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Abstract. Papillary thyroid carcinoma (PTC) is the most 
common type of thyroid cancer. Elucidating the molecular 
network that is altered in PTC may lead to the identification of 
the critical insight into the pathogenesis of PTC. Thus far, little 
is known regarding the global metabolomic alterations of PTC. 
Gas chromatography coupled with mass spectrometry‑based 
metabolomics was used to analyze metabolomic alterations in 
matched PTC and normal thyroid tissues obtained from the 
patients. Multivariate statistical analyses were employed to 
determine the significant metabolomic differences. The mRNA 
levels of the associated metabolic enzyme genes were further 
assayed with reverse transcription‑quantitative polymerase 
chain reaction analysis. Principal component analysis, partial 

least‑squares discriminant analysis (PLS‑DA) and orthogonal 
PLS‑DA models were established, which could clearly separate 
human normal thyroid and PTC samples, and identified that 
metabolites in carbohydrate metabolism, including glucose, 
fructose, galactose, mannose, 2‑keto‑D‑gluconic acid and 
rhamnose, consistently decreased, while metabolites in nucleo-
tide metabolism, including malonic acid and inosine, and 
lipid metabolism, including cholesterol and arachidonic acid, 
significantly altered in PTC. Furthermore, the mRNA levels of 
metabolic enzyme genes, including glucose‑6‑phosphate dehy-
drogenase, phosphoglycerate kinase 1, lactate dehydrogenase 
A, phosphoglycerate dehydrogenase and prostaglandin‑endo-
peroxide synthase 2, significantly increased in PTC. Based on 
the metabolomic and mRNA data, various metabolites may be 
used for increased synthesis of nucleotides and oncogenic lipids 
in PTC, which may contribute to the pathogenesis of PTC. The 
present study provides a new understanding of the dysregulated 
metabolism in PTC and identifies potential avenues for the 
therapeutic intervention for this disease.

Introduction

Papillary thyroid carcinoma (PTC) is the most common type of 
thyroid cancer, which represents 75‑85% of all thyroid cancer 
cases. Metabolomics is a newly emerging technology that holds 
promise for the diagnosis of disease and discovery of mecha-
nisms linked to disease processes, particularly in cancers (1‑4). 
Cancer cells have fundamentally altered cellular metabolism, 
which directly contributes to tumorigenicity and malignancy. 
Deciphering the molecular networks that are altered in PTC may 
lead to the identification of the critical insight into the pathogen-
esis of PTC. Although PTC is an important cancer with regard 
to research, little is known regarding the global metabolomic 
alterations of PTC. Currently, the nuclear magnetic resonance 
spectroscopy (NMR)‑based metabolomic technique has been 
widely used in studies regarding thyroid carcinomas particu-
larly in the diagnosis (5‑7); however, the metabolic pathways 
that drive tumorigenesis in PTC remain to be elucidated.
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NMR is non‑destructive, highly selective and useful in 
metabolite structural identification; however, it is limited by 
relatively lower sensitivities. By contrast, gas chromatog-
raphy (GC) coupled with mass spectrometry (MS) offers a 
good combination of sensitivity and selectivity, which makes 
GC‑MS an important tool in metabolomics. However, to the 
best of our knowledge, there are no published GC‑MS based 
metabolomic studies on PTC.

Currently, integration of multiple layers of information is 
promising for acquiring a precise understanding of disease. 
The combination of metabolomic results and metabolic enzyme 
gene expression data can support the metabolomic results, and 
also provide deeper insight into the metabolomic findings (8).

In the present study, the GC‑MS‑based non‑targeted 
metabolomic technique  (9,10) was used to study different 
metabolite patterns and metabolic pathway disturbances in 
PTC. Based on the metabolomic results, a follow‑up study 
was performed to understand the expression of the metabolic 
enzyme genes in association with PTC. By the integration of 
the metabolomic and metabolic enzyme gene expression data, 
the present study provided the first critical insight into the 
metabolic network that may drive tumorigenesis in PTC.

Patients and methods

Sample collection. The Ethics Committee of the First Affiliated 
Hospital of Nanjing Medical University (Nanjing, China) 
approved the study. Informed consent was obtained from each 
participant. Matched PTC and normal thyroid tissues were 
obtained from the same diagnosed PTC patients (n=16; 4 males, 
12 females; age range, 19‑59 years; tumor size, 1‑4.2 cm) during 
surgery. The sample size and characteristics of the population 
for metabolomic analysis were similar to previous metabolomic 
studies on PTC and other types of cancer, and as such can provide 
useful information on metabolic changes of cancers using tissues 
(2,5‑7). All the patients had undergone surgical thyroidectomy 
at the First Affiliated Hospital of Nanjing Medical University. 
Histological assessment was conducted based on established 
criteria of the World Health Organization (11). Pathological 
diagnosis of all the PTC was confirmed independently by two 
pathologists. Tumor samples were carefully microdissected to 
ensure that >90% of the analyzed tissue contained cancer cells, 
and normal tissues were not connected by follicular adenomas 
or thyroid carcinoma. None of the patients received radiation 
therapy or neo‑adjuvant chemotherapy prior to surgery. Fresh 
tumor tissue and corresponding normal thyroid were washed 
with phosphate‑buffered saline following removal and 
snap‑frozen in liquid nitrogen during surgery, and were subse-
quently stored at ‑80˚C until analysis.

Chemicals. 13C6‑Leucine was purchased from Shanghai 
Intechem Technology Co., Ltd. (Shanghai, China). 
Bis‑(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% 
trimethylchlorosilane (TMCS) and methoxylamine were 
obtained from Sigma‑Aldrich (St. Louis, MO, USA). Water 
was purified by the Milli‑Q Reagent Water System (Millipore, 
Billerica, MA, USA).

Sample preparation. For GC‑MS analysis, the sample prepa-
ration was carried out according to a previous method (10). 

Each 40‑mg tissue was transferred to a centrifuge tube. An 
ice‑cold mixture (800  µl) of chloroform‑methanol‑water 
(2:5:2, v/v/v) and 100 µl of 13C6‑leucine, as the internal standard 
(100 µg/ml), were added to each sample and the mixture was 
homogenized in an ice‑water bath. The samples were subse-
quently centrifuged at 14,000 x g for 15 min at 4˚C and 700 µl 
of the supernatant was collected separately from each sample 
into a new tube. Following the addition of 500 µl methanol 
into each original tube, the solution was vortex‑mixed, and 
centrifuged at 14,000 x g for 15 min at 4˚C. The supernatant 
(500 µl) was collected from each original tube and transferred 
into the corresponding new tube separately and the solution 
was vortex‑mixed. The solution (200 µl) from each new tube 
was transferred to a screw vial with PTFE‑lined screw caps 
and evaporated to dryness under a stream of nitrogen gas. 
Subsequently, methoximation was carried out by dissolving 
the samples in 30 µl of methoxamine solution (20 mg/ml in 
pyridine) and incubating them at 37˚C for 90 min. Following 
this, 30 µl BSTFA with 1% TMCS was added to each vial, and 
the mixture was incubated for 60 min at a temperature of 70˚C. 
Following derivatization and cooling to room temperature, the 
derivative (1 µl) was injected in the GC‑MS for analysis.

GC‑MS analysis. The metabolomic profiling was performed 
according to previous studies (9,10). The GC‑MS instrument 
used for metabolite profiling was an Agilent 7890A/5975C 
GC‑MS system with an HP‑5ms fused silica capillary column 
(30 m x 250 µm, 0.25 µm). Helium (purity>99.999%) was used 
as a carrier gas with a flow rate of 1.0 ml/min, and a 1 µl sample 
was injected at a splitless mode. The temperature of injection 
was set to 280˚C. The column temperature was first kept at 
80˚C for 2 min, increased to 320˚C at a rate of 10˚C/min and 
maintained at 320˚C for 6 min. The detector was a quadrupole 
mass spectrometer and the temperatures of the ion source and 
quadrupole were 230 and 150˚C, respectively. The electron 
energy was operated at 70 eV. The data were acquired in full 
scan mode from m/z 50 to 600. All the samples were analyzed 
randomly to avoid complications associated with the injection 
order. The GC‑MS analysis was performed within 24 h to 
ensure the stability of instrument performance and derivatives. 
One script of xcms package was run under R analytical plat-
form (R Core Team, Vienna, Austria; http://www.R-project.
org/) to preprocess these raw GC‑MS data, including base-
line filtering, peak identification, integration, retention time 
correction, peak alignment and mass tag correlation. Prior 
to analysis, the set of data were normalized by dividing the 
spectral intensity of each metabolite by the sum of all the 
metabolites in that spectrum. This was performed to account 
for any differences in global sample concentrations resulting 
from metabolomic analysis (12). A data matrix of each sample 
was obtained for characterizing the biochemical pattern, and 
subsequently employed for correlation analysis and pattern 
recognition. The differential metabolites were identified by 
searching the NIST library and author‑constructed standard 
library with a similarity of >80%, and were verified by avail-
able reference compounds (9,13).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) analysis. Total RNA was extracted from snap‑frozen 
tissue fragments using TRIzol (Invitrogen, Carlsbad, CA, 
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USA), according to the manufacturer's protocol. Reverse 
transcription was performed using the PrimeScript RT reagent 
kit (Takara, Dalian, China) in accordance with the manufac-
turer's protocol. All RT‑qPCR reactions were carried out on 
the ABI 7900 HT Fast Real‑Time system (Applied Biosystems, 
Foster City, CA, USA) using SYBR‑Green PCR Master Mix 
reagent kits (Takara) according to the manufacturer's protocol 
for quantification of gene expression. Human‑specific primers 
for the genes of interest are listed in Table I. All PCR was 
performed in triplicate, and the specificity of the PCR prod-
ucts was confirmed using melting curve analyses. The 2‑ΔΔCt 
method was used to calculate the relative expression (14). The 
reference gene β‑actin was used as an internal control. The 
levels of the glucose‑6‑phosphate dehydrogenase (G6PD), 
phosphoglycerate kinase 1 (PGK1), lactate dehydrogenase A 
(LDHA), phosphoglycerate dehydrogenase (PHGDH) and 
prostaglandin‑endoperoxide synthase 2 (PTGS2) genes were 
normalized relative to the expression levels of the gene β‑actin.

Statistical analysis. Multivariate statistical analysis was 
performed with SIMCA‑P (Umetrics, Umeå, Sweden) with 
mean centering and unit variance scaling applied  (15). To 
guard against over‑fitting, the default 7‑round cross‑validation 
was applied with 1/7th of the samples being excluded from 

the mathematical model in each round. An orthogonal partial 
least‑squares discriminate analysis (OPLS‑DA) model was 
taken as a coefficient for peak selection (16). The significant 
metabolites were identified using OPLS‑DA to identify metab-
olites with a variable importance in the projection (VIP) of >1 
and by t‑test (P<0.05) (17). Paired t‑tests were used to compare 
the mRNA levels of metabolic enzyme genes.

Results

Metabolomic profiling. Fig. 1 shows the magnified represen-
tative regions of normal thyroid and PTC from one patient. 
Representative GC‑MS total ion chromatograms of samples 
from the control and case groups are shown in Fig. 2. The 
data showed a stable retention time with no drift in all the 
peaks. To further validate the quality of analysis, the varia-
tion of 13C6‑leucine spectral intensities was analyzed in all the 
samples, and identified that the coefficient of variation % was 
11.3%. All these data reflect the stability of GC‑MS analysis 
and the reliability of the metabolomic data (9,10).

Principal component analysis (PCA). PCA is an unsupervised, 
reductive statistical modeling technique that separates samples 
based on their differences from each other. PCA was used to 

Table I. Primers for reverse transcription-quantitative polymerase chain reaction.

Target gene	 Primer sequences	 Product length (bp)

G6PD	 Sense: 5'-ACAGAGTGAGCCCTTCTTCAA-3'	 106
	 Antisense: 5'-GGAGGCTGCATCATCGTACT-3'
PGK1	 Sense: 5'-TGGACGTTAAAGGGAAGCGG-3'	 152
	 Antisense: 5'-GCTCATAAGGACTACCGACTTGG-3'
LDHA	 Sense: 5'-ATGGCAACTCTAAAGGATCAGC-3'	 86
	 Antisense: 5'-CCAACCCCAACAACTGTAATCT-3'
PHGDH	 Sense: 5'-CTGCGGAAAGTGCTCATCAGT-3'	 154
	 Antisense: 5'-TGGCAGAGCGAACAATAAGGC-3'
PTGS2	 Sense: 5'-CTGGCGCTCAGCCATACAG-3'	 94
	 Antisense: 5'-CGCACTTATACTGGTCAAATCCC-3'
β-actin	 Sense: 5'-GTGGACATCCGCAAAGAC-3'	 303
	 Antisense: 5'-GAAAGGGTGTAACGCAACT-3'

Figure 1. Hematoxylin and eosin-stained representative regions of normal thyroid and papillary thyroid carcinoma tissue from one patient (original magnifica-
tion, x200). 
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identify overall metabolic differences in the data set (Fig. 3A). 
The normal thyroid and tumor samples were clearly separated, 
indicating that the metabolome was significantly changed in 

PTC tissue and that metabolomic analysis acquired enough 
metabolome information to explain the metabolic disturbance 
in PTC.

Figure 2. Representative gas chromatography coupled with mass spectrometry total ion chromatograms of the samples following chemical derivatization. 
(A) Normal thyroid. (B) Papillary thyroid carcinoma.

Figure 3. Comparison of papillary thyroid carcinoma (PTC) and normal thyroid with multivariate statistical analysis models. PTC (cycle), normal thyroid 
(square). (A) Principal component analysis (PCA) score plots discriminating PTC specimens from normal specimens based on gas chromatography coupled 
with mass spectrometry (GC‑MS) metabolites. (B) Partial least-squares discriminant analysis (PLS-DA) scores plot discriminating PTC specimens from 
normal specimens based on GC‑MS metabolites. (C) Orthogonal partial least-squares discriminate analysis (OPLS-DA) scores plot discriminating PTC 
specimens from normal specimens based on GC/MS metabolites. 
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Partial least‑squares discriminate analysis. Partial 
least‑squares discriminant analysis (PLS‑DA) is similar to PCA 
but is supervised, allowing for the definition of classes prior 
to performing the test. This allowed the differences between 
the two classes to become apparent (Fig. 3B). R2Y of PLS‑DA 
was 0.98, indicating that the model presents a high degree of 
goodness of fit, and the Q2 of PLS‑DA was 0.88, indicating that 
the model presents a high degree of cross validation predictive 
ability.

OPLS‑DA. OPLS‑DA maximizes the variation between the 
specified groups and minimizes the variation between the 
individual replicates. Therefore, it highlights the important 
differences between the two compared sample classes. VIP 
provides an indication of each metabolite's significance to 
that model. A metabolite with a VIP of >1 is considered to 
have a statistically significant contribution to the model (17). 
Similar to the PLS‑DA model, the OPLS‑DA model provided 
optimal modeling and predictive abilities (R2Y=0.96, Q2=0.89), 
achieving a distinct separation between the metabolite profiles 
of the two groups (Fig. 3C).

Differential metabolites associated with PTC. Differential 
metabolites associated with tumorigenesis derived from the 
OPLS‑DA mode of GC‑MS analysis with t‑test are shown in 
Table II. The metabolites in carbohydrate metabolism, including 
glucose, fructose, galactose, mannose, 2‑keto‑D‑gluconic acid 
and rhamnose, consistently decreased, while metabolites in 
nucleotide metabolism, including malonic acid and inosine, and 
lipid metabolism, including cholesterol and arachidonic acid, 
significantly altered correspondingly. The classification of the 
chemicals and mapping of the metabolites into general biochem-
ical pathways, as illustrated in the Kyoto Encyclopedia of Genes 
and Genomes (http://www.genome.jp/kegg/), suggested the 
possible increased carbohydrate‑derived flux into the glycolysis 
and pentose phosphate pathway and increased oncogenic lipid 
synthesis in PTC (Fig. 4).

Metabolic enzyme gene expression change and metabolic 
network in PTC. A combination of metabolomic and associ-
ated mRNA data has been proven to be useful in providing 
deeper insight into the metabolic changes (18).

Table II. Differential metabolites associated with PTC derived 
from the OPLS-DA mode of gas chromatography coupled with 
mass spectrometry analysis with t-test.

Metabolites	 VIP-valuea	 P-valueb	 Fold-changec

Arachidonic acid	 1.72	 1.14x10-3	 0.50
2-keto-D-gluconic acid	 2.25	 2.87x10-6	 0.26
Malonic acid	 1.36	 1.96x10-2	 0.16
Glucose	 2.06	 3.82x10-5	 0.31
Rhamnose	 1.79	 5.70x10-4	 0.48
Fructose	 1.52	 4.83x10-3	 0.27
Mannose	 1.63	 2.19x10-3	 0.22
Galactose	 1.55	 3.62x10-3	 0.19
Phenylalanine	 1.42	 1.85x10-2	 2.02
N6-Acetyl-L-lysine	 1.13	 4.06x10-2	 1.58
Inosine	 2.21	 5.39x10-6	 3.53
Hydroxyproline	 1.53	 5.80x10-3	 9.88
Benzoic acid	 1.78	 6.19x10-4	 1.18
Cholesterol	 1.12	 4.54x10-2	 1.32
Pelargonic acid	 1.62	 2.25x10-3	 1.33

aVariable importance in the projection (VIP) was obtained from 
OPLS-DA with a threshold of 1.0. bP-value was calculated with t-test. 
cFold change with a value >1 indicates a relatively higher concentra-
tion in the PTC tissue when compared with normal tissue, whereas 
a value <1 means a relatively lower concentration in PTC tissue. 
PTC, papillary thyroid carcinoma; OPLS‑DA, orthogonal partial 
least‑squares discriminate analysis.

Figure 4. Dysregulated metabolic network in papillary thyroid carcinoma (PTC). Green indicates a decrease in PTC; red indicates an increase in PTC; 
black indicates no available data. G6PD, glucose-6-phosphate dehydrogenase; PGK1, phosphoglycerate kinase 1; LDHA, lactate dehydrogenase A; PHGDH, 
phosphoglycerate dehydrogenase; PTGS2, prostaglandin-endoperoxide synthase 2.
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In order to validate the metabolite changes and further 
delineate the metabolic network in PTC, the expression of 
several critical metabolic enzyme genes was determined in the 
proposed metabolic pathway by analyzing the mRNA level. The 
mRNA levels of gene G6PD encoding glucose‑6‑phosphate 
dehydrogenase, which is the committed step of the pentose 
phosphate pathway, significantly increased in PTC (Figs. 4 and 
5A). In the glycolysis pathway, the mRNA levels of the gene 
PGK1 encoding phosphoglycerate kinase, which is a crucial 
enzyme in the glycolysis cycle and catalyzes the formation of 
3‑phosphoglycerate, significantly increased in PTC (Figs. 4 
and 5B). The mRNA levels of the gene LDHA encoding lactate 
dehydrogenase, significantly increased in PTC (Figs. 4 and 
5C), supporting the finding of increased glycolysis in PTC. As 
mRNA levels of the PGK1 significantly increased (Figs. 4 and 
5B), the metabolism of 3‑phosphoglycerate was focused on, 
which can provide acetyl‑CoA for cholesterol synthesis. The 
mRNA levels of the gene PHGDH encoding phosphoglyc-
erate dehydrogenase increased in PTC (Fig. 5D), which can 
finally produce acetyl‑CoA to support lipogenesis, indicating 
that the 3‑phosphoglycerate metabolic pathway may generate 
precursors for the downstream production of cholesterol. The 
relative levels of arachidonic acid decreased in PTC, which is 
the precursor of oncogenic lipid. The mRNA levels of gene 
PTGS2 encoding prostaglandin‑endoperoxide synthase 2 
increased (Fig. 5E) in PTC, indicating an increased consump-
tion of arachidonic acid to form the oncogenic lipid in PTC. 
The metabolic network that may drive tumorigenesis in PTC 
is summarized in Fig. 4. 

Discussion

Although the metabolic changes have been studied in different 
cancers (19‑21), the metabolic changes that drive tumorigenesis 

in PTC remain to be elucidated. Notable consistent decreases 
in a wide range of metabolites, including glucose, fructose, 
galactose, mannose, 2‑keto‑D‑gluconic acid and rhamnose 
in the upper section of the glycolysis and pentose phosphate 
pathway, were observed in PTC samples. The increased LDHA 
expression is in accordance with previous studies using the 
NMR‑based metabolomic technique, which has consistently 
revealed that the lactate levels increased in PTC (6,7). These 
results, including metabolomic and gene expression data, 
consistently indicate upregulation of the glycolysis and pentose 
phosphate pathway by high consumption of glucose, fructose, 
galactose, mannose, 2‑keto‑D‑gluconic acid and rhamnose in 
PTC.

The upregulation of the pentose phosphate pathway by the 
increased G6PD expression and higher levels of consumption 
of glucose, galactose and 2‑keto‑D‑gluconic acid in tumor 
cells provides important precursors (pentoses, 5‑carbon 
sugars) of nucleotide synthesis, such as DNA and RNA. 
Accordingly, the production of the downstream metabolite, 
inosine, significantly increased in PTC (Table II and Fig. 4). 
Inosine is commonly found in  tRNAs and is essential for 
correct translation of the genetic code. The decrease of the 
associated levels of malonic acid in PTC indicates possible 
diversion into the uridine monophosphate synthesis pathway 
in PTC to increase nucleotide synthesis (22). Therefore, these 
data suggest a link between the upregulation of the pentose 
phosphate pathway and increased nucleotide synthesis in PTC 
to initiate and maintain tumorigenesis.

Aside from pentoses, the pentose phosphate pathway is a 
process that also generates nicotinamide adenine dinucleotide 
phosphate (NADPH). Ribonucleotide reductase (RNR) is an 
enzyme that catalyzes the formation of deoxyribonucleotides 
from ribonucleotides (23). Deoxyribonucleotides are used in 
the synthesis of DNA, and RNR has a critical role in regulating 

Figure 5. Comparison of the mRNA levels of the metabolic enzyme genes in papillary thyroid carcinoma and normal thyroid. Each bar represents the 
mean ± standard error of the mean, n=16 for each group. The data shown are representative of the results of three independent reverse transcription‑quantitative 
polymerase chain reaction analysis. Each value was normalized to the mRNA expression of β-actin, and a summary of the results is expressed as percentage 
of control mRNA levels. *P<0.05, **P<0.01. (A) Glucose-6-phosphate dehydrogenase (G6PD); (B) phosphoglycerate kinase 1 (PGK1); (C) lactate dehydroge-
nase A (LDHA); (D) phosphoglycerate dehydrogenase (PHGDH); and (E) prostaglandin-endoperoxide synthase 2 (PTGS2).
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the total rate of DNA synthesis. The ultimate reductant of this 
reduction system is NADPH. Therefore, the upregulation of 
pentose phosphate pathway not only provides more precursors 
for DNA synthesis, but also aids in the generation of DNA 
by RNR in PTC. By contrast, a recent study has shown that 
control of the intracellular reactive oxygen species concentra-
tions is critical for lung cancer cell survival (24). NADPH can 
also be used as the primary reducing power, which may aid in 
proliferation and lung cancer cell growth (24).

In the present study, the 3‑phosphoglycerate metabolic 
pathway may generate precursors for the increased cholesterol 
production in PTC. Cholesterol is an essential structural 
component of human cell membranes, and it is reported that 
cholesterol increases in colorectal cancer tissue (25). In PTC 
tissue, the increase of cholesterol may drive rapid cell growth 
and proliferation. It is also noteworthy that the conversion of 
3‑phosphoglycerate generates glycine. Glycine is a precursor 
of numerous important molecules that are required for cell 
growth, such as purines, protein, glutathione and 1‑carbon 
units as 5,10‑methylenetetrahydrofolate (26).

In PTC, significantly decreased levels of arachidonic 
acid were observed. Arachidonic acid is the precursor of 
prostaglandins, which are a class of oncogenic lipid signaling 
molecules (27). PTGS2 catalyzes the conversion of arachidonic 
acid to prostaglandins, and it is reported that PTGS2 can be 
induced at sites of inflammation by cytokines, growth factors, 
tumor promoters and other agents in colorectal cancer (28). 
In the present study, the mRNA levels of PTGS2 encoding 
prostaglandin‑endoperoxide synthase  2 increased in PTC 
(Figs. 4 and 5E), and an increased consumption of arachidonic 
acid was observed, which forms the oncogenic lipid in PTC. 
Therefore, the decrease of arachidonic acid can be explained 
by an increased generation of prostaglandins in PTC.

Although several NMR‑based metabolomic studies on 
thyroid carcinomas have been reported (5‑7), the GC‑MS‑based 
metabolomic analysis of thyroid carcinomas has never been 
reported. In the present GC‑MS‑based metabolomic study, the 
metabolomic data could establish models with high degrees 
of goodness‑of‑fit and cross validation predictive ability, and 
the normal thyroid and tumor samples could be clearly sepa-
rated, suggesting this GC‑MS‑based metabolomic approach 
has a significant potential in improving the diagnostic efficacy 
of PTC in conjunction with current diagnostics. Further 
metabolomic studies focusing on the diagnosis of thyroid 
cancers should be conducted using urine and blood samples 
and require the involvement of benign masses, as well as other 
pathological types of thyroid cancers to provide non‑invasive 
and rapid diagnostic techniques for thyroid cancers (29).

In addition to the dysregulated metabolism pathway in PTC, 
there was a change of N6‑Acetyl‑L‑lysine. N6‑Acetyl‑L‑lysine 
is an acetylated amino acid that has critical roles in regulating 
gene transcription, cell‑cycle progression, apoptosis, DNA 
repair and cytoskeletal organization. The observed increase 
of N6‑Acetyl‑L‑lysine indicates that an intracellular signaling 
mechanism by post‑translational lysine‑acetylation may be 
involved in the pathogenesis of PTC.

In conclusion, through using a novel integrated analysis 
of metabolome and metabolic enzyme gene expression in 
PTC, to the best of our knowledge the metabolite patterns and 
metabolic networks in PTC have been shown for the first time. 

Various metabolites that may be used for increased synthesis of 
nucleotide and oncogenic lipid were identified in PTC via the 
increased expression of associated metabolic enzyme genes, 
which may contribute to the pathogenesis of PTC. The present 
study provides an understanding of dysregulated metabolism 
in PTC and identifies potential avenues for the therapeutic 
intervention for this disease.
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