 
The novel p.I184M mutation was identified in a proband with 
familial DCM and genetic analysis of the family showed that 
the mutation was present in all affected family members. 
Functional analysis of p.I184M in vitro demonstrated a signifi-
cant decrease in DNA binding activity despite the increased 
expression level of the mutant protein due to reduced degra-
dation via the ubiquitin-proteasome system, resulting in the 
diminished activation of target genes. Notably, in a total of 
five mutation carriers of the family, one had DCM, atrial 
septal defect, atrial fibrillation and right bundle branch block; 
another had DCM, patent foramen ovale and complete heart 
block; a third had DCM, atrial septal defect and right bundle 
branch block; the other two had only tricuspid atresia and 
right bundle branch block, respectively (53). Similarly, in the 
present study, the mutation carriers also presented with DCM 
and arrhythmias, including atrial fibrillation and progressive 
cardiac conduction block, underlining the crucial role of 
NKX2-5 in the embryonic heart development and postnatal 
cardiac adaptation.

The findings that functionally defective NKX2-5 enhances 
the susceptibility to DCM may be partially attributed to the 
developmental and regenerative defects of the myocardium as 
well as abnormal heart remodeling (10). As a critical regulator 
of the cardiac gene network and heart development, NKX2-5 is 
highly expressed in early heart progenitor cells that commit to 
the cardiac lineage during embryogenesis, and continues abun-
dant expression in the heart throughout adulthood (43,59-62). 
Three independent NKX2-5-null mouse models showed a 
uniform phenotype of lethality between E9-10 associated 
with arrested heart tube looping morphogenesis and growth 
retardation, with the expression of several prominent cardiac 
structural and transcriptional regulatory genes downregu-
lated (44,63-67). NKX2-5 also plays an important part in the 
postnatal maturation and homeostasis of cardiomyocytes and 
the functional adaptation of adult heart. In a feline model of 
right-ventricular pressure overload conferred by banding of the 
pulmonary artery, or in adult mice with adrenergic-induced 
cardiac hypertrophy, the expression of NKX2-5 was upregu-
lated, suggesting that NKX2-5 participates in the cardiac 
hypertrophic response during pressure overload or stress 
stimulation (68,69). By contrast, the expression of a dominant-
negative human NKX2-5 mutant in the mouse heart under the 
control of α-myosin heavy chain (α-MHC) promoter induced 
cardiac dysfunction and degeneration, and injection of doxoru-
bicin promoted more severe cardiac dysfunction and increased 
cardiomyocyte apoptosis (70,71). Furthermore, NKX2-5 has 
been documented to promote cardiomyocyte differentiation 
and modulate adult cardiac hypertrophic response through 
interacting with other cardiac transcription factors, such as 
TBX5, GATA4, serum response factor (SRF) and calmodulin 

binding transcription activator 2 (CAMTA2) (72-76). In addi-
tion, NKX2-5 also regulates expression of gap junction protein 
connexin43 and sarcomere organization in postnatal cardio-
myocytes (77), indicating the cardioprotective role of NKX2-5 
as a survival factor in the heart.

Notably, a great number of NKX2-5 mutations have 
been previously associated with a wide variety of congenital 
cardiovascular anomalies, including atrial septal defect, 
ventricular septal defect, tetralogy of Fallot, double outlet right 
ventricle, L-transposition of the great artery and hypoplastic 
left heart syndrome (35,39,49,54-57,78-84). However, in the 
present study, the patients harboring the identified NKX2-5 
mutation presented with DCM and arrhythmias, but without 
cardiovascular malformations. The remarkable discrepancy in 
the phenotypes of NKX2-5 genotypes may be explained by 
the following reasons. Firstly, considering some congenital 
cardiac struc tural aberrations may restore spontaneously, we 
cannot rule out the possibility that some mutation carriers 
had minor cardiac septal defects that closed shortly after 
birth on their own (26). Next, genomic imprinting results in 
preferential expression of the paternal or maternal allele of a 
certain gene, underlining the effect of proband (85). Thirdly, 
the nature of a mutation (loss-of-function, dominant-negative 
or gain-of-function effect) and its temporal and spatial effect 
during cardiac development (germline or somatic) are a 
potential explanation for this phenomenon (49,54). Fourthly, 
different genetic backgrounds, including possibly common 
SNPs altering disease susceptibility, are responsible for the 
marked phenotypic heterogeneity of the genotype (86-88). 
Finally, mutations like p.S146W may be a genetic modifying 
factor that confers vulnerability to congenital heart diseases, 
rather than a direct cause, and environmental risk factors may 
be required for the onset of congenital cardiac abnormalities.

In conclusion, the data from the present study suggests 
that the NKX2-5 loss-of-function mutation contributes to the 
pathogenesis of DCM, suggesting potential implications in 
genetic testing that can help improve the care of patients and 
families with DCM.
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