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Abstract. In this review, two types of RNA viruses are 
compared with regard to the type I interferon (IFN) response in 
order to obtain a better understanding of the molecular mecha-
nisms of immune activation or evasion. Upon human infection, 
both viruses exert either beneficial or detrimental effects. 
The Newcastle disease virus (NDV), is a type strain for avian 
paramyxoviruses, while the Ebola virus (EBOV), is a virus 
affecting primates. During evolution, both viruses specifically 
adapted to their respective hosts, acquiring sophisticated viral 
escape mechanisms. Two types of receptors play an important 
role in the life cycle of these two viruses: cytoplasmic retinoic 
acid-inducible gene I (RIG-I) and membrane expressed type I 
IFN receptor (IFNAR). In mouse and human cells, NDV is a 
strong inducer of the type I IFN response. The early phase of this 
is initiated by signaling through RIG-I and the late response by 
signaling through IFNAR. EBOV does not induce type I IFN 
responses in humans as it has viral proteins that specifically 
and strongly interfere with RIG-I and IFNAR signaling, as 
well as immune activation. In this review, we discuss whether 
the beneficial effects of one virus can be exploited in the fight 
against the detrimental effects of the other.
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1. Introduction

Interferons (IFNs) were first characterized for their ability to 
̔interfere̓ with viral replication, and indeed one of their major 
functions is the establishment of a robust antiviral state in response 
to infection (1,2). In addition, IFNs activate immune cells and 
facilitate the recognition of virus-infected cells and tumor cells 
by the immune system, as they stimulate antigen presentation 
to T lymphocytes (3). IFNs are usually subdivided into three 
classes: type I (including IFN-α, IFN-β and IFN-ω), type Ⅱ (in 
humans, IFN-γ) and type Ⅲ [including interleukin (IL)-28 and 
IL-29] (3). Type I IFNs are produced by virus-infected cells. 
Plasmacytoid dendritic cells (DCs) and mononuclear phagocytes 
are the major sources of IFN‑α (4), while IFN-β is produced by a 
number of cell types, including fibroblasts (5).

IFN-β is the principal antiviral factor secreted by infected 
mammalian cells in response to the activation of retinoic 
acid-inducible gene (RIG-I) following Newcastle disease 
virus (NDV) infection. Type I IFNs bind to the IFN-α 
membrane receptor (IFNAR) (2) on infected cells and through 
Janus kinase (JAK) and signal transducer and activator of tran-
scription (STAT) signaling (6), induce the expression of genes 
whose products enhance the susceptibility of cells to cytotoxic 
natural killer (NK) cell- and T cell-mediated killing (7). In 
addition, type I IFNs induce resistance to viral replication in 
all cells, thereby involving autocrine and paracrine actions (7).

In this review, immune activation by NDV in humans is 
compared to immune evasion by Ebola virus (EBOV). Such 
timely comparison is justified as both phenomena are associ-
ated with the activation of the same two signaling pathways.

Unlike NDV, which is a pathogen found in birds but not in 
humans, EBOV, as a virus affecting primates, is a devastating 
pathogen affecting humans. During approximately 200 million 
years of evolution, viruses from mammals, (derived from 
therapsids), have had time to adapt to the immune systems 
of their host. According to a recent whole-genome analysis, 
95% of bird species (derived from sauropsids) developed 
during a rapid radiation following the Cretaceous-Paleogene 
mass extinction approximately 66 million years ago (8). Thus, 
bird viruses have had a shorter time period for adaptation 
to the host immune system than mammalian viruses. The 
characteristics of the two RNA viruses, NDV and EBOV, are 
reviewed herein with particular focus on the aspect of the 
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species‑specificity of viral escape mechanisms antagonizing 
type I IFN responses.

2. Newcastle disease virus

NDV in birds. NDV is one of the most important diseases 
affecting poultry worldwide. NDV outbreaks were first reported 
in Indonesia, and, subsequently, in Newcastle-upon-Tyne in 
the year 1926. Infections by virulent NDV strains cause severe 
economic losses and may have flock mortality rates of up 
to 100%. Therefore, NDV has a significant impact on the world 
economy, possibly more so than any other disease affecting 
animals (9).

NDV belongs to the avian paramyxovirus serotype 
(APMV)-1 family and is the most characterized member 
among the nine APMV serotypes. It is possible that all species 
of birds are susceptible to NDV infection. However, the disease 
may vary greatly depending upon the virus strain and the host 
species. Eighteen NDV strains from four lineages have been 
identified and classified as velogenic, mesogenic and lentogenic 
according to their pathotypes (10). NDV attaches to respiratory 
epithelial cells through the viral HN protein, which binds to 
sialic acid containing cell surface receptors, such as ganglio-
sides and N-glycoproteins. This is followed by the activation 
of the F protein, which leads to the fusion of the viral and the 
host cell membranes. In the cytoplasm of the host cell, the 
viral genome, a 15 kb non-segmented negative single-stranded 
RNA (ssRNA), is transcribed into mRNAs and is translated into 
viral proteins (11). Respiratory disease can be mild in the case 
of lentogenic viruses, more severe with mesogenic viruses and 
severe with a high mortality rate in the ase of velogenic viruses. 
Velogenic viruses are further subdivided into viscerotropic, 
which cause mortality with haemorrhagic lesions in the intes-
tines, and neurotropic, when neurological diseases predominate 
without haemorrhagic lesions in the intestines (12).

All NDV strains encode seven proteins: N, P, V, M, F, 
HN and L. The V protein is not essential for viral replication 
in vitro and serves as an accessory protein. The V protein is a 
frameshift variant of the NDV phosphoprotein P. and, while the 
P protein consists of 395 amino acids, the V protein consists 
of only 239 amino acids. The incorporation of two G nucleo-
tides at the RNA editing site of the P protein results in the 
frameshift variant protein V (13). The V protein of NDV has 
been shown to inhibit the IFN response in birds in two ways: 
i) through the inhibition of IFN signaling by targeting STAT1 
for degradation (14); and ii) through interaction with melanoma 
differentiation-associated gene 5 (MDA5), leading to the inhi-
bition of interferon regulatory factor 3 (IRF-3) activation and 
IFN-β induction (15).

Of note, it has been demonstrated that the V protein 
of NDV is a determinant of host range restriction. 
Recombinant NDV (rNDV) mutants, which are defective 
in the expression of V protein, grow poorly in embryonated 
chicken eggs and chicken embryo fibroblasts compared to 
wild-type (WT) rNDV. Furthermore, the NDV V protein has 
been shown to play an important role in preventing apoptosis 
in a species‑specific manner. It has been suggested that the host 
range of NDV is limited by the specificity of its V protein for 
bird proteins to efficiently prevent innate host defenses, such as 
the IFN response and apoptosis (16-18).

In recent years, NDV has drawn a lot of research interest, 
not only due to the fact that it is an important pathogen affecting 
poultry, but also that in man, it exerts fascinating oncolytic and 
immune stimulatory effects. It also has potential for use as a 
novel vaccine vector for the treatment of diseases in humans 
and animals (10).

NDV in mouse and man
The NDV-induced type I IFN response. Upon the infection of 
mouse or human cells with the NDV bird virus, an uninhibited 
type I IFN response (19) is initiated, as the viral V protein 
cannot interact with the proteins from mammalian cells. It 
is of particular significance that the activation of a rapid and 
strong type I IFN response by NDV in normal mouse or human 
cells prevents viral replication, cytotoxic effects and disease 
pathology in normal tissues. Thus, NDV is not considered a 
pathogen in mouse or man and shows a high safety profile as 
regards its clinical application.

A diagram of the cellular response in mouse and man 
is illustrated in Fig. 1. It shows an early- and a late-phase 
response. During the early phase, the antiviral response of 
normal (non-tumor) cells is initiated through the recognition 
of viral RNA by two types of pathogen recognition recep-
tors: i) endosomal Toll-like receptors (TLRs), particularly 
TLR3 and ii) cytoplasmic RIG-I-like receptors (RLRs). RIG-I 
has been shown to be the cytoplasmic viral RNA receptor 
for NDV (20,21). Of note, RIG‑I binds specifically to RNA 
containing 5'-phosphate, such as viral RNA, while mammalian 
RNA is either capped or contains base modifications (22). Once 
activated, RIG-I binds to the adaptor protein IFN-β promoter 
stimulator-1 (IPS-1) which, after a further signaling cascade, 
activates, IRF-3 during the early phase. This transcription 
factor (TF) is then phosphorylated, translocates to the nucleus 
and induces the IFN response (23). IRF-3 plays an important 
role in the IFN response of mouse macrophages to NDV infec-
tion (24).

RIG-I triggering does not only involve the upregulation 
of RNA copies. RIG has the structural combination of an 
N-terminal caspase recruitment domain (CARD) not and a 
C-terminal RNA helicase domain with which it interacts with 
the viral non-capped RNA (25). Following the recognition 
of small viral RNAs, RIG-I elicits signaling cascades, which 
eventually lead to the activation of the nuclear factor (NF)-κB 
and IRF-3 TFs. NF-κB regulates the production of most 
cytokines and chemokines (26), while IRF-3 is central to the 
development of an antiviral state through the induction of anti-
viral genes (27). The rapid and robust expression of type I IFN 
genes is a prerequisite for the induction of numerous antiviral 
proteins that modulate protein synthesis, growth arrest and 
apoptosis (28).

During the late phase of the IFN response, the type I IFN 
molecules secreted during the early phase interact with the cell 
surface, express IFNAR and initiate an amplification loop of the 
IFN response, which involves STAT proteins and IRF-7 (29). 
IFNAR (2) is expressed by virtually all cells in the body and 
consists of IFNAR1 and IFNAR2 chains. The cytoplasmic 
domains of IFNAR1 and IFNAR2 are physically associated 
with the JAKs, Tyk2 and JAK1, respectively. Ligands binding 
IFNAR represent a large family of four-helix bundle cyto-
kines, numbering close to 20 in humans and mice. Upon ligand 
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binding, Tyk2 and JAK1 become activated by transphosphory-
lation (6). These, in turn, phosphorylate receptor tyrosine(s), 
directing the recruitment of inactive STAT1 and STAT2. At 
the receptor, STAT1 and STAT2 are activated by phosphoryla-
tion (29,30). The STAT proteins then heterodimerize and with 
the IFN regulatory factor IRF-9, to form a complex known as 
ISGF3 (Fig. 1). This translocates to the nucleus to bind to the 
IFN-stimulated response element (ISRE). This DNA-binding 
complex directs the expression of IFN-stimulated genes (ISGs) 
that create the antiviral state in the target cells and block viral 
replication.

Importance of the IFN receptor-mediated feedback amplifi-
cation loop. IFNAR plays a crucial role in the IFN feedback 
amplification loop and its consequences. This is illustrated 
in Fig. 2, which shows the results of the NDV infection of 
murine DCs from either C57BL/6 WT mice or IFNAR gene 
knockout (KO) mice. Fig. 2A (panel a) shows viral replication 
10.5 h following infection by NDV (strain Ulster) assessed 
by RT-PCR of the viral M gene. Over 3,000 M gene copies 
were obtained from the DCs of KO mice in comparison to 
<100 copies from cells obtained from WT mice. Cell culture 
supernatants were tested for the content of the cytokines, 
Il-12, IFN-α and tumor necrosis factor (TNF)-α. The NDV 

infection of DCs from WT mice induced a strong expression 
of genes coding for IL-12p70 (Fig. 2A, panel b), IFN-α and 
TNF-α (Fig. 2C, panels a and b), while this was not the case 
with DCs from KO mice.

In DCs from WT mice, the produced IFN-α caused a 
feedback loop stimulation through IFNAR. This resulted 
in the suppression of viral replication and the expression 
of pro‑inflammatory cytokines, such as TNF‑α and IL-12. 
In the cells from KO mice, neither RIG-I nor IRF-7 were 
upregulated upon NDV infection, in contrast to the cells from 
WT mice (Fig. 2B, panels a and c). Further results with DCs 
from mice deficient in either IRF‑3 or IRF‑7, or from IRF‑3/‑7 
double KO mice revealed that RIG-I triggering by NDV repli-
cation in mouse DCs induced IL-12 production independently 
of the IRF-3 and IRF-7 pathway (31).

DCs function to maintain tissue-specific tolerance or 
they can be immunogenic and initiate antigen‑specific T cell 
immunity. It depends on the microenvironment in vivo and on 
inflammatory stimuli whether immature DCs with functional 
plasticity differentiate into tolerogenic or immunogenic DCs 
with stable phenotypes. Murine DCs, upon infection with 
NDV, differentiate into the immunogenic phenotype DC1 
characterized by the secretion of pro-inflammatory cyto-
kines, in particular IL-12 and IFN-α/β (31). The priming or 

Figure 1. Diagram of the uninhibited Newcastle disease virus (NDV)-induced type I interferon (IFN) response in mouse and human cells. Following cell 
membrane attachment and the fusion of viral and host cell membranes, the viral RNA enters the cytoplasm where it is immediately recognized as foreign by 
retinoic acid-inducible gene I (RIG-I). This initiates a signaling cascade involving the transcription factors (TFs), IRF-3 and IRF-7. Following phosphorylation 
and dimerization, these protein complexes enter the nucleus and initiate the transcription of genes coding for chemokines (CXCL10 and IP‑10) for effector T cell 
recruitment or for type I IFNs (IFN-β and IFN-α). The average upregulation time for these genes is 8-12 h. This time period corresponds to the early phase of 
the response. The late phase is initiated following interaction of the released type I IFNs as ligands with the corresponding type I IFN membrane receptor. A 
feedback loop signal activation cascade involving further protein complexes, such as ISGF3, then leads to response amplification and the induction of further 
antiviral response genes.
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programming for DC1 involves two receptor-initiated signaling 
cascades, the first one initiated through cytoplasmic RIG‑I, and 
the second through membrane-expressed IFNAR (21,32).

NDV, a prototype avian virus that may be used to study an 
uninhibited cellular response to viral infection in human 
DCs. We investigated the effects of NDV on human DCs by 
analyzing the release of cytokines important for Th1 or Th2 
polarization. Human monocyte‑derived DCs were found to 
become polarized towards DC1 by in vitro stimulation with 
NDV (33).

Pathogenic viruses subvert normal immune functions in 
DCs through the expression of immune antagonists (18,34). 
Understanding how these antagonists interact with the host 
immune response requires knowledge of the underlying 
genetic regulatory network that operates during an uninhibited 
antiviral response. Such a network was identified by studying 
human DCs and their response to infection by NDV (19), 
knowing that this virus is able to stimulate innate immunity 

and DC maturation through the activation of RIG-I signaling 
and lacks the ability to evade the human IFN response.

A new approach was developed, integrating genome-wide 
expression kinetics and time-dependent promoter analysis. It 
was found that the genetic program underlying the antiviral 
cell‑state transition during the first 18 h post‑infection can be 
explained by a single convergent regulatory network. Gene 
expression changes were driven by a step-wise multi-factor 
cascading control mechanism, where the specific TFs control-
ling expression changed over time. This study of systems 
biology involved, among others, microarray experiments, 
microarray analysis, transcription factor binding site analysis, 
time-dependent promoter analysis, electromobility shift assay 
and regulatory network construction (19). Through all these 
new tools, this analysis revealed a robust antiviral transcrip-
tional network that may be induced in human DCs by infection 
with NDV. Table I lists the 24 critical TFs and their time of 
expression following infection with NDV. The timing of this 
program appeared as highly conserved.

Figure 2. Comparison of murine dendritic cells (DCs) from wild-type (WT) and type I IFN receptor (IFNAR) knockout (KO) mice in response to infection by 
Newcastle disease virus (NDV). DCs from C57BL/6 WT or IFNAR1 KO mice were generated from bone marrow-derived mononuclear cells, plated in 24-well 
plates (5x105/well) and infected with NDV (lentogenic strain Ulster, 30 hemagglutinating units per 106 cells) for 10.5 h. Viral replication was assessed by RT-PCR 
of the viral M gene. This was quantified from cDNA of isolated RNA using a fluorescent oligonucleotide probe system. RT‑PCR was also used to detect the 
genes retinoic acid inducible gene I (RIG-I), IRF-3 and IRF-7. The concentration of murine cytokines IL-12p70 and TNF-α in supernatants was determined by a 
Cytometric Bead Array and analyzed on the FACSArray (both from BD Biosciences, Heidelberg, Germany). Mouse type I interferon (IFN)‑α in supernatants of 
cultured cells was determined by ELISA using a rat monoclonal antibody and a rabbit polyclonal antibody against murine IFN‑α (both from PBL Assay Science, 
Piscataway, NJ, USA) (32). All cytokine protein concentrations are given in pg/ml. (A) Viral replication associated M gene expression (a) and production of 
IL-12p70 (b); (B) expression of RIG-I (a), IRF-3 (b) and IRF-7 (c); (C) production of IFN-α (a) and TNF-α (b).
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The described network of TFs spans virtually the entire 
time‑period analyzed. Of the 24 TFs, 18 appear in the known 
general pathogen response signature (35) or in the core DC 
response signature (36). The TFs are predicted to regulate 
779 of the 1,351 upregulated genes. The network contains 
both feed-forward links, which propagate the transcriptional 
signal through time, as well as feedback links, where TFs 
may influence the activity of targets that have previously been 
upregulated. It was concluded that the proposed network is 
effective in capturing the underlying biology and produces a 
pattern that is consistent with a step-wise transcriptional signal 
propagation.

Tumor-selective replication, safety and the activation of 
immune cells. Integral to the life cycle of all RNA viruses is the 
formation of double-stranded RNA (dsRNA), which activates a 
spectrum of cellular defence mechanisms involving IFN-α/β. 
Tumors from mouse or man provide a relatively permissive 
substrate for the propagation of RNA viruses, such as NDV 
as mutations in tumor cells often cripple the IFN system to 
allow uninhibited proliferation and to provide resistance to 
apoptosis (37). The first step of infection with NDV takes place 
in all cell types of mouse or man, whereas the second step 
(which corresponds to viral replication) occurs only in tumor 
cells since it is stopped rapidly in normal cells. The replication 
of NDV involves the use of the full-length viral antigenome as 
a template. This step is prevented in non-tumorigenic mouse or 
human cells (37).

An inverse correlation was found between the expression of 
four antiviral genes and the susceptibility of cells to infection 
with NDV: i) RIG-I, ii) IRF-3, iii) IFN-β and iv) IRF-7 (20). 
In addition, the membrane receptor IFNAR was demonstrated 

to be of great importance (21). The basic or induced levels of 
the four aforementioned genes were higher in the normal cells 
than in the tumor cells. In addition, signaling through IFNAR 
was often found to not be fully functional in tumor cells. Taken 
together, these observations explain the high safety profile of 
NDV upon human application (10,11).

The activation of immune cells is a further factor for the 
safety of this virus. In vitro infection with NDV has been 
shown to cause the activation of human NK cells (38), human 
monocytes (39) and had a co-stimulatory effect on CD4 (40) 
and CD8 (41) mouse and human T cells. The activated cells 
exerted cytotoxic effects through NKp46 (38), TNF-related 
apoptosis-inducing ligand (TRAIL) (39) and released nitric 
oxide (NO) (42) and pro‑inflammatory cytokines (31).

3. Ebola virus

EBOV in man. The Filoviridae family of viruses includes the 
genera EBOV and Marburg virus (43). EBOV was first discov-
ered in 1976. With a diameter of 80 nm and a length of up to 
14,000 nm, EBOV belongs to the largest known RNA viruses. 
Similar to NDV, the genome consists of a negative ssRNA. It 
codes for eight proteins, two of which are the viral proteins, 
VP24 and VP35, which are discussed below.

EBOV infects primates (gorillas, chimpanzees and humans). 
The primary target cells are macrophages and DCs (44). The 
zoonotic transmission of EBOV to humans causes severe and 
often times lethal hemorrhagic fever. The disease character-
istics are systemic inflammatory response syndrome (SIRS), 
disseminated intravascular coagulation (DIC), systemic hemor-
rhage and multiple organ failure (45). EBOV shuts down the 
host's innate and adaptive immune systems. It then replicates 
uncontrollably and causes a cytokine storm in the host (46).

Filoviral infections in primates are associated with inef-
fective innate antiviral responses as a result of virally encoded 
immune antagonists. These render the host incapable of 
mounting effective innate or adaptive immune responses. 
During the first 3 weeks after infection, the release of endog-
enous pyrogenes (IL-1β, IL-6 and TNF-α) is prevented. Several 
filoviral encoded components target type I IFN responses. 
Many of these innate immune suppression mechanisms 
that are important for viral replication and pathogenesis are 
species‑specific (47).

EBOV: a virus-inhibited IFN response. Two of the eight viral 
proteins of EBOV are involved in immunosuppression (48,49). 
They prevent type I IFN signaling in multiple ways, which is 
also the topic of the present review. While VP35 antagonizes 
the early phase of the IFN response, VP24 is an antagonist 
of the late phase. The EBOV VP35 protein binds directly to 
dsRNA and inhibits several antiviral signaling pathways. It 
acts as a component of the viral RNA polymerase complex, 
a viral assembly factor and an inhibitor of host IFN produc-
tion. Mutation of selected basic residues within the C-terminal 
half of VP35 abrogates its dsRNA-binding activity, impairs 
VP35-mediated IFN antagonism, and attenuates EBOV growth 
in vitro and in vivo. The structure of the C-terminal VP35 IFN 
inhibitory domain (IID), solved to a resolution of 1.4 Å, 
revealed a unique fold centered on Arg-312 (48). In an analo-
gous study, Marburg virus VP35 proteins were demonstrated to 

Table I. NDV infection of human DCs: Kinetics of upregulated 
transcription factors.

Transcription Hours Transcription Hours
factor p.i. factor p.i

IRF-1 2.5 IRF-7 3
STAT1  4 STAT2 4
ATF3 5 IRF-2 6
CREM 6 MAX 7‑8
STAT3 7‑8 RUNX3 8.5
RELA 8.5 FOXC1 8.5
IRF‑8 9‑10 ALX1 9‑10
TGIF1 10-11 IRF 11-12
STAT4 11-12 NFB 12
NF-κB2 12 EGR4 12.5
FOX03 13.5 ZEB1 14
REL 14.5 STAT5A 18

The transcription factors were placed in the time slice during which 
the gene was first differentially expressed. The 24 transcription fac-
tors build a regulatory network. Regulatory relationships can be either 
feed-forward, feedback or reciprocal. This network induces 779 of 
1,351 (58%) upregulated cellular genes post infection (p.i.) of den-
dritic cells (DCs) with Newcastle disease virus (NDV) (24).
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be capable of fully coating the backbone and capping the ends 
of dsRNA for IFN antagonism (50). Furthermore, it was shown 
that conserved basic residues in the IID recognize the dsRNA 
backbone, whereas the dsRNA blunt ends are ̔end-capped̓ by 
a pocket of hydrophobic residues that mimic the RLR recogni-
tion of blunt-end dsRNA, the initiation step of the early-phase 
response (Fig. 1, early phase) (51).

VP35 also blocks virus-induced IRF-3 phosphorylation, 
subsequent IRF‑3 dimerization and nuclear translocation. VP35 
thus inhibits the early induction of antiviral genes, including 
the IFN-β gene (Fig. 1, early phase). VP35 is also capable of 
preventing the IRF-3-dependent activation of the IFN-α4 
promoter in response to viral infection (52). It is also able to 
inhibit the antiviral response induced by IFN-α (Fig. 1, late 
phase). The phosphorylation of the dsRNA-dependent protein 
kinase (PKR) and of the elongation initiation factor eIF-2α 
was also suppressed in cells expressing VP35 (53). A single 
amino acid change in the VP35 protein was demonstrated to 
be capable of reversing the inhibition of host innate immune 
responses. Thus, infection with a mutated recombinant virus 
(recEbo-VP35/R312A) resulted in a strong innate immune 
response, including the increased expression of MDA5, RIG-1, 
regulated on activation, normal T cell expressed and secreted 
(RANTES), monocyte chemoattractant protein-1 (MCP-1), 
ISG15, ISG54, ISG56, ISG60, STAT1, IFN-β, 2,5-oligoad-
enylate synthetase (OAS) and myxovirus (influenza virus) 
resistance 1 (MX1) (54).

During antiviral defence, IFNAR signaling triggers 
the nuclear transport of tyrosine-phosphorylated STAT1 
(PY-STAT1), which occurs through a subset of karyo-
pherin α (KPNA) nuclear transporters. EBOV VP24 (eVP24) 
binds directly to STAT1 and inhibits its nuclear translocation, 
a step of the late-phase feedback loop (Fig. 1). Recently, it has 
been demonstrated that eVP24 targets a unique nuclear localiza-
tion signal (NLS) binding site on KPNA to selectively compete 
with nuclear import of PY-STAT1 (49). It leaves the transport 
of other cargo that may be required for viral replication unaf-
fected. New crystal structures of VP24 derived from pathogenic 
and non-pathogenic EBOV revealed a pyramidal fold with sites 
required for virulence and for STAT1 binding (55). Such studies 
offer templates for drug design, and provide the three-dimen-
sional framework necessary for the biological dissection of the 
many functions of VP24 in the virus life cycle.

4. Conclusions

The comparison of the two viruses, NDV and EBOV, in this 
review demonstrates that RNA viruses with a similar genome 
may exert completedly different effects in man. Depending 
on whether they are derived from birds or primates, they can 
exert either beneficial or detrimental effects. Signals delivered 
through RIG-I and IFNAR cause immune activation, which is 
the case with NDV, or they are antagonized causing immune 
evasion, which is the case with EBOV.

The infection of human DCs with NDV induces a robust 
uninhibited antiviral response which prevents viral replication, 
and differentiates and polarizes the cells towards DC1-activating 
Th1 cells. When NVD infects mouse or human cells it activates 
a multitude of genes, cells and cellular activities. In vivo, such 
viral ̔priming̓ of cells may lead to immune system stimulation 

or immune system conditioning, which mostly relies on the 
effects of the induced type I IFN response.

Signaling through RIG-I and IFNAR may have far-reaching 
consequences for the antiviral immune response. The activation 
of the RIG-I pathway is able to reduce the antigen requirement 
by 10‑ to 100‑fold in inducing optimal influenza‑specific 
cellular and humoral responses, including protective immunity. 
These effects include an enhanced germinal center reaction, 
T follicular helper cell responses, antibody affinity matura-
tion and plasma cell responses in draining lymph nodes, the 
spleen and bone marrow. These effects are dependent on 
type I IFN and IPS-1 signaling, but are independent of the 
MyD88- and TLR3-mediated pathways (56). Since type I IFN 
receptors are expressed by virtually every type of cell in 
the body, the ligand-induced IFN signaling cascades have 
far-reaching consequences. For instance, type I IFN-mediated 
crosstalk between plasmacytoid DCs on one side and macro-
phages and conventional DCs on the other, secure the control 
of fatal cytopathic mouse hepatitis virus (57).

Primate‑derived EBOV succeeds in antagonizing the 
human IFN response by two proteins, VP35 and VP24, 
which specifically target signals through RIG‑I and IFNAR, 
respectively, thereby demonstrating the importance of these 
coordinated signaling systems. The bird-derived virus, NDV, 
has only one protein, the frameshift variant V protein, with 
which to antagonize the IFN response. Perhaps this difference 
can be accounted for by the difference in the respective time 
periods available for adaptation during evolution. EBOV may 
be more potent than NDV in antagonizing the IFN response as 
it has two, instead of only one, inhibitory proteins. However, it 
is likely that it is not the quantity but the quality of inhibitory 
proteins that matters (58).

5. Prospects

Due to its high safety profile in human application (10,11), 
NDV may be employed not only as an oncolytic agent in cancer 
patients, but also as an agent for immune stimulation and for 
prophylacting conditioning of the host immune system against 
the risk of viral infection. This may be particularly relevant 
for individuals whow come into contact with patients infected 
with EBOV. Such immune-conditioning pre-treatment would 
̔prime̓ the cells and establish a state of increased viral resis-
tance. In this way, one virus, the avian NDV, may exert beneficial 
effects against the other virus, EBOV. Beneficial effects can be 
expected in particular during the early non-symptomatic phase 
of infection. It has been suggested that applying a non‑specific 
antiviral approach during the incubation period of viral infec-
tion is an essential protective approach which renders the host 
immune sytem into an alert state, thus attenuating viral replica-
tion (46). The use of an IFN-inducing agent, such as NDV, may 
be thus more effective and may cause less severe side-effects 
than the use of IFN-β, which has also been suggested (59).

Other immunological means for counteracting EBOV infec-
tion may be based on neutralizing antibodies, particularly when 
isolated from memory B cells (60) of patients who have survived 
the infection. In addition, libraries of memory T cells may be 
developed from such patients to screen the T cell immune reper-
toires for protective activity, function and specificity (61). This is 
supported by a recent immune analytical study (62).



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  36:  3-10,  2015 9

In connection with the EBOV epidemic in West Africa 
in 2014, a vaccine was developed by the Canadian National 
Microbiology Laboratory on the basis of recombinant vesicular 
stomatitis virus (rVSV) expressing the filovirus glycoprotein of 
the lethal Zaire ebolavirus (ZEBOV). Antibodies were reported 
as necessary for rVSV/ZEBOV‑GP‑mediated protection against 
lethal EBOV challenge in non-human primates (63). VSV, 
similar to NDV and EBOV, is a negative ssRNA virus (64). 
Similar to rabies, it belongs to the family of Rhabdoviridae. 
It causes stomatitis vesicularis, an infectious disease affecting 
hooved mammals (cattle, horse and pig). In humans, it can 
cause flu-like symptoms, swelling of the lymph nodes and 
neurological side-effects.

It is conceivable to design a recombinant vaccine vector 
against EBOV based on NDV. This would ensure an unin-
hibited IFN response with all its positive consequences as 
discussed in the present review. Whether a mammalian virus 
such as VSV can exert an uninhibited and similarly strong IFN 
response as that of NDV in other mammals, including man, 
remains to be investigated.
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